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Abstract.  Site response analysis is an important topic in earthquake engineering. A time-domain numerical 

method called as one-dimensional (1D) finite element artificial boundary method is proposed to simulate the 

homogeneous plane elastic wave propagation in a layered half space subjected to the obliquely incident 

plane body wave. In this method, an exact artificial boundary condition combining the absorbing boundary 

condition with the inputting boundary condition is developed to model the wave absorption and input effects 

of the truncated half space under layer system. The spatially two-dimensional (2D) problem consisting of the 

layer system with the artificial boundary condition is transformed equivalently into a 1D one along the 

vertical direction according to Snell’s law. The resulting 1D problem is solved by the finite element method 

with a new explicit time integration algorithm. The 1D finite element artificial boundary method is verified 

by analyzing two engineering sites in time domain and by comparing with the frequency-domain transfer 

matrix method with fast Fourier transform. 
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1. Introduction 
 

Seismic response analysis of engineering site is an important topic in earthquake engineering. 

The practical site is usually simplified as the horizontally layered soil deposits resting on the half 

space bedrock. This can be called as the layered half space model. The earthquake wave 

propagates from the half space bedrock into the layered soil deposits. The incident wave is 

assumed as the plane body wave due to the site far from the earthquake source. The methods to 

calculate the layered half space site responses have been developed in the past several decades. 

They will be reviewed simply as follows. 

When the seismic wave is incident vertically for the deep focus earthquake, the site response 

analysis is a spatially one-dimensional (1D) problem in nature. The methods and corresponding 

computer programs for the 1D site response analysis have been developed, even to consider the 
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nonlinear soil behavior. They can be seen in the review on recent advances (Hashash et al. 2010) 

and the applications (Rota et al. 2011, Mayoral et al. 2011). On the other hand, for a shallow focus 

earthquake and when the engineering site moderately far from the epicenter, the oblique incidence 

of the seismic wave should be considered. The problem is thus spatially two-dimensional (2D) in 

nature, leading to the site response analysis method more complex than that for the 1D case. The 

vertical incidence of the seismic wave is actually a special case of the oblique incidence.  

The transfer matrix method (Thomson 1950, Haskell 1953, Knopoff 1964, Dunkin 1965, 

Gilbert and Backus 1966, Watson 1970) and the stiffness matrix method (Kausel and Roësset 

1981, Kausel 2006, Wolf and Obernhuber 1982a, b, 1983, Takano et al. 1988) can be used to solve 

the 2D site response problem subjected to the obliquely incident seismic wave, although they can 

consider the general load source besides the obliquely incident plane wave studied here. The two 

methods belong to the analytical method in frequency domain. They are therefore used to calculate 

the elastic site response at present. To consider the nonlinear soil behavior using the constitutive 

relation, the numerical method in time domain is required.  

The thin layer method (Lysmer 1970, Lysmer and Waas 1972, Kausel and Peek 1982, Kausel 

2000, 2004, Park and Kausel 2004, Jones and Hunt 2011) is a discretization edition of the stiffness 

matrix method along the depth. It is developed originally in frequency domain and regards the 

underlying half space as rigid bedrock. The time-domain formulation of the thin layer method for 

the layer system has been given by Kausel (1994). The radiation damping (wave absorption effect) 

of the elastic underlying half space is simulated by the absorbing (also called as radiation, 

nonreflecting, or transmitting) boundary condition such as the early second-order paraxial 

boundary (Seale and Kausel 1984, 1989) and the recent perfectly matched layer (Barbosa et al. 

2012). However, these absorbing boundary conditions are approximate for the 2D site response 

problem to simulate the plane wave propagation in the layered half space.  

Several time-domain numerical methods for 2D site response problem have also been 

developed in recent years. Liao et al. (1994) study the SH wave propagation case where the elasto-

plastic multi-yield surface constitutive model with a kinematic hardening rule is used to consider 

the nonlinear hysteretic behavior of soil under the irregular cyclic loading. In their work the wave 

absorption effect of the truncated underlying half space is modeled exactly by the well-known 

viscous absorbing boundary condition (Lysmer and Kuhlemeyer 1969). The 2D problem of 

spatially infinite along the layer direction (horizontal direction) is transformed into a 1D one based 

on Snell’s law. The finite difference method along the characteristic lines is used to solve the 

resulting 1D problem. However, the P-SV wave propagation case that is more complex than the 

SH wave case has not been studied.  

