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Abstract.  A new constitutive model for the representation of the seismic behaviour of steel bars including 

hardening phenomena is presented. The model takes into account relative slip between bars and concrete, 

necessary for the estimation of the structural behaviour of r.c. elements and of the level of strain induced by 

earthquakes on bars. The present work provides the analytical formulation of the post-yielding behaviour of 

reinforcements, resulting in a continuous axial stress-slip relationship to be implemented in engineering 

software. The efficacy of the model is proved through the application to a cantilever column, for whose bars 

the constitutive law is derived. 
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1. Introduction 
 

Several works were provided in the past literature dealing with the representation of the 

behaviour of reinforced concrete (r.c.) elements or sub-structures through the use of numerical 

models and constitutive laws elaborated to reproduce the monotonic and cyclic properties of 

materials and structures. The results presented by Hakuto et al. (1999), Gigliotti (2002), Braga et 

al. (2012) evidenced the inadequacy of neglecting the relative slip between longitudinal 

reinforcing bars and surrounding concrete, causing the improper evaluation of the cyclic behaviour 

of the structure. The numerical models characterized by the assumption of perfect-bond between 

bars and concrete (Menegotto and Pinto 1973, Mander et al. 1984 and others) often provide results 

not in agreement with the ones coming from experimental tests on r.c. sub-structures or elements, 

as widely presented by D’Amato et al. (2012), Limkatanyu and Spacone (2008), Braga et al. 

(2012). The influence of relative slip was evidenced both in the case of plain steel reinforcements, 

i.e., existing r.c. buildings characterized by poor structural details (Ciampi et al. 1983, D’Amato et 

al. 2012) and in the case of ribbed bars. The inadequacy of structural detailing and the following 

degradation of bond strength caused an insufficient structural available ductility in presence of 

cyclic loads, evidencing the fundamental role of bond slip phenomena in the response of r.c. 

structures (Hakuto et al. 1999). The experimental tests executed by Bertero and Popov (1977) 

                                                           
Corresponding author, Ph.D., E-mail: silvia.caprili@ing.unipi.it 



 

 

 

 

 

 

Franco Braga, Silvia Caprili, Rosario Gigliotti and Walter Salvatore 

highlighted the possibility of neglecting relative slip until yielding, underlining at the same time 

the inconsistencies of the results for increasing levels of the applied force, when the generation of 

uniaxial stresses and strains on the bar led to the cracking of the concrete, to the breaking of the 

bond between bar and concrete and to the relative final displacement between the reinforcement 

and the adjacent concrete. 

Many works were proposed regarding the elaboration of models able to represent the influence 

of relative slip between steel bars and concrete on the behaviour of r.c. structures, often resulting in 

very complex systems not applicable to the engineering practice of buildings’ analysis and design 

but, at most, to single structural elements. Ngo and Scordelis (1969) proposed a linear elastic finite 

element model of a simply supported steel-concrete beam made up of constant strain triangular 

elements with concentrated bond link connections modeled through orthogonal dimensionless 

springs. Keuser and Mehlhorn (1987) introduced a contact element providing continuity between 

steel and concrete and Rubiano-Benavides (1998) proposed a model with rotational springs at the 

ends of the elements for reproducing the additional flexibility due to bond-slip phenomena. Monti 

et al. (1993) analyzed the problem of a bar embedded in the concrete for a certain length, 

determining the trends of axial stress, axial strain, bond stress and slip along the reinforcement 

solving the problem through the use of equilibrium, compatibility and constitutive equations. 

Fabbrocino et al. (2004) elaborated a model for the anchorage of plain bars in existing r.c. 

buildings determining the force transfer mechanism governing the behaviour of the reinforcing bar 

in tension. Vecchio and Collins (1986) elaborated a general model for two-dimensional cracked r.c. 

elements representing the cracked concrete with a specific stress-strain behaviour directly taking 

into account the effects of local strains at cracks, strains between cracks, bond-slip, and crack slip. 

All the models herein presented, validated through experimental tests, did not provide 

information about the effects of relative slip on the stress-strain behaviour of reinforcing bars 

under monotonic and cyclic loads, topic that consequently shall be deeply investigated. In the 

current engineering practice, perfect-bond constitutive laws are generally used to represent the 

monotonic and cyclic behaviour of steel reinforcements. Such laws usually do not include the 

effects of relative slip bar/concrete, leading to an improper evaluation of stresses and strains due to 

external loading conditions on r.c. structures. Looking at constitutive laws for reinforcements, for 

instance, the Menegotto-Pinto (1973) law correctly reproduces the transition from the elastic to the 

plastic range including the Baushinger effect but neglecting relative slip. Mander et al. (1984) 

provided a constitutive law including strain-hardening phenomena while Monti and Nuti (1992) 

elaborated a model calibrated on the base of experimental tests on different samples considering or 

neglecting buckling phenomena and introducing different hardening rules.  

Other models were also provided (Dodd and Restrepo Posada 1995, Gomes and Appleton 

1997), mainly referred to single bare bar, without taking into consideration the interaction with 

surrounding concrete (Menegotto and Pinto 1973, Mander et al. 1984) or introducing a very 

complex modelling of relative slip (Monti et al. 1993, Monti and Nuti 1992, Lowes and Altoontash 

2003), usually not easy to be applied for the analysis of modern r.c. buildings. More recently, 

Braga et al. (2012) elaborated a simple model including relative slip between steel and concrete 

and providing the axial stress-slip relationship through the adoption of simple equilibrium, 

compatibility and constitutive equations. Starting from the results of experimental tests on r.c. 

beam to column sub-assemblages (Gigliotti 2002) and highlighting the importance of relative slip 

mainly in presence of an inadequate anchorage length, the slip model allowed to directly include 

relative slip in the numerical simulations also for very complex buildings with a reduced 

computational effort. The results provided by the adoption of the slip model (Braga et al. 2012, 
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D’Amato et al. 2012) were in good agreement, at a global force-displacement level, with the ones 

coming from experimental tests on r.c. elements and sub-structures; anyway, despite its simple 

application and development, the slip model (Braga et al. 2012) was based on the strong 

simplification of the elasto-plastic constitutive law for steel bars, not properly representative of the 

strain condition of reinforcements under cyclic/seismic loads. 

As a consequence, an improvement to the slip model proposed by Braga et al. (2012) has been 

developed and is hereafter presented. The hardening slip model can be adopted for the 

representation of the cyclic/seismic behaviour of steel bars in r.c. structures, in which plastic 

deformation can be determined. The model was developed as a part of the European research 

project RUSTEEL, Effects of Corrosion on Low-Cycle Fatigue (Seismic) Behaviour of High 

Strength Steel Reinforcing Bars (2009-2012), whose main aims consisted in the investigation of 

the behaviour of reinforcing bars under the combined effects of cyclic action and corrosion 

phenomena (Braconi et al. 2012, Braconi et al. 2013, Braconi et al. 2014, Caprili and Salvatore 

2014). Actual design codes for r.c. buildings (EN 1998-1:2005; D.M. 14/01/2008) prescribe the 

development of high plastic deformations in specific regions of structural elements to obtain a 

global dissipative collapse mechanism. The ductile behaviour of r.c. structures depends on the 

cyclic capacity of bars located in those areas where plastic deformations are expected: steel 

reinforcements are subjected to few cycles of high plastic deformations (Teran-Gilmore and Jirsa, 

2007) and in order to understand the cyclic behaviour of steel bars, a model including relative slip 

and hardening phenomena is then necessary. The hardening slip model aims to overcome the limits 

related to the model proposed by Braga et al. (2012) due to the simplification of an elasto-plastic 

relationship for steel, allowing the determination of the values of axial stress, slip and strain due to 

cyclic loads on reinforcing bars in r.c. structures, often subjected to high plastic deformations. 

