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Abstract.  In the last decade, displacement-based (DB) methods have become established design procedures 

for reinforced concrete (RC) structures. They use strain and displacement measures as seismic performance 

control parameters. As for other simplified seismic design methods, it is of great interest to prove if they are 

usually conservative in respect to more refined, nonlinear, time history analyses, and can estimate design 

parameters with acceptable accuracy. In this paper, the current Direct Displacement-Based Design (DDBD) 

procedure is evaluated for designing simple single degree of freedom (SDOF) systems with specific 

reference to simply supported RC bridge piers. Using different formulations proposed in literature for the 

equivalent viscous damping and spectrum reduction factor, a parametric study is carried out on a 

comprehensive set of SDOF systems, and an average error chart of the method is derived allowing 

prediction of the expected error for an ample range of design cases. Following the chart, it can be observed 

that, for the design of actual RC bridge piers, underestimation errors of the DDBD method are very low, 

while the overestimation range of the simplified displacement-based procedure is strongly dependent on 

design ductility. 
 

Keywords:  Performance-Based Design; Displacement-Based Design accuracy; multi-span simply 

supported bridge RC piers; SDOF systems; equivalent viscous damping 

 

 

1. Introduction 
 

Displacement-based approaches, supplying approximate solutions for nonlinear structures, have 

gained a good reputation in the context of performance-based seismic design in recent years 

(Priestley 1993, 2000, Fajfar and Krawinkler 1997, Priestley et al. 2007, Ayala et al. 2012). 

Among these procedures, the most currently used one relies on the concept of equivalent 

linearization, initially developed by Shibata and Sozen (1976), and later implemented in the 

current form of direct displacement-based design (DDBD) method by Priestley et al. (Priestley 

1993, Priestley et al. 2007, Sullivan et al. 2012). DDBD method requires use of an equivalent 

elastic structure (equivalent single degree of freedom, ESDOF) as a substitute for the real inelastic  
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systems of single (SDOF) or multi (MDOF) degree of freedom. The ESDOF structure is 

characterized by the effective stiffness Keff (secant stiffness at maximum displacement Δu), the 

effective damping ξeq, related to the hysteretic energy absorbed, and the effective mass Meff, which 

is the effective mass of the structure participating in the fundamental mode of vibration (see Fig. 

1). 

At present, DDBD method has reached a mostly complete degree of formalization with the 

recent publication of a Model Code for their adoption into seismic regulations (Sullivan et al. 

2012). However, several aspects related to the method calibration are still under discussion. As for 

other simplified procedures, it is of interest to evaluate the representativeness of the equivalent 

linear SDOF systems in predicting nonlinear behavior of RC bridge structures (Grendene et al. 

2012). Therefore, the attractiveness of the DDBD method may be considered as well for its 

conceptual coherency as for its accuracy against more refined nonlinear, time history analyses. The 

main sources of error of the method are the approximation of the substitute linear structure, 

characterized by the equivalent viscous damping, and the scaling of displacement elastic spectrum 

through the modification damping factor. It is of interest to evaluate the accuracy of the simplified 

DDBD method for a wide range of design cases, so that its attractiveness may be considered as 

well for its conceptual coherency as for the balancing of accuracy against reduced computational 

effort.  

In this paper, the accuracy of the current DDBD procedure applied to simple SDOF systems is 

investigated with specific reference to multi-span, simply supported RC bridge piers. In the first 

part of the work, a parametric analysis is developed, comprising the design of a considerable 

amount of simple ideal oscillators with the current DDBD procedure and verified using dynamic 

inelastic time history analysis of the previously designed systems. A range of effective periods, Teff, 

between 0.2 and 4.0 seconds are considered for ideal SDOF systems. Values of design 

displacement ductility, μΔ
d
, between 1.25 and 5.0, are assumed to include possible low, medium, 

and high ductility behaviors. Four different equivalent viscous damping (EVD) models, ξeq, 

associated with three forms of Rξ, scaling factor for the elastic displacement response spectrum 

(DRS), are evaluated. In total, 4212 ideal SDOF systems were designed and, subsequently, 

compared with the results obtained from nonlinear time history (NLTH) analyses performed for 

the same set of nonlinear simple oscillators based on Takeda Thin hysteretic model. The relative 

error of the DDBD method is thus obtained. By interpolating the medium error curves, a diagram 

of the expected approximation error of the simplified design method is subsequently derived. 

In the second part of the work, a sensitivity study is performed to obtain realistic design values 

in terms of Teff and μΔ
d
 for cantilever RC piers with flexural behavior, all having different values of 

slenderness and reinforcement amount. The columns are designed for drift values, θd, between 

1.5% and 4.0%. Using the medium error diagram, obtained previously, it is shown that, in the 

realistic design cases of RC bridge piers, the DDBD method offers good accuracy for low and 

medium ductility design levels (μΔ
d
<1.5) while the relative error is higher for high values of 

displacement ductility (1.5≤μΔ
d
≤3.5). Note that such high values are yet acceptable considering 

that the DDBD method generally overestimates. 