The fourth author and his coworker (Liu and Wang 2006, 2007) study the SH and P-SV wave 

propagation cases but only consider the linearly elastic soil. In their work the viscous absorbing 

boundary condition is still used to model the wave absorption effect of the truncated half space. 

This is an approximate treatment to the P-SV wave case, leading to the responses with low 

accuracy. The finite element method with the central difference time integration algorithm is 

applied directly to the 2D problem of spatially infinite along the layer direction. Snell’s law is then 

used to transform the 2D discrete problem into the spatially 1D one. However, this method has a 

stability limitation on the time step size of integration although it has an implicit time integration 

form of solving the linear equation system. Moreover, the numerical dispersive error of this 

method is consistent with that of 2D finite element method instead of with that of 1D one. 

According to the state of art on the time-domain numerical methods mentioned above, a good 

framework of the computational method for the 2D site response problem due to the obliquely 
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incident earthquake wave, even for the elastic wave case, is not yet seen by the authors. In this 

paper, a time-domain numerical method called as 1D finite element artificial boundary method is 

proposed for the layered half space site response analysis subjected to the obliquely incident plane 

body wave. Only the linearly elastic case is studied in the present paper, while the extension to the 

nonlinear case in further. The remainder of this paper is organized as follows. The problem is 

stated in Section 2. An exact artificial boundary condition is proposed in Section 3 to model the 

wave absorption and input effects of the truncated underlying half space. A 1D explicit finite 

element method is developed in Section 4 to solve the spatially infinite 2D layer system with the 

exact artificial boundary condition. The 1D finite element artificial boundary method is verified in 

Section 5 by analyzing two typical engineering sites and by comparing with the transfer matrix 

method with fast Fourier transform. Conclusions follow in Section 6. 

 

 

2. Problem statement 
 

According to the elastic wave theory, the plane wave propagation in a layered half space can be 

decomposed into two wave problems in 2D space, i.e., the P-SV wave and SH wave problems. 

This paper considers the P-SV wave problem of linear elasticity for which there is not yet a good 

time-domain numerical method so far. The 2D layered half space subjected to the obliquely 

incident plane P or SV wave is shown in Fig. 1. The Cartesian coordinate system is (x, z). The N-1 

horizontal layers and the underlying half space are numbered from top to bottom as 1, 2, …, N in 

turn. The thicknesses of the layers from 1 to N-1 is h
1
, h

2
, …, h

N-1
 in turn. The ρ

j
, 

j
Pc  and 

j
Sc are 

the mass density, P wave velocity and S wave velocity, respectively, with the superscripts 

j=1,…,N-1 for the layers and j=N for the underlying half space. The incident angle   of the 

plane body wave is defined as the angle between the wave propagation and vertical directions.  

The strain-displacement relation is 

 j jε Lu                                 (1) 

where  
T

j j j
x zu uu  and  

T

  j j j j
x z xzε  are the displacement and strain vectors, 

respectively; the superscript T denotes the matrix transpose; and the differential operator matrix is 

 

T

0

0

  
  

  
  

   

x z

z x

L                            (2) 

The stress-strain relation is 

 j j jσ D ε                               (3) 

where  
T

  j j j j
x z xzσ  is the stress vector; and the constitutive matrix of linear elasticity can 

be written as 

 2 2

1 1 0 0 2 0

( ) 1 1 0 ( ) 2 0 0

0 0 0 0 0 1

 

   
   

  
   
      

j j j j j
P Sc cD                  (4) 
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Fig. 1 The layered half space subjected to the obliquely incident plane body wave 

 

 

The dynamic equilibrium equation is 

 
T j j jL σ u                               (5) 

where the dot over the variable denotes the derivative to time t. Substituting Eq. (1) into Eq. (3) 

and then the result into Eq. (5) obtain the elastic dynamic equation represented by the 

displacements as  

 
T j j j jL D Lu u                             (6) 