 
 
2. Basic hypotheses and proposed model 
 

2.1 Main assumptions at the base of the model 
 

The hardening slip model describes the behaviour of steel bars in r.c. structures including 

relative slip and hardening phenomena, in order to represent the stress-strain condition due to 

cyclic/seismic action in both r.c. elements and reinforcements. Simplified assumptions are adopted 

for the formulation of the model for what concerns the slip field along the bar, the bond stress-slip 

relationship and the constitutive axial stress-strain law describing the behaviour of steel bars (Fig. 

1); in particular: 

• the slip field u(x) is assumed bi-linear along the bar, with two different branches respectively 

representing the condition before and after the yielding point; 

• the bond stress-slip relationship is assumed elastic-perfectly plastic; 

• the stress-strain constitutive law for steel is assumed elastic-plastic with hardening; 

• the anchorage at the bar end is represented as a linear function of the displacement u0. 

The slip field u(x) along the bar is characterized by a bi-linear behaviour: this point constitutes 

the stronger simplification in the analytical formulation of the constitutive axial stress-slip 

relationship. Anyway, according to what presented by D’Amato et al. (2012), the linear 

schematization of the slip field already adopted by Braga et al. (2012) does not lead to relevant 

differences with respect to the results obtained by the adoption of refined models such as, for 

instance, the one proposed by Monti et al. (1997). A more detailed justification of the assumption  
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Fig. 1 Simplifications assumed for the hardening slip model 

 

 

was provided by D’Amato et al. (2012): the good agreement in terms of relative slip of the results 

coming from the two models was evidenced in the case of more than 50 simulations for different 

bar’s diameter, different values of yielding strength and bond stress considering both the cases of 

bar pull-out and bar yielding. In the present work, based on the linearization of slip already 

explained and in order to represent the increase of relative slip due to the hardening phenomena, 

two different linear branches are determined, describing the behaviour before and after the 

overcoming of the yielding strength. The slip field u(x) along the bar before yielding is then 

defined by Eq. (1) 
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in which u0 and uL represent the bar’s end displacements, x is the generic abscissa along the bar 

and L0 the portion of the bar involved in relative slip. Fig. 2 shows the trends of axial slip and axial 

stress along the bar before yielding in the two above presented conditions. 

After yielding, the increase of axial stress due to hardening phenomena leads to the 

corresponding increase of relative slip; the trend of axial slip along the bar is then approximated by 

two different branches, as presented by Eq.(3), in which 0u is defined according to Eq.(2) and Ly  

 

 

  
(a) (b) 

Fig. 2 Axial slip and axial stress along the bar before yielding: (a) u0=0 - L0<L, (b) u0≠0 - L0=L 
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is the part of the bar in which yuxu )( , uy being the value of displacement corresponding to the 

yielding strength fy (Fig. 3). If the axial stress increases, the part of the bar involved in the post-

yielding phenomena increases following the trend of Ly 
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The bond stress-slip law, in agreement with the slip model (Braga et al. 2012, Gigliotti 2002), 

is schematized elastic-perfectly plastic, following the approach assumed by Verderame et al. 

(2001) and adopting the values proposed by Model Code (CEB-FIP 1993) for generic bond 

condition. The bond stress-slip field is consequently described by Eq. (4) 
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in which u(x) represents the axial slip field along the bar (Figs. 2-3), d is the residual value of 

bond stress and u1 the corresponding slip. 

The hypotheses used for the formulation of bond stress-slip relationship, already adopted by 

Braga et al. (2012) for the slip model “base” of the hardening slip one, come from the results of 

the experimental beam tests with plain bars executed by Verderame et al. (2001), evidencing a 

bond stress-slip behaviour characterized by a peak followed by a rapid decrease up to a residual 

value of the bond stress (Fig. 4). As a consequence, an elastic-perfectly plastic model for bond-slip 

relationship is adopted, neglecting the degrading branch of the constitutive relationship and taking 

into account the residual value of the bond stress (d). For what concerns the values to assume for 

the mechanical characterization of the bond stress-slip field (d, u1), Ciampi et al. (1983) 

evidenced that reversed cycling action caused a progressive degradation of bond resistance and 

consistent pinching phenomena on r.c. structures, mainly related to the development of shear 

cracks in concrete between two consecutive ribs; as a consequence, the envelope curve describing 

the monotonic behaviour of the bond stress-slip relationship was generally reduced for considering 

the effects of the cyclic loading action. The reduction factors were strongly dependent on the total 

dissipated energy, the amplitude of slip, the number of cycles executed and the confinement rate. 

In order to consider the progressive degradation due to cyclic action in new constructions, 

generally characterized by an initial perfect bond, in the bilinear schematization of the bond stress-

slip relationship the residual value of bond stress corresponding to the behaviour of confined 

concrete with “generic bond condition” (CEB-FIP 1993) is adopted (f=d) (Fig. 5(a)).  

For the stress-strain relationship of steel reinforcing bars, an elastic-plastic with hardening law 

is considered (Fig. 5(b)): the hardening branch is schematized with a linear behaviour up to the 

point in which the maximum load is reached. The hardening modulus is so defined by Eq. (5) 
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in which fu and fy represent the ultimate and yielding strength, p the total deformation at the 

beginning of the hardening branch and Agt the deformation corresponding to maximum load. 
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(a) (b) 

Fig. 3 Axial slip and axial stress along the rebar after yielding: (a) u0=0 - L0<L, (b) u0≠0 - L0=L 

 

 
Fig. 4 Results of experimental beam tests with different plain rebars (Verderame et al. 2001) 

 

  
(a) (b) 

Fig. 5 (a) Simplified scheme adopted for the bond stress-slip constitutive law for ribbed bars, (b) 

Simplified scheme adopted for the axial stress-strain constitutive law for ribbed bars 

 

 

The anchorage of the bar, if present, is represented as a linear function of the displacement 

corresponding to the end ( 0u ), according to Eq. (6), in which kh represents the hook stiffness, 

opportunely determined in relation to the characteristics of the anchorage. 
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0ukF hh                                  (6) 

It’s necessary to underline that all the previous assumptions constitute simplifications of the 

non linear bond-slip phenomena, necessary to describe the process without the necessity of an 

iterative procedure or an heavy computational effort and consequently useful for practical 

engineering purposes (Braga et al. 2012).  

 

2.2 Numerical formulation of the proposed model 
 

On the basis of the aforementioned hypotheses, the problem herein presented can be solved in a 

simple closed form through the use of equilibrium, compatibility and constitutive equations, 

allowing the determination of a continuous axial stress-slip relationship for the bar.  

