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Abstract.  In this study, Homotopy Perturbation Method (HPM) is used to solve the nonlinear oscillators 

with damping. We have considered two strong nonlinear equations to show the application of the method. 

The Runge-Kutta’s algorithm is used to obtain the numerical solution for the problems. The method works 

very well for the whole range of initial amplitudes and does not demand small perturbation and also 

sufficiently accurate to both linear and nonlinear physics and engineering problems. Finally to show the 

accuracy of the HPM, the results have been shown graphically and compared with the numerical solution. 
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1. Introduction 
 

Dynamical differential equations can be parted into linear and nonlinear differential equations. 

For linear dynamical differential equations it is possible to prepare exact solution but for nonlinear 

ones, it is very hard to solve them analytically. In the past few decades many new analytical and 

numerical approaches have been used for solving nonlinear differential equations such as: 

Homotopy perturbation method (Bayat et al. 2013a, 2014a),Hamiltonian approach (He 2010, Xu 

2010, Bayat et al. 2014b, c, d, e, f, 2013b, Bayat and Pakar 2013c), Energy balance method 

(Jamshidi et al. 2010, Bayat et al. 2014g, Mehdipour et al. 2010),Variational iteration method 

(Dehghan 2008), Amplitude frequency formulation (He 2008), Max-Min approach (Shen et al. 

2009, Zeng et al. 2009), Variational approach (He 2007, Bayat and Pakar 2012a, Bayat et al. 

2012b, Bayat and Pakar 2013a, Bayat et al. 2013b, Shahidi et al. 2011, Pakar and Bayat 2013), 

and the other analytical and numerical (Bayat and Abdollahzade 2011, Pakar et al. 2014a, b, 2011, 

Xu 2009, Alicia et al. 2010, Bor-Lih et al. 2009, Wu 2011, Odibat et al. 2008, Zhifeng et al. 2013, 

Rajasekaran 2013, Akgoz 2013, Akgoz and Civalek 2011, Atmane et al. 2011, Cunedioglu and 

Beylergil 2014). 

Among of these methods, Homotopy perturbation method is considered to solve the nonlinear 

equations with damping.  In this study, first we describe the basic concept of the Homotopy 

perturbation method and Runge-Kutta algorithm. In the second section apply this method 

                                                           
Corresponding author, Researcher, E-mail: mbayat14@yahoo.com 



 

 

 

 

 

 

Mahmoud Bayat, Mahdi Bayat and Iman Pakar 

for two examples. And in the last section, some comparisons between analytical and numerical 

solutions are presented to show the accuracy of the HPM. 

 

 
2. Basic idea of the HPM 

 
To illustrate the basic ideas of this method, we consider the following equation 

    0A x f r     r  (2.1) 

With the boundary condition of 

, 0
x

B x
t

 
 

 
   r  (2.2) 

Where A is a general differential operator, B a boundary operator, f(r) a known analytical 

function and Г is the boundary of the domain Ω. A Can be divided into two parts of L and N, where 

L is linear and N is nonlinear. Eq. (2.1) can therefore be rewritten as follows 

      0L x N x f r      r  (2.3) 

Homotopy perturbation structure is shown as follows 

           0, 1 0H p p L L x p A f r                (2.4) 

Where, 

   , : 0,1r p R    (2.5) 

In Eq. (2.4), p[0,1] is an embedding parameter and x0 is the first approximation that satisfies 

the boundary condition. We can assume that the solution of Eq. (2.1) can be written as a power 

series in p, as following 

2

0 1 2

0

n
i

i

i

p p p    


      (2.6) 

And the best approximation for the solution is 

1 0 1 2limpx          (2.7) 

 

 
3. Basic idea of Runge-Kutta 

 
The fourth RK (Runge-Kutta) method has been used to verify the homotopy perturbation 

solution. This iterative algorithm is written in the form of the following formulae for the second-

order differential equation 
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 

 

1 1 2 3 4

1 1 2 3

2 2
6

6

i i

i i i

t
x x h h h h

t
x x t x h h h






    

 
      

 

 (3.1) 

Where, Δt is the increment of the time and h1, h2, h3, and h4 are determined from the following 

formulae 

 1

2 1

2

3 1 2

2

4 2 3

, , ,

, , ,
2 2 2

1
, , , ,

2 2 4 2

1
, , , .