Define the stress vector on the surface of constant z as  
T

 j j j
z xz zσ . The boundary 

condition on the free surface is 

 
1 zσ 0                                 (7)

 
The boundary conditions at the interfaces between any two adjacent layers and between the 

lowest layer and underlying half space are the continuity conditions of the displacements and 

stresses. They can be written as 

 
1j ju u                               (8) 

 
1j j

z zσ σ                               (9) 

The plane P or SV wave is obliquely incident from the underlying half space into the layer 

system. At the initial instant of time t=0, the wavefront of the incident wave passes through the 

intersection point of the z coordinate axis and the lowest interface (or the artificial boundary 

introduced later). The known displacement time history of the incident wave at this intersection 

 x

z

o

2Nh 

1Nh 

1h

2h



1 1 1, ,P Sc c

Propagation direction of incident wave



The first layer

The second layer

The (N-2)-th layer

The (N-1)-th layer

2 2 2, ,P Sc c

2 2 2, ,N N N

P Sc c   

, ,N N N

P Sc c



1 1 1, ,N N N

P Sc c   

The underlying 
half space

Positive vibration direction for P wave

Positive vibration direction for SV wave
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point is denoted as 0 0( )P Pu u t  for the P wave or 0 0( )S Su u t  for the SV wave. The positive 

direction of this time history is shown in Fig. 1. Besides the incident wave, no load source or 

initial condition exists in the layered half space. 

 
 
3. Exact artificial boundary condition 
 

An artificial boundary is introduced along the lowest interface to truncate the underlying half 

space. Actually the artificial boundary can be set as a horizontal line at any location in the 

underlying half space. An exact artificial boundary condition combining the absorbing boundary 

condition with the inputting boundary condition is developed to model the wave absorption and 

input effects of the truncated half space. 

 

3.1 Plane wave solution 
 

The displacements in the underlying half space can be represented by the potential functions as 

 

  
  

  
  

   

N Nx z

z x

u φ                            (10) 

where  
T

 N N N
P Sφ is the potential function vector with the subscripts P and S respectively 

for P and SV waves. The homogeneous plane wave solutions can be divided into two parts as 

 ˆ N N Nφ φ φ                              (11) 

The unknown scattered waves are 

 
 

 

   
  

   

N
P P P P

N

N
S S S S

f m x n z c t

f m x n z c t
φ                        (12) 

The known incident P or SV wave, respectively, is 

 
 ˆ

ˆ
0

N
P P P PN

f m x n z c t   
  
  

φ                        (13) 

 
 

0
ˆ

ˆ
N

N
S S S Sf m x n z c t

  
  

   

φ                        (14) 

In Eqs. (12)-(14), Pf , Sf , ˆ
Pf  and ˆ

Sf  are the wave functions; and Pm , Pn , Sm  and Sn are 

 
N
P

P

x

c
m

c
, 

2

1
 

  
 

N
P

P

x

c
n

c
, 

N
S

S

x

c
m

c
 and 

2

1
 

   
 

N
S

S

x

c
n

c
          (15) 
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where cx is the apparent velocity of the plane waves propagating along the x direction, which 

satisfies 

 

for P wave incidence
sin

for SV wave incidence
sin









 



N
P

x N
S

c

c
c

                      (16) 

Corresponding to the potential function decomposition of Eq. (11), the velocities and stresses 

can also be divided into the scattered wave and incident wave parts as 

 ˆ N N Nu u u                              (17) 

 ˆ N N N
z z zσ σ σ                              (18) 

 

3.2 Absorbing boundary condition 
 

For the scattered waves, substituting Eq. (12) into Eq. (10) and then differentiating the result to 

time obtain the velocities as 

 

2

2
( )

 
   

  

P S SN N
x

P P S

m m n
c

m n m
u φ                     (19) 

where the prime denotes the derivative of the function.  