Starting from the formulation of the slip field, expressed by Eqs. (1), (2) and (3) in relation to 

the specific conditions of the considered specimen (i.e., before or after the achievement of yielding 

strength), and of the bond stress-slip relation provided by Eq. (4), the equilibrium equation 

expressed by Eq. (7) 
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allows the determination of the axial stress field along the bar of diameter D and transversal area 

Ab. Fh represents the force acting in correspondence of the hooked end, described by Eq. (6). 

The use of the compatibility relationships introducing the constitutive equations provides the 

formulation of relative slip between the two ends of the bar before and after yielding (Eqs. (8)-(9), 

respectively). As visible from Eq. (9), the two different contributions related to relative slip 

corresponding to axial stresses lower and higher than yielding are considered, assuming the 

hardening relationship over a length equal to Ly, for which yfx )( . The increase of 

deformation during the phase in which the yielding strength remains constant (i.e., plateau) is 

taken into consideration introducing the increment of strain equal to εp in the definition of the 

displacement/relative slip, creating the connection between the end of the elastic range (εy−fy) and 

the beginning of the hardening branch (εp−fy). 
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In the post-yielding condition, taking into account the equilibrium condition along the bar, the 

portion of the bar in which yuxu )( (that is yfx )( ) can be easily determined (Fig. 6) 

according to Eq. (10) 
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Fig. 6 Equilibrium condition for the bar 

 

 

More in details, the formulation of the axial stress-slip relationship of the bar follows exactly 

the analytical equations provided by Braga et al. (2012) until the achievement of the yielding 

strength in correspondence of the free end of the specimen. For the analytical equations describing 

the problem in the case of yuxu )( , different cases can be determined in relation to the length of 

the bar directly influenced by relative slip; in particular, as well as in the slip model presented in 

the current scientific literature (Braga et al. 2012), two main situations are determined, considering 

an involved length respectively lower or equal to the total length of the bar. 

The general procedure for the definition of the continuous axial stress-slip relationship is 

briefly herein summarized, pointing out the main steps adopted in the formulation.  

The slip field is defined by two different branches, before and after yielding; the general 

formulation, coming from Eqs. (1), (2) and (3), turns then into Eq. (11) for the case LL 0 and 

into Eq. (12) in the other cases 
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About this point, some additional remarks shall be made: in the case of plain smooth bars u1 is 

usually equal to 0.10 mm (CEB-FIP 1993), usually lower than the uy and consequently leading to 

neglect the condition yL uuu 1 . For ribbed bars, on the other hand, the values assumed for u1 

can vary between 0.40 mm to 1.0 mm, and consequently the value of the slip corresponding to 

yielding can be even lower than u1: this increases the number of conditions that shall be taken into 

consideration in the whole formulation of the hardening slip model. The bond stress field along the 

bar can be then characterized by two or three different branches defined as a function of the 

associated slip: the general formulation for bond stress provided by Eq. (4) turns into two of three 

branches, as deeply presented in the Appendix to the paper. 

The application of equilibrium condition (Eq. (7)) finally allows the determination of the axial 

stress field along the bar, while the use of compatibility equation (Eq. (9)) provides the 

formulation of relative slip between the two ends of the bar, considering the elastic constitutive 

law until yielding and integrating the hardening strain field over a length equal to Ly.  
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3. Analytical solution 
 

The problem of the a steel bar embedded in a concrete block is solved considering the 

progressive increase of the axial stress and evaluating the corresponding increase of the axial slip, 

leading to a continuous axial stress-slip relationship describing the behaviour of the bar. In this 

framework, different cases shall be then distinguished depending on the value of L0 (i.e., the part 

of the total length of the bar involved in relative slip) in comparison with the total length of the 

reinforcement (L). Considering that the value of L0 increases with the value of the axial stress, the 

following Cases, indicated with the letters A, B, C and D, are then possible: 

• Cases A - L0 is always lower than L (before yielding, after yielding and until rupture); 

• Cases B - L0 is always equal to L (before yielding, after yielding and until rupture); 

• Cases C - L0 is lower than L. With the increase of the axial stress, L0 reaches L before 

yielding. 

• Cases D - L0 is lower than L. With the increase of the axial stress, L0 reaches L after yielding. 

In each considered Case (A, B, C or D) the following conditions shall be distinguished:  

1. u1>uL>uy; 

2. uL>u1>uy; 

3. uL>uy>u1; 

uL,y=uy being the axial slip in correspondence of the free end when yielding occurs and u1 the value 

of slip corresponding to the residual value of the bond stress d.  

In this way, different conditions can be determined for the definition of the axial stress - axial 

slip law, summarized in Figs. 7 and 8, related respectively to the Cases A and B. For what concerns 

 

 

 
Fig. 7 Different cases considered for the analytical formulation for L0<L before and after yielding 
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Fig. 8 Different cases considered for the analytical formulation for L0=L before and after yielding 

 

 

cases C and D, they coincide with the cases A until L0 reaches L (i.e., if the length of the bar 

involved in relative slip is lower than the total length of the bar), afterwards they can be reduced to 

the relevant cases B in relation to the values of the length involved in relative slip when yielding 

occurs. In the following pages, cases will be indicated with a tag containing the corresponding 

letter and number. As a consequence, the elaboration of the continuous axial stress-slip 

relationship for a steel reinforcement in a concrete block requires the strict control of the parameter 

L0 (i.e., initial length involved in relative slip) and of the corresponding values of stress and slip 

when the yielding occurs. In the appendix to the present paper the elaboration of the slip model 

after yielding (i.e., for yL f ) is presented for general cases A1, A2, A3 and B1, B2, B3. A short 

formulation of the slip model until yielding is provided, suggesting to refer to the elaborations 

included in (Gigliotti 2002, Braga et al. 2012) for further details. In the equations and figures 

presented in the Appendix to the present work L0 (or L1 or L2) and Ly are respectively the part of the 

bar involved in relative slip and that with stress higher than yielding strength.  
 

3.1 Numerical implementation in engineering software 
 

According to what presented and more extensively explained in the Appendix to the present 

work, a continuous axial stress-axial slip law, taking into account hardening phenomena of steel, 

can be derived for reinforcements embedded in concrete. The introduction of relative slip is 

necessary for the understanding of the cyclic behaviour of r.c. elements and structures and, in 
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Hardening slip model for reinforcing steel bars 

particular, for the determination of the levels of deformation induced in steel reinforcing bars. The 

analytical formulation of the hardening slip model allows to determine a continuous axial stress-

slip relationship that, generally, cannot be directly used in common engineering software. The 

problem of the transformation from the uniaxial stress-slip law (−u) to the uniaxial stress-strain 

one (−), necessary for the implementation of the model in numerical software, can be solved in 

the case of lumped plastic hinge models with fibre sections according to the formulation proposed 

by D’Amato et al. (2012). The axial displacements uL can be considered as the integrated axial 

displacement of a longitudinal bar including both steel deformation and bond slip phenomena, 

developed along the plastic hinge length. Adopting this simplification, a “pseudo-strain” (ε
*
) can 

be evaluated according to the Eq. (13), in which Lp represents the plastic hinge length and uL,tot the 

total relative slip, including elongation and anchorage slip 

P

totL

L

u ,*
                                (13) 

The term “pseudo”, referred to strains, implies that the (−ε
*
) relationship is an abstraction of 

the (−uL) law necessary to implement the model in a fibre section model (D’Amato et al. 2012). 