2

i i

i i i i

i i i i

i i i i

h f x x x

t t t
h f t x x x h

t t t
h f t x x t h x h

h f t t x tx t h x t h



   
    

 

   
     

 

 
        

 

 (3.2) 

The numerical solution starts from the boundary at the initial time, where the first value of the 

displacement function and its first-order derivative are determined from initial condition. Then, 

with a small time increment Δt, the displacement function and its first-order derivative at the new 

position can be obtained using Eq. (3.1). This process continues to the end of the time limit. 

 

 

4. Application 
 

In order to assess the advantages and the accuracy of the Homotopy Perturbation Method 

(HPM), we will consider the following examples: 

 

4.1 Example 1 
 

The general equation of an oscillator with a nonlinear spring, a linear spring and a damper 

under a harmonic load is as follow 

 3

1 2 0 cosmx cx k x k x F t     (4.1) 

Subject to the following initial conditions 

(0) , (0) 0x A x   (4.2) 

Where m is the mass, c is a viscous damping coefficient, k1 is a linear stiffness coefficient, and 

k2 is a nonlinear stiffness coefficient. The harmonic excitation force is characterized by the force 

amplitude, F0, with excitation frequency of ω. A is the initial amplitude of displacement. 

ω can be found easily by having the parameters, A, c, m, k1 and k2: 

As the HPM was applied to the nonlinear Eq. (4.1), we have 

    3

1 1 2 01 cos( ) 0p m x c x k x p m x c x k x k x F t          (4.3) 
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After expanding the equation and collecting it based on the coefficients of p-terms, we have 

0

0 0 1 0

1 3

1 1 1 1 2 0 0

2 2

2 2 1 2 2 0 1

3 2 2

3 3 1 3 2 0 2 2 0 1

: 0

: cos( ) 0

: 3 0

: 3 3 0

p m x c x k x

p m x c x k x k x F t

P m x c x k x k x x

P m x c x k x k x x k x x



   


    


   
     

 (4.4) 

One can now try to obtain the solution of different iterations (4.4), in the form of 

2
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2
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 (4.5) 
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(4.6) 
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Fig. 1 Displacement x based on time t for (a) f=0.5, A=0.06, ω=4.163379415, (b) f=0.7, A=0.04, 

ω=5.147879675 

 

 

And from Eqs. (4.5) and (4.6), x(t) can be obtained 
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The obtained iteration is used to generate the equation for the next iteration, and therefore the 

second and third iterations are obtained. Since the two other ones and therefore the general 

solution are too long to be written in this article, we have shown them in graphs.  

 

 

  
Fig. 2 Velocity x  based on time t for (a) f=0.5, A=0.06, ω=4.163379415, (b) f=0.7, A=0.04, 

ω=5.147879675 

 

  
Fig. 3 Velocity x  based on displacement x for (a) f=0.5, A=0.06, ω=4.163379415, (b) f=0.7, 

A=0.04, ω=5.147879675 

 

  
Fig. 4 Acceleration x  based on displacement x for (a) f=0.5, A=0.06, ω=4.163379415 (b) f=0.7, 

A=0.04, ω=5.147879675 
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Table 1 Comparison of displacement and velocity of HPM with Runge-Kutta for example 1 

 