Finally, an approximate relationship between ductility and drift is presented, since the 

definition of the admissible drift is an important aspect of the DDBD method, because it implies a 

certain value of ductility, the latter being adopted as a measure of the damage. 
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Fig. 1 Substitute structure for a cantilever bridge pier (SDOF system) 

 
 
2. Error sources of the DDBD method for SDOF systems 
 

One of the structures conforming more realistically to the assumptions of a SDOF 

approximation is a cantilever pier of a regular isostatic RC or PRC bridge under transverse 

excitation (Priestley et al. 2007). Its structural behavior under cyclic loads can be usually 

characterized by a simple oscillator, represented by a cantilever with a concentrated mass on the 

top. Thus, single bent cantilever piers are assumed as reference, realistic SDOF structures to be 

designed with the DDBD procedure and verified with NLTH analysis. 

In order to assess the accuracy of the DDBD method when applied to simple inelastic SDOF 

systems, it is necessary to focus on the critical assumptions introduced by the procedure, as below: 

1) equivalent linearization process with the estimation of an equivalent viscous damping, ξeq; 

2) use of over-damped displacement elastic spectra. 

The equivalence of a simple nonlinear oscillator to an elastic system is based on the response of 

the system whose period Teff is related to the secant stiffness at maximum displacement Δu of the 

nonlinear oscillator. The energy absorbed by the hysteretic steady-state cyclic response of the 

nonlinear oscillator is equated to ξeq of the linear oscillator, and maximum displacement responses 

of both systems are considered approximately equal. The appropriate calibration of the EVD 

model depends on the hysteresis cycles of the real system under seismic excitation, and represents 

the first source of approximation of the simplified design method. 

Another source of uncertainty in the design process is created by the use of over-damped elastic 

displacement spectra to represent the peak response of inelastic ductile systems. Since the effective 

properties of ESDOF systems are elastic, the current DDBD method uses damped elastic response 

spectra for the design. Debate is yet ongoing over the correct formulation of the reduction factor, 

Rξ. Alternative methods, such as the use of inelastic design spectra proposed by some authors (e.g., 

Chopra 2001), are not examined in this study.  

Other important aspects of the current DDBD design procedure, relating to the initial choice of 

the target displacement and to the appropriate definition of 5% damped elastic displacement 

spectrum associated with the magnitude and fault plan distance (Faccioli and Villani 2009), are not 

herein considered. 
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3. Parametric analysis for ideal SDOF systems 
 
3.1 Elastic displacement response spectrum 
 

The seismic action for the design of SDOF systems is obtained from the elastic response 

spectrum proposed by EC8-2003 (CEN 2003). The horizontal component of “type 1” spectrum 

(5% damping) is selected as reference acceleration response spectrum for a ground of medium 

stiffness (type C, S=1.15, TB=0.20 s, TC=0.6 s, TD=2.0 s) with PGA=0.35 g. The corresponding 

horizontal displacement response spectrum is derived from the following relation 

   
2

2 











T
TSTS a

                              (1)

 

where SΔ(T) is the spectral elastic displacement response.  

A set of seven synthetic accelerograms compatible with the EC8 spectrum is generated with the 

SIMQKE program (Gasparini and Vanmarcke 1976). The acceleration response spectra for the 

accelerograms compared with the code horizontal acceleration response spectrum and the code 

elastic displacement spectrum are plotted in Fig. 2. 

 
3.2 Equivalent viscous damping models 
 

The DDBD design procedure requires estimation of an equivalent viscous damping for the 

substitute linear structure. Damping relationships used in the parametric analysis consider the 

effect of ductility on damping, and are obtained in the form of a combination of elastic and 

hysteretic components (see Eq. (2)) 

 

 

  
(a) Acceleration response spectra from time history 

set compared with code acceleration spectrum 

(b) Code displacement elastic response spectrum, 

5% damping 

Fig. 2 Acceleration and displacement response spectra: EC8-type1, ag = 0.35, ground type C 
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Fig. 3 Parameters of Takeda Thin (TT) hysteretic model 

 

 

hysteleq                                   (2)

 
A value of ξel=0.05 is generally adopted for concrete structures, and ξhyst is calibrated taking 

into account the appropriate hysteresis rule for the structure to be designed. 

In this case, Takeda Thin (TT) hysteretic model was used as a good representation of structural 

elements with significant axial load, such as bridge piers. An unloading stiffness factor of α=0.5 

and a bilinear stiffness ratio of rΔ=0.0 were adopted (see Fig. 3). 

Four different EVD models, all calibrated for the TT hysteretic model, are compared in the 

numerical analyses with parameters rΔ, α, and β taken as specified in Fig. 3. The first one, the 

JDSS model, is the original Jacobsen‟s model (Jacobsen 1930, 1960) tied to the initial stiffness of 

the nonlinear system. However, other expressions (D.K., G.B.P., D.K.G.) have been developed in 

the past years (Priestley 2005, Grant et al. 2005, Dwairi et al. 2007) more coherent with DDBD 

assumptions by relating the model to secant stiffness at peak response (this results in an equal 

period shift, Teff/Tel, for all the considered hysteretic models).  

The EVD expressions adopted in this study are reported in Eqs. (3)-(9): 

 

a) Jacobsen’s Model (JDSS) (Jacobsen 1930, 1960) 
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The expression can be simplified as follows with the values reported in Fig. 3 
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b) Model by Dwairi et al. (D.K.) (Dwairi et al. 2007) 

%
1









 









 TTelhysteleq C                       (5) 

Takeda Thin 

(TT) r  

 0.0 5 
               

 

 

459



 

 

 

 

 

 

Giovanni Tecchio, Marco Donà and Claudio Modena 

 

where 

 
effTT TC  14050

  
for  sTeff 1

 

50TTC  for sTeff 1  
(6) 

 

c) Model by Grant et al. (G.B.P) (Grant et al. 2005) 
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where 

1k

   

for  1

 k  for  1  
(8) 

λ=0.340 for TT hysteresis rule and for the initial stiffness damping model. 