For what concerns the definition of the plastic hinge length the expression proposed by 

Panagiotakos and Fardis (2001) is usually adopted in the present work 

ybslscyplp fdaLLL 014.012.0,                     (14) 

Ls being the shear span length, asl a coefficient for slip equal to 1 if there is slippage of the 

longitudinal bars from their anchorage beyond the section of maximum moment, or to 0 if there is 

not slip, db is the bar diameter and fy the yielding strength. In the present work, the value of asl is 

assumed equal to zero, since the relative slip between bars and concrete are directly taken into 

consideration through the modified slip model. According to D’Amato (2009), Ls can be assumed 

equal to half of the element’s length, in good agreement with various formulations presented in the 

scientific literature (Paulay and Priestley 1992). The so evaluated (−*
) relationship directly 

incorporates the bond-slip. According to D’Amato et al. (2012) the total relative slip uL,Tot 

occurring at the concrete crack is defined as presented by Eq. (12), uL,A and uL,B being the relative 

axial displacements including the bond slip related to blocks A and B respectively (Fig. 9) 

BLALtotL uuu ,,,                            (15) 

 

 

 
Fig. 9 Total relative slip in the concrete crack (D’Amato et al. 2012) 
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Fig. 10 Scheme of the trilinear law adopted on the basis of energy equivalence principle 

 

 

The continuous (−*
) law can be simplified into a trilinear relationship based on the energy 

equivalence principle, according to what presented by Braga et al. (2012) and simply schematized 

in Fig. 10. As a consequence, the two coordinates (i.e., slip and axial stress) of the three significant 

points shall be determined in the (−u) relationship and then transformed into three (−*
) points 

adopting Eq. (13). 

 

 

4. Numerical application 
 

The comparison between experimental tests and numerical analyses on simple r.c. elements 

using the hardening slip model is provided; the present paper can be considered as an extension of 

the works by D’Amato et al. (2012), Gigliotti (2002) about the validation of the slip model. In 

particular, the cantilever columns analyzed by Saatcioglu and Ozcebe (1989) and by Tanaka and 

Park (1990), subjected to bidirectional loading histories, were used as case studies.  

Simple cantilever elements were modelled with OpenSees software (Mazzoni et al. 2007) using 

a “Beam With Hinge (BWH)” element characterized by one plastic hinge at the base, where plastic 

deformations are expected, and an elastic central part. The base section was modelled as a fibre 

section for a plastic hinge length equal to the one defined by Eq. (14), adopting the BGL model 

(Braga et al. 2006, D’Amato 2009) for concrete, since able to represent the confinement 

contributions due to both longitudinal and transversal reinforcements, and the hardening slip 

model for reinforcements. The flexural behaviour of the section so obtained was coupled with the 

elastic modelling of the shear behaviour.  

Since the hardening slip model provides an axial stress-slip law, the transformation from the 

derived (σ−u) relationship to the axial stress-strain (σ−ε) law, necessary for the implementation in 

the numerical software, was executed following the approach presented by Eq. (13).  

In order to fully represent the process adopted for the determination of the axial stress-slip law 

for reinforcements, the numerical example of a single steel bar is developed and herein presented 

for each one of the two considered benchmarks. The procedure followed in the present work for 

the determination of the stress-strain relationship of steel bars in r.c. structural members under 

cyclic action can be summarized in the following steps: 

Step 1. Determination of the stress-slip (−u) law for the bars of the considered element’s 

section, in relation to the length, the typology and the mechanical properties of the bar . 
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Hardening slip model for reinforcing steel bars 

  
(a) (b) 

Fig. 11 Saatcioglu and Ozcebe (1989): (a) scheme of the section, (b) displacement history 

 

 

Step 2. Determination of the stress-fictitious strain (−*
) and, if necessary, tri-linearization of 

the law with the energy equivalence principle. 

Step 3. Non linear modelling of the r.c. element (or whole structure) adopting fibre section 

elements with combined flexural and shear behaviour: application of the −
*
 law to the steel 

fibres. 

Step 4. Execution of non linear analysis on r.c. elements (or structures) and determination of 

axial stress histories on bars. 

Step 5. Elaboration of a bare bar model (e.g., non linear spring element) calibrated on the base 

of experimental tests’ results. 

Step 6. Execution of non linear analysis on the bar model subjected to the axial stress histories 

and determination of the real strain values.  

In the following paragraphs the procedure is directly applied to the two selected case studies. 

 
4.1 Saatcioglu and Ozcebe – specimen U4 
 

The benchmark, according to what presented in Fig. 11(a), consists of a cantilever column with 

height equal to 1000 mm (Berry and Parrish 2004) characterized by a square 350×350 mm section, 

provided by 8 longitudinal reinforcements of diameter 25 mm and transversal stirrups of diameter 

10 mm and spacing 100 mm. The axial load applied at the top of the column is equal to 600 kN 

while the displacement history is presented in the Fig. 11(b). 

 

4.1.1 Axial stress-slip relationship for steel bar 
The considered bar is characterized by a total length L equal 1000 mm, diameter D equal to 25 

mm, mean yielding and tensile strength respectively equal to 438 and 540 MPa, according to what 

specified in PEER structural database (Berry et al. 2004). The bond-stress slip law is defined 

according to Model Code 1990, considering a residual bond stress d equal to 1.70 MPa and a 

corresponding slip u1 equal to 0.1 mm, as well as already presented by Braga et al. (2009). 

The formulation of the anchorage length L0 was derived by Braga et al. (2012) starting from 

equilibrium, compatibility and constitutive equations applied to the considered specimen. Before 

the achievement of yielding strength, the slip and the bond stress fields are expressed respectively 
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by Eqs. (1) and (4); the equilibrium and compatibility Eqs. (7) and (8) turn into 
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uE being the elastic displacement, Es the elastic modulus of steel and L the length of the bar (in the 

hypothesis of full bar length involved in relative slip). Stress and elastic displacement at the free 

end are consequently provided by 
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If the displacement at the hooked end (u0) is null, the anchorage length L0 can be expressed by

D
uE

L
d

s


1

0
2

3
 , simply turning into Eq. (20) 
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in which D
u

E
d

d 



1

. L0 can be considered constant until 1uuL   and afterwards it increases 

with the increase of uL (i.e., the external load applied on the bar). In the present case, the 

anchorage length before yielding and for 1uuL   is then equal to: m m 7.680
2

3
0 

d

s

E

E
DL

 . The 

value of the initial anchorage length L0 is then lower than L; this means that the simplification of 

assuming the slip at the anchored end equal to zero ( 00 u ) can be executed, even if the exact 

analytical solution of the problem will provide slip values very small but not properly null. Five 

significant points can be then determined for the constitutive law of steel bars: 

• Point A corresponds to the condition in which the limit bond stress τd is reached at the free 

end: 1, uu AL  . 

• Point B corresponds to the distribution of bond strength along all the length of the rebar (L), 

with consequently 0,0 Bu  and LL 0 . 

• Point C corresponds to the condition in which all the length of the bar is characterized by a 

bond stress equal to τd: as a consequence, the limit condition is defined by 1,0 uu C  . 

• Point Y corresponds to the condition in which the axial stress in correspondence of the free 

end is equal to the yielding strength ( yYL f, ), with relative slip uL,y. 