Substituting Eq. (12) into Eq. (10), then the result into Eq. (1) and finally the result into Eq. (3) 

obtain the stresses as 

 

2 2 2

2

2 2 3

2 (2 1)
( )

(1 2 ) 2


 
  

  

P P S S SN N N
z x

P S S S

m n m m m
c

m m m n
σ φ               (20) 

By combining Eq. (19) with Eq. (20) to eliminate the potential functions, the stress-velocity 

relation for the scattered waves can be obtained as 

  N N
zσ Su                           (21) 

with the impedance matrix 

 

2

2

2 (1 2 )

(1 2 ) 2 /

   
  

    

N N
P P S S P SS

P S P S P S P S S P S S

n n m n m mc

m m n n m m n m n m n m
S

       

 (22) 

Eq. (21) is an exact absorbing boundary condition at the artificial boundary of the layer system to 

model the wave absorption effect of the truncated half space. It can absorb the scattered waves 

propagating from the layer system into the half space without any wave reflection.  

It can be proved that for the plane wave propagation case the stress-velocity relation Eq. (21) 

with the impedance matrix Eq. (22) is the time-domain form of the dynamic stiffness relation Eq. 

(9) with the half-space stiffness of Table 1 in the stiffness matrix method by Kausel and Roesset 

(1981). 
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3.3 Inputting boundary condition 
 

For the incident P wave, substituting Eq. (13) into Eq. (10) and then differentiating the result to 

time obtain the velocities. Substituting Eq. (13) into Eq. (10), then the result into Eq. (1) and 

finally the result into Eq. (3) obtain the stresses. The resulting stresses and velocities lead to 

 ˆ ˆN N
zσ Ru                               (23) 

with the impedance matrix 

  
2

2

(2 1) /


  
  

  

P SN N
S P P

P S S

n m
c m n

m m m
R                  (24) 

For the incident SV wave, the stress-velocity relation with the same form as Eq. (23) can be 

obtained by carrying out the same manipulations as in the P wave incidence case. The impedance 

matrix for the incident SV wave can be written as 

  
21 2

2


  
  

  

N N S
S S S

S S

m
c n m

m n
R                      (25) 

Eq. (23) is an exact inputting boundary condition at the artificial boundary of the layer system 

to model the wave input effect of the truncated half space. It can input the known incident wave 

propagating from the half space into the layer system.  

 

3.4 Artificial boundary condition 
 

Substituting ˆ N N Nu u u  obtained from Eq. (17) into Eq. (21) and then substituting the 

result and Eq. (23) into Eq. (18) obtain 

 ˆ( )   N N N
zσ Su S R u                        (26) 

Eq. (26) is an exact artificial boundary condition combining the absorbing boundary condition for 

the scattered waves with the inputting boundary condition for the incident wave. By applying this 

stress-type exact artificial boundary condition to replace the truncated half space, the original 

spatially semi-infinite problem in the z direction is transformed equivalently into a spatially finite 

problem.  

It can be proved that for the plane wave propagation case the layer system with boundary 

condition Eq. (26) is the time-domain form of the Eq. (12) with Eq. (19) or (20) in the stiffness 

matrix method by Kausel and Roesset (1981). However, the different reference systems are chosen 

in the two methods. Kausel and Roesset (1981) use a reference system that is a layer on the 

underlying half space or only the underlying half space, while this paper use a reference system 

that is a homogeneous full space. This equivalence has been explained in the Chapter 3 of the 

monographs by Wolf (1985).  

 

 

4. 1D explicit finite element method 
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The spatially 2D problem that is defined by the layer system with the exact artificial boundary 

conditions is finite in the depth direction but infinite in the horizontal direction. It is transformed 

equivalently into a spatially 1D problem along the depth according to Snell’s law. The resulting 1D 

problem is solved by the finite element method with a new explicit time integration algorithm. The 

high-accuracy stress computation method is presented. 

 

4.1 Spatially 1D problem 
 

According to Snell’s law, all the plane waves propagating along the x direction in the layer 

system have the same apparent propagation velocity of Eq. (16). The differential operator relation 

can be obtained as 

 
1 

 
 xx c t

                             (27) 

By applying Eq. (27) to Eq. (6) to eliminate the x-derivative, and after some manipulations, the 

control equation in the 1D space is obtained as 

 
2

1 2 32

 
 



j j
j j j j

zz

u u
E E E u                         (28) 

with the coefficient matrices 

 

2

1 2

( ) 0

0 ( )


 
  

  

j
Sj j

j
P

c

c
E                          (29) 

 
 2 2

2

( ) ( ) 0 1

1 0

   
  

 

j j j
P Sj

x

c c

c
E                      (30) 

 

2

3 2 2 2

( ) 01

0 ( )


  
    
    

j
Pj j

j
x S

c

c c
E I                     (31) 

where I2 is the two-order unit matrix. 