The factor λ is the secant stiffness correction factor proposed by Grant et al. (Priestley 2005, 

Grant et al. 2005), and is related to the hysteresis rule selected (in this case, the TT hysteretic 

model). It introduces an adjustment that was proved to be necessary because in DDBD, the initial 

elastic damping is related to the secant stiffness at maximum displacement, whereas in inelastic 

time history analysis, it is conventional practice to relate the elastic damping to the initial stiffness. 

Without such an adjustment the verification of DDBD by NLTH analysis would be based on an 

incompatible assumption. 

 

d) Model by Dwairi et al. with the correction factor for elastic damping (D.K.G.) (Priestley et al. 

2007) 

%
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where 50TTC , 
k  has the same value as in Eq. (8). 

Eq. (9) modifies Eq. (5) introducing the correction factor for elastic damping, suggested by 

Grant et al. (Priestley 2005, Grant et al. 2005), with the same value of λ used in Eq. (8). 

The (D.K.) and (G.B.P.) equivalent viscous damping models have a period dependency which 

leads to an evident increase of damping for Teff<1 s, but is not significant for periods greater than 

1.0 s in both cases. This dependency can be seen in Fig. 4(a) for various ductility levels. To 

compare different damping formulas only as functions of displacement ductility, the expressions 

for (D.K.) and (G.B.P.) models have been plotted for Teff≥1 s and Teff=4 s, respectively in Fig. 4(b). 

Firstly, it can be observed that a significant difference is presented by the (D.K.) model, due to the 

absence of the correction factor k=μΔ
λ 
for the elastic damping, which leads to an increase in the 

underestimation of the damping ratio for an increase in the ductility level. Moreover, the highest 

damping values are given by the JDSS model, which represents a sort of upper envelope even if it 

does not include a correction factor for elastic damping. High level of overestimation of JDSS 

model has been proved by previous authors
 
(Chopra 2001, Dwairi et al. 2007). In this specific  
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(a) Period dependency of EVD models (D.K.) and 

(G.B.P.) 

(b) ξeq values for models (JDSS), (D.K.) for Teff>1 

s, (G.B.P.) for Teff=4 s and (D.K.G.) 

Fig. 4 Period dependency of hysteretic component for EVD models (D.K.) and (G.B.P.), plotted for 

different ductility levels, and equivalent viscous damping ratio provided by the four models based on the 

TT hysteretic rule 

 

 

case, being the TT hysteresis rule associated with the JDSS model, its trend seems to be very close 

to those of more “advanced” models like (G.B.P) and (D.K.G.). Thus, the scatter in the results is 

expected to be lower than that in other cases in which “fatter” hysteretic models are adopted (for 

example, the Takeda Fat or the Elastoplastic model). 

 

3.3 Response spectrum reduction factors 
 

The basic elastic displacement response spectrum (relative to an elastic damping ratio of 

ξeq=0.05) shall be damped with regard to the calculated structural equivalent viscous damping, ξeq, 

by multiplying spectral ordinates by the reduction factor, Rξ 

   TSRTS
05.0                                

(10) 

To date, seismologists are still debating about the appropriate form of damping modifier, Rξ, for 

elastic spectral displacement. In this study, three commonly used expressions are compared. The 

first being Eq. (11) which was proposed by Newmark and Hall (1982). The second one is Eq. (12), 

presented in the 1998 edition of Eurocode 8 (CEN 1998) which was subsequently replaced by the 

third expression, Eq. (13), in the 2003 revision of EC8 (CEN 2003).  

 

a) Newmark and Hall (NH) (Newmark and Hall 1982) 
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   100ln19.031.1 R                           (11) 

 

b) EC8-1998 (CEN 1998) 

   5.0
02.0/07.0  R

 

                          (12) 

c) EC8-2003 (CEN 2003) 

   5.0
05.0/10.0  R

                            

(13) 

Other expressions for Rξ have been recently proposed by some authors (Faccioli and Villani 

2009) for near-field sites. Such effects on spectral displacements are not addressed in this study. 

 

3.4 Evaluation algorithm 
 

The parametric analysis was performed with the aim of comparing the DDBD target 

displacements to the relative peak displacements from the time history (TH) response for a wide 

range of SDOF systems. The analysis is based primarily on the definition of a series of simple 

nonlinear oscillators, obtained by “inverting” the current DDBD procedure.  

A set of initial input parameters, in terms of Teff and μΔ
d
, is chosen to address the design, and the 

EVD model is selected (Eqs. (3)-(9)). The over-damped displacement spectra can be subsequently 

determined by scaling the elastic spectrum with the reduction factor, Rξ, and the design 

displacement, Δu
d
, calculated by entering the damped spectra with the input parameter effective 

period, Teff. Then, the capacity curve for each ideal oscillator is finally derived on the basis of pre-

fixed design ductility, μΔ
d
, and design displacement, Δu

d
, calculated previously. 

At this point, the design of the ideal SDOF system can be considered complete. Once the key 

features of each nonlinear SDOF system have been defined by means of the capacity curve, and 

the hysteresis rule is associated (Takeda Thin model, Fig. 3), the inelastic response in terms of 

ultimate displacements can be evaluated using nonlinear analysis in the time domain, and the 

relative error, compared to the DDBD design displacement, can be estimated. 