• Point U corresponds to the to the condition in which the axial stress at the free end is equal to 

the ultimate strength ( uUL f, ), with relative slip uL,u. 
Fig. 12 shows the elaboration of the hardening slip model considering the progressive increase 

of relative slip and axial stress in the case u1<uy. The expressions for axial stress and relative slip  
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Fig. 12 Axial slip, bond stress and axial stress along the bar for initial condition L0<L 

 

 

are defined according to the equations presented in the previous paragraphs. 

The axial stress in correspondence of the free length of the bar for point A can be evaluated 

through Eq. (21); in a similar way, Eq. (22) is able to describe the behaviour of the axial stress 

field till the limit slip 1uu LA 
 

is reached 
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The second branch of the stress-slip relationship (AB) is determined between the already 

defined point A and the one corresponding to the condition LL 0 (point B). In this case, the axial 

stress B is defined by Eq. (23) while the generic axial stress is defined according to Eq. (24)  
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In the considered case, the stress in correspondence of point B is still lower than the yielding 

strength: as a consequence, the third branch (BC) of the stress-slip law is defined considering as 

limit condition 10 uu C   and Eqs. (25) and (26) provide the following values for the axial stress 

 L

k*

 L

k*

k*

 L
Ly

L,C0,C

fy0,Y

fy fu

0,B

L0

uL,A = u1
k*

L0 = L

uL,B > u1
k* u0,B = 0

 L

u1< uL,C < uyk*

u0,C = u1

 L

uL,Y = uyk*

u0,Y > u1

uL,U = uuk*

u0,U > u1

 L
Ly

L0

L,A = d
k*

L0 = L

k* 0,B = 0

 L

k*

 L

k*

k*

 L
Ly

L,B = d

u1

0,C = d L,C = d

0,Y = d

L,Y = d

0,U = d

L,U = d

L0

k*
L,A

L0

k*
L,B

 L

k*

 L

k*

k*

 L
Ly

L,C0,C

fy0,Y

fy fu

0,B

L0

uL,A = u1
k*

L0 = L

uL,B > u1
k* u0,B = 0

 L

u1< uL,C < uyk*

u0,C = u1

 L

uL,Y = uyk*

u0,Y > u1

uL,U = uuk*

u0,U > u1

 L
Ly

L0

L,A = d
k*

L0 = L

k* 0,B = 0

 L

k*

 L

k*

k*

 L
Ly

L,B = d

u1

0,C = d L,C = d

0,Y = d

L,Y = d

0,U = d

L,U = d

L0

k*
L,A

L0

k*
L,B

517



 

 

 

 

 

 

Franco Braga, Silvia Caprili, Rosario Gigliotti and Walter Salvatore 

and slip. The trend of axial stresses in BC branch is defined according to Eq. (27) 
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Since yielding strength is not yet reached in correspondence of point C, a fourth branch (CY) 

can be determined, considering the Eqs. (28)-(29) for the evaluation of u0Y and uLY; moreover, Eq. 

(30) can be adopted for the description of the axial stress slip 
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The final branch of the axial stress-slip law, once that yielding is reached, is described by the 

equations provided for case B3, since 0, , 0y 1  uuuuf LyL . The limit condition for this 

branch is the achievement of the ultimate tensile strength fu, with the following values of slip in 

correspondence of the two ends defined by Eqs. (31)-(32) 
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The constitutive axial stress-slip relationship obtained is presented in Fig. 11(a); an idealized 

trilinear law shall be then determined using the equivalence energy principle, allowing the 

determination of the three significant points defining the trilinear law presented in Fig. 11(b). 

 
4.1.2 Axial stress- pseudo strain (σ-ε*) relationship for steel bar and global results 
The shift from the so defined axial stress-slip law to the axial stress - pseudo strain law is 

necessary to introduce the hardening slip relationship in the non linear fibre model in OpenSees 

(Mazzoni et al. 2007). The (σ−ε
*
) law can be evaluated through Eq. (10), in which Lp represents 

the plastic hinge length; the obtained relationship represents a “pseudo steel stress-strain 

relationship”, in which ε
* 

is affected by the plastic hinge’s length. The equivalent trilinear (σ−u) 

relationship (Fig. 13(b)) can be used for the determination of a corresponding trilinear (σ−ε
*
) one.  
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(a) (b) 

Fig. 13 Saatcioglu and Ozcebe (1989): (a) axial stress-slip law, (b) trilinear equivalent law 

 

  
(a) (b) 

Fig. 14 Saatcioglu and Ozcebe specimen comparison between numerical/experimental results: (a) slip 

and the hardening slip models, (b) hardening slip and full bond models 

 

 

The pseudo stress-strain law is implemented in OpenSees using a trilinear hysteretic material.  

Table 1 summarizes the values of slip and axial stresses obtained for the 5 points characterizing 

the constitutive (σ−u) relationship, while in Table 2 the equivalent points adopted for the trilinear 

law are provided. Fig. 14(a) presents the comparison between the experimental tests’ results 

obtained by Saatcioglu and Ozcebe (1989) and the numerical predictions using the slip and the 

hardening slip models previously illustrated; Fig. 14(b) shows the comparison between 

experimental and numerical results obtained using a full bond model including hardening effects. 

As visible from Fig. 14, the results of numerical analyses including relative slip for steel bars 

are in better agreement with the experimental ones respect to the adoption of perfect bond models: 

looking at the dissipative behaviour of the element (in terms of energy density), the use of the slip 

model leads to an underestimation of the dissipated energy, while in the case of full bond 

constitutive law the obtained dissipated energy is strongly higher than the one coming from  
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(a) (b) 

Fig. 15 Tanaka and Park, No. 5 (1990): (a) scheme of the section, (b) displacement history 

 

 

experimental test. At a global level, the adoption of the hardening slip model instead of the slip 

model proposed by Braga et al. (2006) does not provide a significant improvement in the results: 

as shown by the Fig. 14, the difference in terms of dissipated energy in the adoption of the slip or 

of the hardening slip model is equal to about the 6.0%.  

 
4.2 Tanaka and Park – specimen n°5 
 

The benchmark consists of a cantilever column with height equal to 1650 mm (Berry et al. 

2004) characterized by a square 550×550 mm section, provided by 12 longitudinal bars of 

diameter 20 mm and transversal stirrups of diameter 10 mm and spacing 110 mm (Fig. 15(a)). The 

axial load applied at the top of the column is equal to 986 kN while the displacement history is 

presented in the Fig. 15(b). 

 
4.2.1 Axial stress-slip relationship for steel bar and results 
The bar considered has a total length L of 1650 mm, in relation to the size of the tested column 

and to the specifications presented in PEER structural database, diameter D equal to 20 mm, mean 

yielding and tensile strength respectively equal to 511 and 675 MPa The bond-stress slip law is 

assumed on the base of the considerations provided by Model Code 1990, considering a residual 

bond stress d equal to 2.87 MPa and a corresponding slip u1 equal to 0.40 mm for ribbed bars. The 

anchorage length before yielding and for 1uuL   is defined according to the Eq. (20). In the 

present case the anchorage length expressed by Eq. (20) can be so evaluated as: 
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The value of the initial anchorage length L0 is then lower than L; this means that the 

simplification of assuming the slip at the anchored end equal to zero ( 00 u ) can be executed, 

even if the exact analytical solution of the problem will provide slip values very small but not 
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Hardening slip model for reinforcing steel bars 

properly null. In the present case, the analysis of the bar evidenced three significant points 

necessary for the representation of the constitutive law: 

• Point A: condition in which the limit bond stress τd is reached at the free end ( 1, uu AL  ). 