Substituting Eq. (1) into Eq. (3) and then applying Eq. (27) to eliminate the x-derivative in the 

result obtain 

 1


 



j
j j j j
z

z

u
σ E Q u                          (32) 

with the coefficient matrix 

 

2

2 2

0 ( )

( ) 2( ) 0

  
  

  

jj
Sj

j j
x P S

c

c c c
Q                     (33) 

Substituting Eq. (32) into Eqs. (7)-(9) and Eq. (26), respectively, obtain the boundary condition 

on the free surface of the 1D problem 
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1

1 1 1
1




z

u
E Q u                               (34) 

the interface conditions of the 1D problem 

 
1j ju u  and 

1 1
1 1( ) ( ) 

  


j
j j j j j

z

u
E E Q Q u                 (35) 

and the artificial boundary condition of the 1D problem 

 
1

1 1 1 1
1

ˆ( ) ( )


   
    



N
N N N N

z

u
E S Q u S R u                  (36) 

By setting x=0 the problem defined by Eq. (28) and Eqs. (34)-(36) is the spatially 1D one along 

the z coordinate axis. The zero initial condition (initially at rest) is given. At the artificial boundary 

point, the incident wave velocity vector can be given by the known velocity time history as 

 
 

 

T

01

T

0

sin cos for P wave incidence
ˆ

cos sin for SV wave incidence

 

 


 

 


PN

S

u

u
u

            

(37) 

 
4.2 Explicit finite element method 

 
The spatially 1D problem is discretized into a certain number of two-node finite elements. All 

elements and nodes, respectively, are numbered from top to bottom. For an element, the 

displacement can be interpolated as 

 j e eu N u                                (38) 

where eN is the interpolation function matrix; and  
T

T T
1e

l lu u u
 
is the nodal displacement 

vector of the element numbered as l. By applying the Galerkin finite element method with the 

linear interpolation function to the element controlled by Eq. (28), the dynamic equation can be 

obtained as 

   e e e e e e eM u C u K u f                         (39) 

with the element lumped mass matrix, the element damping matrix, the element stiffness matrix 

and the element loading vector, respectively, as 

 
1 T

3 d


 
l

l

z
e e j e

z
zM N E N

2

2

4 2 2

2

( ) 0 0 0

0 ( ) 0 01

2 0 0 ( ) 0

0 0 0 ( )



  
  
   

   
  
  

  

j
P

jj
S

j
x P

j
S

c

cz

c c

c

I

          

(40) 
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1 T

2 d
 




l

l

e
z

e e j

z
z

z

N
C N E

 2 2

0 1 0 1

( ) ( ) 1 0 1 0

0 1 0 12

1 0 1 0



 
  
 
 
 
 

j j j
P S

x

c c

c
            (41) 

 
1

T

1 d
  


 

l

l

e e
z

e j

z
z

z z

N N
K E

2 2

2 2

2 2

2 2

( ) 0 ( ) 0

0 ( ) 0 ( )

( ) 0 ( ) 0

0 ( ) 0 ( )



 
 

 
    

  

j j
S S

j jj
P P

j j
S S

j j
P P

c c

c c

z c c

c c
         

(42) 

 

1

1

1







 
 

  
  

 
   

l

l

j
j

z ze

j
j

z z

z

z

u
E

f
u

E

                           (43) 

where zl is the nodal z coordinate; 1  l lz z z  is the element length; and I4 is the four-order 

unit matrix. To solve the dynamic equation using the explicit time integration, the lumped mass 

matrix is used instead of the consistent one. 