The evaluation procedure (Fig. 5) consists of the following steps: 

(I) Define initial input parameters 
a) Select the basic response spectrum, SΔ0.05 (T). 

b) Select a value for design displacement ductility, μΔ
d
, and effective period, Teff, of the ideal SDOF 

oscillator. 

(II) Determine the damped response spectrum 
c) Calculate the equivalent viscous damping, ξeq, as a function of ductility, using one of the models 

given by Eqs. (3)-(9). 

d) Obtain the response spectrum reduction factor, Rξ, using one of the Eqs. (11)-(13). 

e) Multiply the basic response spectral ordinates by the reduction factor, Rξ, and obtain the design 

displacement response spectrum, SΔξ(T), in accordance with Eq. (10). 

(III) Calculate the target response 
f) Enter the damped displacement spectrum, SΔξ(T), with Teff, and calculate the target displacement, 

Δu
d
. 

g) Calculate the design acceleration, au
d
, entering the acceleration response spectrum, Saξ(T), with 

Teff. 
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(IV) Obtain the capacity curve for SDOF oscillator 
h) Calculate the yield displacement, Δy, for the SDOF system as μΔ

d
=Δu

d
/Δy. 

i) Calculate the elastic period using the following equation 

  dd

effel rrTT   1                          (14) 

where rΔ is the bilinear stiffness ratio in Fig. 1. 

 

 

 
Fig. 5 Flowchart of the evaluation algorithm used in the parametric analysis 
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l) Calculate the yield acceleration as 

y

el

y
T

a 
2

2
4

                               (15) 

The capacity curve has thus been obtained and can be plotted in the acceleration-displacement (A-

D) plane. 

(V) Execute NLTH analyses 
m) Run the TH analyses using the nonlinear SDOF system defined by the capacity curve and 

adopting the Takeda Thin hysteretic model (with the parameters specified in Fig. 3). The value 

ξel=5% is to be assumed for the elastic viscous damping. 

(VI) Compare NLTH response and DDBD target displacement 
n) Plot the displacement, Δu

TH
, obtained as the average of maximum displacement demands 

calculated for the seven time histories, compatible with the design spectrum and represented in 

Fig. 2. Afterwards, compute the relative error 

 
TH

u

TH

u

d

uE



%                               (16) 

Following the procedure described from point (I) to (VI), a parametric study was carried out by 

considering 39 different values of effective period, Teff, as input parameters and defined between 

0.2 s and 4 s, at 0.1 s intervals, and nine different ductility levels, μΔ
d
, in the range 1.25-5. 

Consequently, 351 analyses were performed for a single design spectrum. Each spectrum was 

obtained via scaling the basic response spectrum after choosing from among four types of 

equivalent damping models, ξeq (Eqs. (3)-(9)), associated with three different scaling factors, Rξ 

(Eqs. (11)-(13)). In total, 4212 nonlinear SDOF systems were designed, and subsequently, verified 

in terms of displacement demands through dynamic nonlinear analyses in the time domain. 

 

3.5 DDBD verification 
 

In this section, a synthesis of the results obtained from the parametric analyses on ideal SDOF 

systems is reported. Figs. 6-7 show comparison of the results for different EVD models and a pre-

fixed form of the damping modification factor, Rξ. The single case of Rξ=EC8-2003 is reported, 

but the following considerations are also based on similar results obtained for other Rξ formulae, 

NH and EC8-1998. The relative errors between the design displacement of the DDBD method and 

the mean value of the TH peak displacements are represented for constant displacement ductility 

values, μΔ
d
. 

It is apparent that, for all EVD models, overestimation errors increase with high ductility 

values. This seems reasonable that, prediction of a “near” elastic response is more easily 

reproduced by a linearized system than an inelastic behavior requiring a deep excursion into the 

plastic field. 

Problems related to the overestimation errors of JDSS model are not as evident as they are in 

other studies. This is due to the shape of the adopted hysteretic model (Takeda Thin model) for the 

nonlinear cyclic behavior of bridge piers, as already anticipated. 

The graphs show that, three of the different evaluated EVD models give very similar results for 

Teff>0.75 s, and consequently, the same trend of the relative error plot is obtained for this range of 
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Teff. The exception is represented by the (D.K.) model, exhibiting the greatest inaccuracy for 

Teff>0.75 s, due to the absence of an elastic damping correction. 

For Teff<0.75 s, JDSS and (D.K.G.) models sensibly underestimate the EVD required to the 

linear SDOF system to equate the nonlinear peak displacements obtained with TH analyses. 

This is due to the absence of a dependence on the effective period, Teff,, which, on the contrary, 

is accounted for by (D.K.) and (G.B.P.) models. In particular, the best results are obtained for all 

ductility levels by (G.B.P.) model, even if it is not accurate in the low-period range. 

 

 

  
(a) μΔ

d
=1.25 (b) μΔ

d
=1.5 

  
(c) μΔ

d
=2.0 (d) μΔ

d
=3.0 

Fig. 6 Relative error obtained (Eq. (16)) using different EVD models and a pre-fixed spectrum reduction 

factor, Rξ=EC8-2003 
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Finally, it can be observed that, it will be unusual for normal structures (wall and frame 

buildings or bridges) to have effective period values less than 0.75-1 s, and this is confirmed also 

by the results of the sensitivity analysis on realistic pier designs developed in the second part of 

the work. 