• Point Y: condition in which the axial stress in correspondence of the free end is equal to the 

yielding strength ( yYL f, ), with relative slip uL,y. 

• Point U: condition in which the axial stress at the free end is equal to the ultimate strength (

uUL f, ), with relative slip uL,u; 

The expressions defining the axial stress and the relative slip along the bar are defined 

according to the equations of equilibrium and compatibility of displacements presented in the 

previous paragraphs. The axial stress in correspondence of the free length of the bar for point A 

can be evaluated through 

MPa 36.266
2

1

0
0 

Du

uL LAd
AL


 266.36 MPa                   (34) 

Moreover, Eq. (35) is able to describe the behaviour of the axial stress field till the limit slip 

1uu LA  is reached 

1

02
)(

Du

uL
u

Ld
LL


                              (35)

 

Differently for what was found for the smooth bar of the specimen U4 by Saatcioglu and 

Ozcebe (1989), in the present case, the increase of the axial slip leads to the attainment of the 

yielding point before the involvement of the whole length of the bar in relative slip. As a 

consequence, the second branch of the stress-slip relationship (AY) is determined between the 

already defined point A and the one corresponding to yielding (Y). In the branch AY the length 

directly involved in relative slip is defined by 

2

1

2
1

2
11

3

01
)33(
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L
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uuuuu

u
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(36) 

in which uL is the slip at the end of the bar that increases from 1uuLA  to LYu . 
The trend of axial stresses in the branch AY is defined according to the Eq. (37) 

 
)( being ,

22
)( 11

11
L

L

Ld
LL uLL

Du

Luu
u 





                   (37) 

The axial slip corresponding to yielding (uLY) can be evaluated through Eq. (37) in which the 

value of L1 when yielding occurs is defined as a function of uLY according to Eq. (36). The value of 

axial slip when yielding occurs is consequently equal to mm 122.1LYu ; moreover, the 

corresponding length involved in relative slip is equal to   mm 108411  LuL LY . In the considered 

case, once that yielding is reached, the length of the bar involved in relative slip is still lower than 

the total length of the bar itself (i.e., L1<L), being, moreover, 1uuLY   and 00 u . As a 

consequence, the equations provided for case A3 can be adopted to describe the axial stress-slip 

law once that yielding is overpassed. The third significant point describing the axial stress-slip 

relationship is the one corresponding to the reaching of the ultimate condition (U). The trend of 

axial stress on the rebar with the increase of axial slip can be expressed by Eq. (38) 
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)(uLL
Du

uLuL
u L

LY

LYd
LL 22

112
2  being ,

)2(2
)( 





                (38) 

When the ultimate value of stress fu is reached, the maximum length of the bar involved in 

relative slip is obtained from Eq. (31) in which uL f2 . As a consequence, 
mm 1369)(2  ufLL . Axial slip in the branch YU can be then derived from Eq. (39), in which 

)(uLL L22  . 
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     (39)

 

The ultimate slip uLu can be determined from Eq. (39) in which )(2 ufLL  and consequently 
mm 8.23Luu . The constitutive axial stress-slip relationship obtained is presented in Fig. 14; an 

idealized trilinear law shall be then determined using the equivalence energy principle. The shift 

from the trilinear axial stress-slip law to the axial stress-pseudo strain one is necessary to 

implement the constitutive relationship into OpenSees software. Table 1 summarizes the values of 

slip and axial stresses obtained for the 3 points characterizing the constitutive (σ−u) relationship, 

while in Table 2 the equivalent points adopted for the trilinear law are provided. As visible from 

Fig. 17 the results of numerical analyses including relative slip for steel bars, at a global level, are 

in better agreement with the experimental ones with respect to the adoption of perfect bond 

models: looking at the dissipative behaviour of the element (in terms of energy density), as well as 

already evidenced for the other considered specimen.  

 

 

  
(a) (b) 

Fig. 16 Tanaka and Park (1990): (a) axial stress-slip law, (b) trilinear equivalent law 
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Hardening slip model for reinforcing steel bars 

 
Fig. 17 Tanaka and Park (1990): numerical and experimental results (slip and full bond models) 

 
Table 1 Significant points of the axial stress-slip relationship for the two considered benchmarks 

 

Saatcioglu and Ozcebe (1989) Tanaka and Park (1990) 

Slip [mm] Axial stress [MPa] Slip [mm] Axial stress [MPa] 

A 0.100 92.6 0.40 266.4 

B 0.534 246.5 - - 

C 1.144 355.3 - - 

Y 1.637 438.0 1.12 511.0 

U 33.25 540.0 23.78 675.0 

 
Table 2 Trilinear equivalent axial stress-slip relationship for the two considered benchmarks 

 

Saatcioglu and Ozcebe (1989) Tanaka and Park (1990) 

Slip [mm] Axial stress [MPa] Slip [mm] Axial stress [MPa] 

Point  1 0.534 254.6 0.40 266.4 

Point  2 1.637 464.1 1.12 551.9 

Point  3 33.247 540.0 23.8 675.0 

 
 
4.3 Determination of the axial stress-strain histories on reinforcements 

 

The axial stress coming from numerical analyses can be considered correctly representative of 

the effective condition of bars embedded in concrete, while the values of pseudo-strain are affected 

by the plastic hinge length, as widely presented in the previous paragraphs. As a consequence, the 

real strain on bars, including the relative slip between steel and concrete, shall be evaluated 

separately on the base of the obtained axial stress histories. 
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Fig. 18 Comparison of experimental/numerical results for bars under cyclic action (Δε)±2.2%) 

 

  
(a) (b) 

Fig. 19 Stress-strain history for external upper steel bar (a) Saatcioglu and Ozcebe (1989), (b) Tanaka 

and Park (1990) 

 

 

The determination of the stress-strain relationship due to cyclic action of steel bars can be 

achieved, for example, elaborating a model of a bare bar and subjecting it to the axial stress 

histories derived from the numerical analysis on the structural element including relative slip. 

In the present work, the bar model has been elaborated using a non linear spring element with a 

constitutive relationship calibrated on the base of the results of cyclic tests on reinforcements. The 

calibration procedure takes into account only the first tension-compression cycle, before buckling 

occurs (Braconi et al. 2013). The Menegotto-Pinto model (Menegotto and Pinto 1973), able to 

represent Baushinger effect and hardening phenomena has been adopted: relative slip can be 

neglected since directly considered in the global analyses for the determination of axial stress. The 
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Hardening slip model for reinforcing steel bars 

Menegotto-Pinto law was calibrated according to the results of experimental tests on a wide set of 

steel reinforcing bars under low-cycle fatigue (Braconi et al. 2014, Caprili and Salvatore 2015); a 

good estimation for the first tension-compression cycle was obtained (Fig. 18). 