Case 1 
 

Case 2 

Displacement ( )x  
 

Velocity ( )x  
 

Displacement ( )x  
 

Velocity ( )x  

Time HPM RK4 
 

HPM RK4 
 

HPM RK4 
 

HPM RK4 

0 0.06 0.06 
 

0 0 
 

0.04 0.04 
 

0 0 

0.5 0.04609 0.04646 
 

-0.07957 -0.08021 
 

0.03542 0.03567 
 

-0.09412 -0.09478 

1 -0.00966 -0.00973 
 

-0.09347 -0.09422 
 

-0.02081 -0.02095 
 

-0.02950 -0.02971 

1.5 -0.00962 -0.00969 
 

0.08297 0.08364 
 

0.01610 0.01621 
 

0.07691 0.07745 

2 0.02169 0.02186 
 

-0.00767 -0.00773 
 

-0.00646 -0.00650 
 

-0.11066 -0.11143 

2.5 -0.01280 -0.01290 
 

-0.07599 -0.07660 
 

-0.00660 -0.00665 
 

0.11114 0.11192 

3 -0.00986 -0.00994 
 

0.08343 0.08409 
 

0.01706 0.01718 
 

-0.07535 -0.07587 

3.5 0.02227 0.02245 
 

-0.00499 -0.00503 
 

-0.02226 -0.02241 
 

0.01635 0.01646 

4 -0.01193 -0.01203 
 

-0.07843 -0.07906 
 

0.02048 0.02063 
 

0.04783 0.04817 

4.5 -0.01059 -0.01068 
 

0.08168 0.08234 
 

-0.01227 -0.01236 
 

-0.09702 -0.09770 

5 0.02230 0.02247 
 

-0.00146 -0.00147 
 

0.00021 0.00022 
 

0.11577 0.11658 

5.5 -0.01121 -0.01130 
 

-0.08026 -0.08090 
 

0.01191 0.01199 
 

-0.09821 -0.09889 

6 -0.01134 -0.01143 
 

0.07995 0.08059 
 

-0.02030 -0.02044 
 

0.04984 0.05019 

6.5 0.02229 0.02247 
 

0.00208 0.00209 
 

0.02232 0.02248 
 

0.01416 0.01426 

7 -0.01047 -0.01055 
 

-0.08198 -0.08263 
 

-0.01734 -0.01746 
 

-0.07372 -0.07424 

7.5 -0.01206 -0.01216 
 

0.07809 0.07872 
 

0.00692 0.00697 
 

0.11015 0.11093 

8 0.02226 0.02244 
 

0.00561 0.00566 
 

0.00567 0.00571 
 

-0.11204 -0.11282 

8.5 -0.00971 -0.00978 
 

-0.08358 -0.08425 
 

-0.01648 -0.01660 
 

0.07878 0.07933 

9 -0.01276 -0.01287 
 

0.07612 0.07673 
 

0.02212 0.02228 
 

-0.02081 -0.02095 

9.5 0.02219 0.02237 
 

0.00914 0.00921 
 

-0.02083 -0.02097 
 

-0.04369 -0.04399 

10 -0.00894 -0.00901 
 

-0.08506 -0.08574 
 

0.01300 0.01309 
 

0.09448 0.09514 

Case 1: 
 
f=0.5, A=0.06, ω=4.163379415

 
Case 2: 

 
f=0.7, A=0.04, ω=5.147879675

 
 

 

4.2 Example 2 
 

In this example we have considered the same oscillators with nonlinear damped behavior 

 2 3

1 2 1 2 0 cos( )mx x x k x k x F t        (4.8) 

Subject to the following initial conditions 

(0) , (0) 0x A x   (4.9) 

As the HPM was applied to the nonlinear Eq. (4.8), we have 

     2 3

1 1 1 2 1 2 01 cos( ) 0p mx x k x p mx x x k x k x F t              (4.10) 
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After expanding the equation and collecting it based on the coefficients of p-terms, we have 
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0 1 0 1 0
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 (4.11) 

One can now try to obtain the solution of different iterations (4.11), in the form of 
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Fig 5. Displacement x based on time t for (a) f=1, A=0.04, ω=3.536163732, (b) f=0.8, A=0.05, 

ω=2.208420786 

 

  
Fig 6. Velocity x  based on time t for (a) f=1, A=0.04, ω=3.536163732, (b) f=0.8, A=0.05, ω=2.208420786 
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Fig 7. Velocity x  based on displacement x for (a) f=1, A=0.04, ω=3.536163732, (b) f=0.8, 

A=0.05, ω=2.208420786 

 
Table 2 Comparison of displacement and velocity of HPM with Runge-Kutta for example 2 