Since Teff is greater than 1 s in most of real design cases, and since the (D.K.G.) model requires 

the ductility value, μΔ
d
, as the only input data (unlike the G.B.P. model that also needs Teff, an 

output of the DDBD method, leading to an iterative procedure), it can be concluded that, the 

(D.K.G.) model is effectively the most convenient one. 

In Figs. 8-9, the comparison of relative errors obtained in the design displacement prediction 

using different forms for the spectral reduction factor, Rξ, is presented. The same equivalent 

damping model (D.K.G.) is used in these cases with reference to some pre-fixed ductility levels, 

μΔ
d
=1.25, 1.5, 2.0, 3.0, 4.0, and 5.0. It can be observed that accuracy diminishes with the increase 

of the ductility demand for all the Rξ forms. 

The formula leading to more conservative results (greatest overestimation errors) is Newmark-

Hall‟s, which results to be too cautious. As for the other two, EC8-2003 and EC8-1998, an overall 

reduction in the relative error can be observed as the period increases with a quite comparable 

trend for Teff>1 s. The most precise equivalent spectral elastic displacement seems to be 

 

 

  
(a) μΔ

d
=4.0 (b) μΔ

d
=5.0 

Fig. 7 Relative error obtained (Eq. (16)) using different EVD models and a pre-fixed spectrum reduction 

factor, Rξ=EC8-2003 
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(a) μΔ

d
=1.25 (b) μΔ

d
=1.5 

  
(c) μΔ

d
=2.0 (d) μΔ

d
=3.0 

Fig. 8 Relative error obtained (Eq. (16)) using different expressions for the spectrum reduction factor, Rξ, 

and a pre-fixed EVD model, ξeq=(D.K.G.) 

 

 

obtainable using the Rξ=EC8-1998 but the EC8-2003 curve remains steadily above the 

corresponding EC8-1998 curve. Therefore, the underestimation error is smaller for Teff>2 s. Such 

consideration can justify the preference for the EC8-2003 formula currently adopted by Sullivan et 

al. (2012).  
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The results obtained for the other damping models and ductility levels are not reported here for 

brevity, but same conclusions can be drawn. 

Following the verification process described by the flowchart in Fig. 5, it is possible to plot the 

iso-ductility displacement design spectra, and compare them with the inelastic displacement 

spectra obtained by NLTH analysis. An example of this comparison is given in Fig. 10 for the 

choice of the EVD model based on (D.K.G.) and of the scaling factor given in EC8-2003. In Fig. 

11, the relative error according to Eq. (16) is plotted with the same assumptions for the entire 

period range, considering all the different ductility levels. 

In Fig. 10, it can be observed that the DDBD target displacements, corresponding to the 

inelastic displacement response spectra, are generally higher than the TH average peak 

displacement demands, at least up to the corner point of the spectra. As the displacement that 

results from the nonlinear analysis of bridges is smaller, it can be deduced that the method tends to 

overestimate the response. 

The point of intersection between the DDBD design displacement spectrum and the curve of 

the effective peak displacement demand (obtained from TH analysis for the nonlinear SDOF 

system) shifts towards higher values of Teff by increasing ductility level. This means that the 

overestimation error of the DDBD method increases with increase in μΔ
d
 values; thus, the method 

is proved to be more conservative for high-ductility design cases.  

The method is generally conservative, at least for structures with Teff<2.5-3.0 s. 

Overestimation errors, for ideal SDOF oscillators, are significantly dependent on the design 

ductility level, while underestimation errors are of small relevance. 

As previously noted, it should be underlined that, the effective periods smaller than 0.7 s do not 

apply to the design of real piers of flexural behavior (see also subsequent Figs. 13-14). 

 

 

  
(a) μΔ

d
=4.0 (b) μΔ

d
=5.0 

Fig. 9 Relative error obtained (Eq. (16)) using different expressions for the spectrum reduction factor, Rξ, 

and a pre-fixed EVD model, ξeq=(D.K.G.) 
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Fig. 10 Design displacements, Δu

d
, of the DDBD method compared with the average 

inelastic displacement spectra obtained by TH analyses, following the procedure in Fig. 

5, for all ductility levels (μΔ
d
=1.25-5.0). Case study: ξeq=(D.K.G.), Rξ=EC8-2003 

 

 
Fig. 11 Relative error obtained for design displacements, Δu

d
, in Fig. 10 with the average inelastic 

displacement spectra obtained by TH analyses. Case study: ξeq=(D.K.G.), Rξ=EC8-2003 
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Thus, the high errors resulted in simplified DDBD method in this range are of small 

significance and no practical interest. 

It will be useful to know the accuracy of the DDBD method when applied to SDOF systems. 

The error is introduced by the simplified procedure due to the approximations of a substitute 

linear structure characterized by the equivalent viscous damping, ξeq, and the scaling of the 

displacement elastic spectrum through the modification damping factor, Rξ. With this aim, a 

diagram of the mean relative error is plotted in Fig. 12. A polynomial interpolation of the relative 

error curves plotted in Fig. 11 for constant ductility levels is obtained, and the average prediction 

error is expressed as a function of design displacement ductility, μΔ
d
, (which is an input of the 

DDBD method) and Teff. 

The error ranges identified in Fig. 12 define the design areas in which all the possible SDOF 

systems designed with the simplified DDBD method are affected by medium errors within the 

extreme values of the range. 
 