Fig. 18 shows the comparison between experimental and numerical results, while Figs. 19(a)-

(b) show the stress-strain histories obtained for one of the upper steel reinforcements of the base 

section of Saatcioglu and Ozcebe specimen U4 and Tanaka and Park’s benchmark n°5. Steel bars 

are able to complete tension/compression cycles with maximum deformation in tension equal to 

about 6% and minimum deformation in compression up to -4%. 

 

 

5. Conclusions  
 

In the present work a simplified model for the representation of the behaviour of steel bars in 

r.c. structures under seismic action, including relative slip and hardening phenomena, is presented. 

The hardening slip model can be considered an improvement of the slip model proposed by Braga 

et al. (2012), in which the simplification of an elasto-plastic relationship for steel bars was 

assumed. 

The necessity of a model taking into account relative slip between steel bars and surrounding 

concrete was able to represent the global behaviour of structures and the local cyclic/seismic 

behaviour of bars was widely evidenced in the past literature. The slip model proposed by Braga et 

al. (2012) reproduce the structural cyclic behaviour of elements and sub-assemblages (Gigliotti 

2002, D’Amato et al. 2012) without being able, on the other hand, to determine the stress-strain 

histories on bars due to the simplification adopted for the constitutive law for steel, not including 

hardening phenomena. In this context, the improvement due to the hardening slip model is 

necessary to determine the cyclic behaviour of steel reinforcing bars under seismic actions. The 

relationship is based on the slip model proposed by (Braga et al. 2012) assuming an elastic-plastic 

with hardening simplification; a continuous axial stress-slip relationship is so derived and a further 

shift from axial slip to axial slip, necessary for the implementation in engineering software, can be 

executed according to what already presented by D’Amato et al. (2012).  

In the present paper the complete analytical formulation of the post-yielding behaviour of steel 

reinforcing bars according to the hardening slip model is presented. The application to two simple 

benchmarks, i.e., the cantilever columns presented by Saatcioglu and Ozcebe (1989) and by 

Tanaka and Park (1990), highlights the ability of the hardening slip model to correctly represent 

both the global structural behaviour of the element and the local stress-strain histories on steel 

reinforcing bars, in terms of strain and dissipated energy, joined with the easiness in the 

application in engineering software according to what already presented in D’Amato et al. (2012).  
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Appendix-Analytical formulation of the hardening slip model  
Basic hypothesis adopted in the formulation 

 
1. Slip field 

 

The slip field u(x) is assumed bi-linear along the bar, with two different branches respectively 

representing the condition before and after the yielding point. In particular, the slip field u(x) along 

the bar before yielding (i.e., yfx )( ) is then defined by Eq. (H1) 
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uxu L                             (H1) 
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in which u0 and uL represent the bar’s end displacements, x is the generic abscissa along the bar 

and L0 the portion of the bar involved in relative slip. After yielding the increase of axial stress due 

to hardening phenomena leads to the corresponding increase of relative slip; the trend of axial slip 

along the bar is then approximated by two different branches, as presented by Eq. (H3), in which 

0u is defined according to Eq. (H2), Ly is the part of the bar in which yuxu )( , uy being the value 

of displacement corresponding to the yielding strength fy. If the axial stress increases, the part of 

the bar involved in the post-yielding phenomena increases following the trend of Ly. 
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2. Bond stress-slip relationship 

 

The bond stress-slip relationship is assumed elastic-perfectly plastic in agreement with the slip 

model (Gigliotti 2002), following the schematization proposed by Model Code (MC 90) (CEB-IP 

1993) and what assumed by Verderame et al. (2001); consequently it is described by Eq. (H4) 
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

                        (H4) 

in which u(x) represents the axial slip field along the bar, d is the residual value of bond stress and 

u1 the corresponding slip. 
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Hardening slip model for reinforcing steel bars 

3. Stress-strain constitutive law for bars 
 

The stress-strain constitutive law for steel is assumed elastic-plastic with hardening. The 

hardening branch is schematized with a linear behaviour up to the point in which the maximum 

load was reached. The hardening modulus is so defined by Eq. (H5) 

pgt

yu

h
A

ff
E




                                (H5) 

in which fu and fy represent the ultimate and yielding strength, p the total deformation at the 

beginning of the hardening branch and Agt the deformation corresponding to maximum load. 

 

 

4. Anchorage at the end of the bar 
 

The anchorage at the bar end, if present, is represented as a linear function of the displacement 

corresponding to the end ( 0u ), according to Eq. (H6), in which kh represents the hook stiffness, 

opportunely determined in relation to the characteristics of the anchorage 

0ukF hh                                 (H6) 

On the basis of the aforementioned hypotheses, the problem herein presented can be solved in a 

simple closed form through the use of equilibrium, compatibility and constitutive equations, 

allowing the determination of an axial stress-slip relationship for the rebar. The application of the 

equilibrium condition, expressed by Eq. (H7) 
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allows the determination of the axial stress field along the bar of diameter D and transversal area 

Ab. Fh represents the force acting in correspondence of the hooked end, described as presented by 

Eq. (H6). Moreover, the use of the compatibility relationships introducing the constitutive 

equations provides the formulation of relative slip between the two ends of the bar before and 

after yielding (Eqs. (H8)-(H9), respectively). As visible from Eq. (H9), the two different 

contributions related to relative slip corresponding to axial stresses lower and higher than yielding 

are considered, assuming the hardening relationship over a length equal to Ly 
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Analytical formulation of possible cases before yielding (adapted from Braga et al. 
2012) 
 

In general terms the bond-slip in correspondence of the free end of the bar can be expressed 

through compatibility equation 

  )(0 Luuu EL                               (Y1) 

in which uE can be evaluated considering the steel as an elastic material until the yielding strength 

is reached 
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The above presented integral is extended over the anchorage lenght Lanch, which could be less 

than the bar length L, (in that case u0=0 can be adopted as a valid simplification). If 1uuL  , the 

adoption of equilibrium and compatibility equations provides stress and elastic displacement along 

the steel bar, considering *
hk as the specific hook stiffness, evaluated as 
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Stress and elastic displacement at the free end are consequently provided by 
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If the displacement at the hooked end (u0) is equal to zero, the anchorage length L0 can be 

expressed as D
uE

L
d

s


1

0
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 , that can be also written as 

d

s

E

E
DL

2

3
0


 , in which D

u
E d

d 


1

 . 

The higher is the value of Ed, the lower is the bar anchorage L0. Consequently, Ed can be referred 

to as “bond stiffness”, parameter that quantifies the bond effectiveness between the longitudinal 

bar and the surrounding concrete. The bar normal stress at the free end is then rewritten in terms of 

L0 as follows 
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If the anchorage length is, on the contrary, higher than L0 and relative slip are present for the 
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whole length of the bar, the compatibility equation is given by Eq. (Y9), with u0 expressed by Eq. 