 
Case 1 

 
Case 2 

 
Displacement ( )x  

 
Velocity ( )x  

 
Displacement ( )x  

 
Velocity ( )x  

Time HPM RK4 
 

HPM RK4 
 

HPM RK4 
 

HPM RK4 

0 0.04 0.04 
 

0 0 
 

0.05 
  

0 0 

0.5 0.05325 0.05372 
 

-0.03502 -0.03533 
 

0.06050 0.06110 
 

-0.00011 -0.00011 

1 -0.00479 -0.00483 
 

-0.14615 -0.14746 
 

0.03579 0.03615 
 

-0.09447 -0.09542 

1.5 -0.03378 -0.03408 
 

0.05789 0.05841 
 

-0.01896 -0.01915 
 

-0.10364 -0.10468 

2 0.02511 0.02533 
 

0.11112 0.11212 
 

-0.04913 -0.04962 
 

-0.00528 -0.00533 

2.5 0.02693 0.02717 
 

-0.10656 -0.10752 
 

-0.02368 -0.02392 
 

0.09622 0.09718 

3 -0.03438 -0.03469 
 

-0.07152 -0.07217 
 

0.02850 0.02878 
 

0.09071 0.09162 

3.5 -0.01290 -0.01302 
 

0.13367 0.13487 
 

0.04961 0.05010 
 

-0.01510 -0.01525 

4 0.03968 0.04003 
 

0.01872 0.01889 
 

0.01625 0.01642 
 

-0.10450 -0.10554 

4.5 -0.00255 -0.00257 
 

-0.14118 -0.14245 
 

-0.03493 -0.03528 
 

-0.07901 -0.07980 

5 -0.03864 -0.03898 
 

0.03655 0.03688 
 

-0.04766 -0.04813 
 

0.03338 0.03371 

5.5 0.01771 0.01787 
 

0.12682 0.12796 
 

-0.00794 -0.00801 
 

0.10902 0.11011 

6 0.03170 0.03198 
 

-0.08628 -0.08705 
 

0.04052 0.04093 
 

0.06470 0.06535 

6.5 -0.03014 -0.03041 
 

-0.09300 -0.09384 
 

0.04439 0.04484 
 

-0.05082 -0.05132 

7 -0.01988 -0.02006 
 

0.12273 0.12384 
 

0.00058 0.00059 
 

-0.11042 -0.11152 

7.5 0.03793 0.03827 
 

0.04489 0.04529 
 

-0.04492 -0.04536 
 

-0.04853 -0.04901 

8 0.00501 0.00506 
 

-0.14033 -0.14159 
 

-0.03983 -0.04023 
 

0.06676 0.06743 

8.5 -0.03990 -0.04026 
 

0.01012 0.01021 
 

0.00908 0.00917 
 

0.10859 0.10967 

9 0.01063 0.01072 
 

0.13636 0.13759 
 

0.04800 0.04848 
 

0.03093 0.03124 

9.5 0.03573 0.03605 
 

-0.06358 -0.06415 
 

0.03410 0.03444 
 

-0.08076 -0.08157 

10 -0.02463 -0.02486 
 

-0.11144 -0.11244 
 

-0.01732 -0.01749 
 

-0.10359 -0.10463 

Case1: f=1, A=0.04, ω=3.536163732 

Case2: f=0.8, A=0.05, ω=2.208420786 
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Fig 8. Acceleration x  based on displacement x for (a) f=1, A=0.04, ω=3.536163732, (b) f=0.8, 

A=0.05, ω=2.208420786 

 

 

5. Results and discussions 
 

To illustrate and verify the accuracy of this new approximate analytical approach, for the 

problem, a comparison of the time history oscillatory displacement responses with the numerical 

solution using Runge-Kutta method is presented in Figs. 1 to 4 for example 1 and Figs. 5 to 8 for 

example 2. Figs. 1 and 5 represent a comparison of analytical solution of x(t) based on time with 

the numerical solution and Figs. 2 and 6 show comparison of analytical solution of of x based on 

time. The phase plan curves of x  based on displacement x(t) with the numerical solution is also 

presented in Figs. 3 and 7. Comparison of x  based on displacement x is shown in Figs. 4 and 8. 

Tables 1 and 2 are shown the point value comparison of displacement and velocity of the problems 

for different cases. The results compare with the numerical solution for the both cases. It is evident 

that HPM shows an excellent agreement with the numerical solution and quickly convergent and 

valid for a wide range of vibration amplitudes and initial conditions. The accuracy of the results 

shows that the HPM can be potentiality used for the analysis of strongly nonlinear oscillation 

problems accurately.  

 
 
6. Conclusions 

 

In this study we applied the He’s homotopy perturbation method for nonlinear oscillators with 

damping. Two strong examples have been studied to show the accuracy and convergence of the 

method. It has been proved that the HPM is very efficient, comfortable and sufficiently exact in 

engineering problems. Homotopy perturbation method can be simply extended to nonlinear 

equations for the analysis of nonlinear systems. The obtained results from the approximate 

analytical solutions are in excellent agreement with the corresponding numerical solutions. 
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