 
4. Error prediction for Direct Displacement-Based Design of cantilever RC bridge piers 
 

This section deals with a sensitivity analysis on realistic SDOF structures, namely cantilever 

RC piers of simply supported bridges. The study was carried out with the aim of identifying the 

ranges of all possible combinations of displacement ductility, μΔ
d
, and effective period, Teff, for 

such structures. 

 
4.1 Input data and design limitations 

 

The input data for the sensitivity analysis are listed below. 

- Seismic action: the reference elastic spectrum is the same as the one used for the parametric 

analysis in the first part of the work, i.e., EC8-2003 spectrum “type 1”, Ground type C (S=1.15, 

TB=0.20 s, TC=0.6 s, TD=2.0 s), ag=0.35 g, and 5% damping. 

- Effective mass of the SDOF system: two values of tributary mass are considered, M1eff=250 t; 

M2eff=500 t. 

- Materials: effective properties are used for concrete and reinforcement. Concrete C32/40: 

f’ce=1.3 * f’c=43.2 MPa. Reinforcement steel B450C: fye=1.1 * fy=495 MPa. 

- Pier geometry, bar diameter: circular section, concrete cover of 3.5 cm, and bar diameter 

dbl=30 mm. 

The following limits relating to the geometry of piers (diameter, D, and height, H), normalized 

axial load, ν, slenderness, λ, and reinforcement ratio, ρl, are introduced to address the design of 

circular cantilever piers for typical multi-span simply supported girder bridges.  

a) Geometric parameters (to individuate an appropriate geometric range of sections for RC 

bridge piers and guarantee a flexural behavior)  

mD 1      (minimum diameter)                     (17) 

5.3DH

 

(minimum height /diameter ratio)                 (18) 

b) Maximum value of the dimensionless axial load 

  6.0
'

 ccEd AfN                          (19) 
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Fig. 12 Relative error ranges (%) for the SDOF systems designed with the DDBD method. 

Case study: ξeq=(D.K.G.), Rξ=EC8-2003 

 

 

c) Pier slenderness (limit suggested by NTC‟08, for linear analysis) 
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where the coefficient C is expressed by C=1.7-rm, with the limits 0.7≤C≤2.7 depending on the first 

order distribution of flexural moments at the pier top and bottom rm=M01/M02 (set equal to 0 for a 

cantilever pier). 

d) Longitudinal reinforcement ratio 

%4%5.0  l                                (21) 

Adequate confinement and sufficient transverse reinforcement are supposed to be used, 

ensuring ductile flexural response of the piers. 

 
4.2 Design process of cantilever RC piers and limits check 

 

A series of circular cantilever columns are designed with the DDBD method, considering target 

design drift limits θd=0.015-0.04, and stepping 0.005 (six values). Nine levels of design 

displacement ductility are addressed: μΔ
d
=1.25, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0. 

The realistic design limits fixed above in terms of slenderness, amount of reinforcement, and 

height/diameter ratio are implemented. Design cases not satisfying the previous limits are 

considered “unrealistic” and are excluded from the number of possible solutions. 

Numerical analyses are carried out by considering an equivalent viscous damping given in 

(D.K.G.) model (Eq. (9)), and the spectrum reduction factor supplied by the EC8-2003 formula 

(Eq. (13)). 

The design procedure consists of the following steps: 

a) Initial input: effective mass value, Meff, is chosen; target drift level θd=0.015-0.04 is selected 

from amongst six prefixed values; displacement ductility level, μΔ
d
, is chosen. 

b) Damped displacement response spectrum is constructed using Eqs. (10) and (13). 

c) Teff for the selected μΔ
d
 and θd values is chosen (the same period range of 0.2-4.0 s used in the 

parametric analysis of ideal SDOF systems was considered). 

d) The damped displacement spectrum SΔξ(T) is entered with Teff, and the target displacement 

Δu
d
 is calculated. 

e) The yield displacement is obtained as 

d

dy                                     (22) 

f) The pier height is estimated with the relation 

d

d

uH                                    (23) 

g) The yield curvature Φy is calculated, the strain penetration length Lsp being known 

blyesp dfL 022.0                                 (24) 

 23 spyy LH                                (25) 

h) The pier design diameter is determined using a simplified relation for dimensionless yield 

curvature Φy (Priestley 1993) 

yyyy DD  /25.2/25.2                      (26) 

472



 

 

 

 

 

 

Direct displacement-based design accuracy prediction for single-column RC bridge bents 

 

i) First design check is done for minimum diameter requirement and expected flexural 

behavior, according to Eqs. (17)-(19). If the limits are not satisfied, the design case is excluded as 

possible realistic solution, and the process is interrupted. 

j) Second design check is done for pier slenderness, λ, according to Eq. (20). If the limit is not 

respected, the procedure is stopped. 

k) If requirements of steps i and j are satisfied, the effective stiffness, Keff, is calculated as 

22
4 effeffeff TMK                               (27) 

l) Design shear (including P-Δ effects), Fu
d
, and bending moment at the pier base, Mbase, are 

determined 

HPKF ddeff

d

u  5.0                           (28) 

HFM
d

ubase                                  (29) 

m) Minimum longitudinal reinforcement is determined. For the calculated Mbase and acting 

axial load, ν, the minimum reinforcement ratio is computed for symmetric reinforcement, 

imposing strain limits of εc=0.004 and εs=0.015. Reinforcement ratio percentages according to Eq. 