(Y10) 
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The tensile stress in correspondence of the free end can be evaluated through Eq. (Y11) 
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If 1uuL  the problem can be studied using the following equations 
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x1 being the portion of the bar where bond slip u(x) is lower than u1, given by Eq. (Y16) 
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As a consequence, the stress in correspondence of the free end is defined by Eq. (Y17) 
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If the anchorage length is lower than L, then 00 u and Eq. (Y18) becomes 
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From Eq. (Y19), the anchorage length L1 can be derived 
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If LLanch  , the expression for the axial stress becomes 
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On the other hand, if LLanch  , the anchorage length is assumed equal to L. In this case, 

considering Eq. (Y18) and using the Eq. (Y22), the expression Eq. (Y23) can be derived 
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As a consequence, the tensile stress in correspondence of the free end is provided by Eq. (Y17) 

in which u0 is derived from Eq. (Y22). If 10 uu   a bond strength equal to d  is reached over the 

total bar length L and the bar tensile stress increases thanks to the presence of the end hook, 

characterized by a linear behaviour until the achievement of yielding strength. In the described 

case, the following equations can be derived 
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The equations already presented allow the determination of a stress-slip law for steel 

reinforcing bar, with reference to different anchorage conditions but not including the post-

yielding phase for both stress and strain, neglecting hardening phenomena and leading to a not 

completely correct estimation of the level of strain after yielding on the specimen.  

 

 

Analytical formulation of possible cases after yielding 
Case A 
 

If 00 u (cases A1, A2 and A3 as presented in the core part of the paper), Eq. (3) turns into Eq. 

(a.1), representing the condition in which only a part of the rebar (indicated as L0) is directly 

involved in relative slip 
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Moreover, the compatibility equation presented by (9) turns into 
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The corresponding bond stress-slip law can be directly derived from Eq. (4), providing 

consequently a bilinear or trilinear relationship depending on the values of u1 and uy.  

 

Case A1:  1 uuu Ly   

This case represents the condition in which the force applied in correspondence of the free end 

of the rebar generates a slip higher than the yielding one (uy) but lower than the one corresponding 

to d. The bond stress field is defined by two different branches, proportional to the corresponding 

slip.  

The slip field along the rebar is defined by expression (a.1), while the bond stress-slip 

behaviour along the rebar is consequently defined by 
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The use of equilibrium Eq. (7) allows the determination of the axial stress field along the bar, as 

presented by 
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Taking into account the equilibrium condition along the bar, the portion of the bar in which 

axial stresses are lower than yielding strength (L0−Ly) Os determined. The value L0−Ly, defined 

according to equation 
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remains constant until the total length of the bar is not involved in relative slip. 

The slip in correspondence of the free end of the rebar (uL), in the case of u0=0 and 

consequently for Δu=uL, is expressed by Eq. (a.2), turning in this case into 
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The boundary condition for case “A1” is reached when 1uu L  . The axial stress in 

correspondence of the free end is provided by 

1

01

)( 0

1

0

0

)(2)(2

1 Du

uLuL

Du

uLuL yyd

uuL

yLyd

L L





 





              (a.7)

 

Case A2:

 

Ly uuu   1 
 

If yuu 1 the bond stress field presented by Eq. (4) is described by three different branches, two 

of them proportional to the corresponding slip and the last one constant and equal to d (Fig. 7) as 

presented by 
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In which x1 represents the abscissa along the rebar in which the bond stress is equal to d (and 

consequently 1)( uxu  ), according to the following equation 
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The use of equilibrium Eq. (7) allows the evaluation of the axial stress field along the bar, as 

presented by 
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Through the use of the equilibrium condition along the bar (Fig. 9), the portion of the bar in 

which axial stresses are lower than yielding strength ( yLL 0 ) is determined 
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The formulation is the same of case “A1”. The slip in correspondence of the free end of the bar 

(uL) is expressed by Eq. (a.1), turning in this case into 
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Eq. (22), moreover, provides the axial stress in correspondence of the free end of the bar 
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Case A3:

 

Ly uuu   1
 

The slip field along the rebar is defined by Eq. (a.1). Being uy>u1 the bond stress field is 

described by two different branches, respectively proportional to the corresponding slip and 

constant and equal to d (Fig. 7), as presented by 
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Moreover, the axial stress field, derived through the application of equilibrium equations, is 

presented by 
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On the base of previous considerations L0−Ly can be evaluated through the use of Eq. (a.14) 

turning in this case into 
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The slip in correspondence of the free end of the rebar (uL) for Δu=uL is expressed by 
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Finally, the axial stress in correspondence of the free end of the bar is provided 
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Case B 

The general condition in which the slip in correspondence of the end bar is not equal to zero 

and yielding strength is overpassed can be described by cases indicated by “B”, as presented in the 

Fig. 8. The slip field is defined by Eq. (9) and bond and axial stress can be derived using 

equilibrium conditions. In these cases, the total length of the rebar L is directly involved in relative 

slip. The force acting in correspondence of the hooked end, defined according to Eq. (6), can be 

described also by 

b

h
h

A

k
k 

*                                (b.1) 

in which k
*
h represents the specific hook stiffness defined as the ratio between the hooked end 

stiffness and the bar area (D’Amato et al. 2012) 

 

Case B1:
 

0,  0 1  uuuu Ly  

This case refers to the condition in which the force applied in correspondence of the free end of 

the specimen generates a slip higher than the yielding one (uy) but lower than the one 

corresponding to d. The bond stress field is defined by two different branches, proportional to the 

corresponding slip (Fig. 8) 























































LxL-L)(

L-Lx0

)(

y

1

y

0

0

1

y

y

yL

y
d

y

yd

LLx
L

uu
u

u

x
LL

uu
u

u
x





                (b.2) 

536



 

 

 

 

 

 

Hardening slip model for reinforcing steel bars 

The axial stress field, obtained using equilibrium equation, is given by 
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(b.3) 

Taking into account the equilibrium condition along the bar, the portion of the bar in which 

axial stresses are lower than yielding strength (L−Ly) can be evaluated 
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The relative slip between the two ends of the steel rebar (Δu) are expressed through Eq. (9), 

turning in this case into the following expression 
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Finally, Eq. (B6) provides the axial stress at the free end 
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Case B2: 0, 01  uuuu Ly  

If yuu 1 the bond stress field is defined by three different branches, two of them proportional 

to the corresponding slip, and the last one constant and equal to d, as presented by 

 





























































Lxx

xxL-L

L-Lx0

)(

1

1y

1

y

0

0

1

d

y

y

yL

y
d

y

yd

LLx
L

uu
u

u

x
LL

uu
u

u

x







             (b.7) 

The total length of the rebar L is involved in relative slip and x1 represented the abscissa in 

which the bond stress reaches d (and consequently 1)( uxu  ). The use of equilibrium equation 

allows the determination of the axial stress field along the bar 
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Taking into account the equilibrium condition (Fig. 9), the portion of the bar in which axial 

stresses are lower than the yielding strength (L−Ly) can be determined 
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The relative slip between the two ends of the rebar (Δu) are expressed by 
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Eq. (b.11) provides the formula for the evaluation of the axial stress at the free end 
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Case B3: 0, 0y 1  uuuu L  

If uy>u1 the bond stress field is defined by two different branches, proportional to the 

corresponding slip, as presented by 
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The axial stress field is consequently derived through the application of equilibrium equations 
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Hardening slip model for reinforcing steel bars 

Taking into account the equilibrium condition along the bar (Fig. 9), the portion of the bar in 

which axial stresses are lower than yielding strength (L−Ly) can be evaluated 
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The relative slip between the two ends of the steel rebar ( u ) are expressed through Eq. 9, 

turning, in this case into 
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Moreover, Eq. (b.16) provides the axial stress in correspondence of the free end 
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