(21) are accepted only. 

The research of the realistic design cases was carried out by determining the extreme values of 

the effective period admissible range, Teff,min and Teff,max, for a pre-fixed drift, θd, and an established 

ductility level, μΔ
d
. 

In Figs. 13-14, the realistic designs obtained are plotted for the case of tributary mass Meff. For 

a better graphic result, the occurrences corresponding to single designs are represented with a 

range of Teff at 0.1-0.15 s. The design ductility values, μΔ
d
, are plotted versus effective period, Teff, 

and the obtained ranges for pier slenderness, λ, are superimposed. 

It is understood that typical design values for RC cantilever piers are obtained for a range of 

μΔ
d
=1.25-5.0, and effective periods vary from a minimum of 0.75 s to almost 3.0 s. The values of 

considered slenderness, λ, vary from 28 to 69. 

In order to better compare the final results obtained with target ductility values commonly 

accepted in Europe for bridge design, it seems appropriate to consider the range of the parameter 

μΔ
d
 according to the maximum values of behavior factors, q, currently proposed by seismic codes 

(EC8-2003, NTC „08) for reinforced concrete pier design (implicitly assuming the validity of the 

“equal displacement” rule, q=μΔ
d
 for the typical range of periods considered). Two classes were 

defined: low-medium design ductility (DCM) when 1.25≤μΔ
d
<2.0, and high design ductility 

(DCH) when 2.0≤μΔ
d
≤3.5. 

A final plot superimposing the “realistic” design points to the medium error diagram, 

previously obtained in the (Teff, μΔ
d
) plane, (see Fig. 15) is proposed; thus, it is possible to derive 

directly the error prediction of the DDBD method when applied to the design of cantilever piers of 

simply supported RC bridges (SDOF systems). 

It can be observed that the DDBD method is generally conservative. Underestimation errors are 

limited for any realistic design almost always less than 10% with few cases (6%) with just slightly 

higher relative errors (Em<12%). 

As already seen for ideal SDOF systems, the accuracy of the DDBD method, described as 

overestimation error range, is dependent on design ductility: 

- for low-medium ductility design cases (μΔ
d
≤1.5), the DDBD method is yet very accurate, with 
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a low error range calculated for the single pier design, Em<+10%;  

- for high ductility values (1.5<μΔ
d
≤3.5), the relative errors are higher, even if most of the 

samples attain error levels that can be still considered as acceptable (Em<+20% in 63%, and 

Em<+30% in 90% of the design cases), taking into account that the error is an overestimation 

inaccuracy, and that the design process is a simplified direct method. Nevertheless, there is a non-

negligible percentage of structures (10%) with higher errors but a maximum below 40%. 

 

 

 
Fig. 13 Realistic SDOF designs obtained for cantilever RC piers with tributary mass Meff=250 t 

 

 
Fig. 14 Realistic SDOF designs obtained for cantilever RC piers with tributary mass Meff=500 t 
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Fig. 15 Relative error prediction (%) for the DDBD method applied to the design of 

cantilever RC bridge piers (SDOF systems). The medium error diagram in the background 

refers to Fig. 12, while the design points for realistic cases are extracted from Figs. 13-14 

 

 

4.3 Relationship between drift and ductility 
 

It could be of interest to estimate directly the expected accuracy of the DDBD method in 

relation to the choice of the design drift level, q.  

A direct relationship between drift and ductility allows to use the medium error diagram 

supplied in Fig. 15, once the performance drift level is fixed. 
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Fig. 16 Intervals for ductility demand, μΔ, versus drift, θ, obtained for the realistic, analyzed design cases, 

and interpolating line approximating values corresponding to medium Teff values of the design intervals 

 

 
Fig. 17 Approximate relation for μΔ versus drift θ, and curves obtained for some pre-

defined values of H/D (Eqs. (30)-(31)) 
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With reference to the realistic, analyzed design cases, it was possible to plot the intervals in 

ductility, μΔ,min-μΔ,max, and the mean values of these, μΔ,mean, corresponding to prefixed drift values 

(see Fig. 16). 

It is deduced that higher drifts, θ, are tied to high displacement ductility values, μΔ. With (H/D) 

ratio values between 4 and 5, drifts θ≥3-3.5% correspond to ductility μΔ≥3.5, that is the upper limit 

currently adopted by seismic codes for bridge piers; thus, higher drift design requirements imply a 

strong inelastic behavior by the RC members. 

Observing the ductility ratio between the medium value, μΔ,mean, and the extreme value of the 

interval, μΔ,min or μΔ,max, corresponds approximately to the ratio between the corresponding mean 

values of (D/H), it was possible to derive the more general relation, given by Eqs. (30)-(31), and 

plot a series of curves for prefixed (D/H) values, extending the previously obtained ranges (see 

Fig. 17) 

 7.032.1
1

 



H

D
                             (30) 

where 

12.0
100

25.3
                                 (31) 

with θ expressed in percentage (%).  

To obtain Eqs. (30)-(31), the equations given by linear interpolation of μΔ,mean values (Fig. 16) 

and of (D/H) mean values, plotted versus drift, were used. These mean values of (D/H) were 

calculated, for the various drift levels examined, performing new, realistic, design cases, in which 

the values of displacement ductility obtained by equation in Fig. 16 were used as input parameters. 

The proposed equations are functional to a direct estimation of the method accuracy on the base 

of the design drift: once the design drift θ for the RC bridge bent is decided by the designer, the 

related design ductility D can be derived using Eq. (30), and the diagram in Fig. 15 can be entered 

to derive the expected accuracy of the simplified procedure. 

 

 
5. Conclusions 
 

This work provides an estimate of the current DDBD method accuracy for simple SDOF 

structures, with specific reference to isostatic bridges, in which single-column RC bents generally 

conform to the assumptions valid for simple SDOF systems. 

The method is shown to be generally conservative, at least for structures with Teff<3.0 s. 

Underestimation errors are never relevant, being at most limited to around 10% for any realistic 

design case. On the contrary, overestimation errors depend significantly on design ductility level: 

for low-medium ductility design cases (μD≤1.5), the DDBD method is still very accurate, 

(Em<+10%), while for higher ductility values (1.5<μD≤3.5), more significant error levels tend to be 

attained, but they are still acceptable considering the implicit simplification of the equivalent linear 

DDBD procedure (Em<20-30% in nearly all the design cases). A medium error diagram as a 

function of design ductility, μΔ
d
 and effective period, Teff is presented to summarize the scatter in 

the results. 

Finally, as a useful tool for the DDBD design process, an approximate relationship between 
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ductility and drift is presented, since it is functional to a direct estimation of the accuracy in 

relation to the choice of the design drift level. 
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Abbreviations 
 
Ac area of concrete section 

au
d
 ultimate design acceleration 

ay yield acceleration 

C generic constant 

D diameter of pier circular section 

D.K. Equivalent Viscous Damping model by Dwairi
 
et al. (Dwairi et al. 2007) 

D.K.G. Equivalent Viscous Damping model by Dwairi et al. with correction factor for elastic damping  

(Priestley et al. 2007) 

dbl longitudinal reinforcement diameter 

E relative error (%), by Eq. (16), between design displacement (Δu
d
) and average inelastic  

displacement obtained by TH analyses (Δu
TH

) 

Em medium relative error (%), by polynomial interpolation of relative error curves in plane E-Teff 

ESDOF  Equivalent Single Degree Of Freedom 

EVD  Equivalent Viscous Damping model 

f ’c    compressive strength of unconfined concrete 

f’ce   expected concrete compressive strength 

Fu
d  

 ultimate force/strength relative to design displacement, Δu
d
 

fy    characteristic yield stress of steel 

fye   expected yield stress of steel 

G.B.P. Equivalent Viscous Damping model by Grant et al. (Grant et al. 2005) 

H height of pier 

(H/D) height/diameter ratio of pier 

JDSS Equivalent Viscous Damping model by Jacobsen (Jacobsen 1930, 1960) 

K   structure stiffness 

Keff   structure effective stiffness for DDBD 

Lsp     strain penetration length 

M01 flexural moment at pier top 

M02 flexural moment at pier bottom 

M1eff ESDOF effective mass for case study 1 

M2eff ESDOF effective mass for case study 2 

Mbase     sum of moments at base level 

Meff effective mass of ESDOF 

NEd     design axial load 

P    axial force on section (also N) 

q behavior factor 

rm factor of first order distribution of flexural moments at pier top and bottom 

rΔ post-yielding displacement bilinear factor 

Rξ reduction factor applied to displacement spectrum for damping ξ 

S soil factor 

Sa(T) elastic Acceleration Response Spectrum 

Saξ(T) design or over-damped Acceleration Response Spectrum 

SDOF Single Degree Of Freedom 

SΔ(T) elastic Displacement Response Spectrum 

SΔ0.05(T)  5% damped Displacement Response Spectrum 

SΔξ(T) design or over-damped Displacement Response Spectrum  

TB      period at beginning of maximum spectral response acceleration plateau 

TC     period at end of maximum spectral response acceleration plateau 

TD period parameter (“corner period” of displacement response spectrum) 
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Teff    effective period of SDOF system at its design displacement 

Teff,max upper limit of admissible Teff values, for fixed values of θ and μΔ
d
, for realistic design cases 

Teff,min lower limit of admissible Teff values, for fixed values of θ and μΔ
d
, for realistic design cases 

Tel elastic period of SDOF substitute system 

TT Takeda Thin hysteretic model 

α unloading stiffness factor in modified Takeda model 

β reloading stiffness factor in modified Takeda model 

Δu     ultimate displacement 

Δu
d
   ultimate target displacement 

Δu
TH

 ultimate displacement obtained by using NLTH analysis 

Δy     yield displacement 

εc concrete compressive strain limit 

εs ultimate strain of longitudinal reinforcement 

εy  yield reinforcement stress 

θ drift ratio 

θd design drift ratio 

λ coefficient of slenderness 

λlim limit value of slenderness coefficient (D.M. Infrastrutture 14 gennaio 2008 - NTC ‟08) 

μΔ displacement ductility factor 

μΔ
d
      design displacement ductility factor 

μΔ,max  maximum value of displacement ductility related to a fixed value of drift 

μΔ,mean  mean value of displacement ductility related to a fixed value of drift 

μΔ,min  min value of displacement ductility related to a fixed value of drift 

ν normalized axial load 

ξ fraction of critical damping 

ξel      elastic viscous damping 

ξeq      equivalent viscous damping 

ξhyst  hysteretic component of equivalent viscous damping ratio 

ρl     area ratio of longitudinal reinforcement 

Φy  nominal yield curvat 
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