By assembling all finite elements and considering the boundary conditions Eqs. (34)-(36), the 

total dynamic equation for the spatially 1D problem is obtained as 

   Mu Cu Ku f                           (44) 

where  
T

T T T
1 2 Lu u u u  is the total displacement vector of all L nodes; and the total mass 

matrix, the total damping matrix, the total stiffness matrix and the total loading vector, 

respectively, are 

  e

e

M M ,   e
B

e

C C C  and  e

e

K K               (45) 

 

 
Table 1 The constants for Leibstadt site in Switzeland 

Layer thickness/m Mass density/kg/m
3
 P wave velocity/m/s S wave velocity/m/s 

5 2000 490 200 

5 2000 612 250 

10 2000 857 350 

10 2200 1225 500 

10 2200 1960 800 

10 2400 2082 1000 

  2500 2806 1500 
 

182



 

 

 

 

 

 

1D finite element artificial boundary method for layered half space site response… 

  
Fig. 2 The displacement impulse and its frequency-spectrum amplitude 

 

  
(a) The relative displacement on site surface (b) The acceleration on site surface 

  
(c) The peak relative displacement along depth (d) The peak acceleration along depth 

 
(e) The peak maximum principle stress and peak maximum shear stress along depth 

Fig. 3 The Leibstadt site responses from the impulse as P wave of 0° angle incidence 
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(a) The relative displacement on site surface (b) The acceleration on site surface 

  
(c) The peak relative displacement along depth (d) The peak acceleration along depth 

 
(e) The peak maximum principle stress and peak maximum shear stress along depth 

Fig. 4 The Leibstadt site responses from the impulse as P wave of 30° angle incidence 
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The known incident wave velocity vector 
1ˆ Nu  is given by Eq. (37). The sparse tri-diagonal 

matrix CB comes from the boundary conditions on the free surface, layer interfaces and artificial 

boundary, and has non-zero values at the corresponding positions. If an interface between the j-th 
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and (j+1)-th layers is considered, this matrix can be written as  
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                  (47) 

Note that the total mass matrix is diagonal. The total stiffness matrix is symmetric five-diagonal. 

The total damping matrix is non-symmetric seven-diagonal. 

For the layer system, it can be easily proved that the dynamic equation Eq. (44) is the time-

domain form of the spatial discretization equation in the stiffness matrix method by Kausel and 

Roesset (1981). 

Eq. (44) with the zero initial condition can be solved by the standard time integration algorithm 

in the structural dynamics, such as the implicit Newmark and Wilson methods. The explicit 

algorithm proposed by the third author and his coworkers (Du and Wang 2000, Wang et al. 2008) 

can be also used for the efficient computation. The effectiveness of this explicit algorithm to solve 

the similar dynamic equation also sees the author’s work (Zhao et al. 2011). The accelerations can 

be obtained from the displacements and velocities by the dynamic equation. 

 

 

  
(a) The relative displacement on site surface (b) The acceleration on site surface 

  
(c) The peak relative displacement along depth (d) The peak acceleration along depth 

Fig. 5 The Leibstadt site responses from the impulse as SV wave of 0° angle incidence 
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(e) The peak maximum principle stress and peak maximum shear stress along depth 

Fig. 5 Continued 

 

  
(a) The relative displacement on site surface (b) The acceleration on site surface 

  
(c) The peak relative displacement along depth (d) The peak acceleration along depth 

 
(e) The peak maximum principle stress and peak maximum shear stress along depth 

Fig. 6 The Leibstadt site responses from the impulse as SV wave of 30° angle incidence 
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4.3 Stress computation 
 

The stress is computed accurately instead of the constant stress element as in the traditional 

finite element method. First, the nodal forces of an element can be computed by Eq. (39) from the 

nodal motions. Second, the stresses  
T

 j j j
z xz zσ  can be obtained by Eq. (32) from the resulting 

nodal forces. Third, by substituting Eq. (1) into Eq. (3) and then applying Eq. (27) to eliminate the 

x-derivative of the result, the stress  j
x  can be obtained as 

  
2

2 2 ( )
( ) 2( )


 


  



j j j
j j j j jz P
x P S x

x

u c
c c u

z c
                  (48) 

where the z-derivative to the displacement is given from the resulting nodal forces. At the layer 

interfaces, the stresses  
T

 j j j
z xz zσ  are continuous but the stress  j

x  does not. The resulting 

stresses have the same order of accuracy as the displacements. 

 

 

5. Typical site analysis 
 

The seismic responses of the two typical engineering sites subjected to the obliquely incident 

plane P or SV wave are calculated by using the proposed 1D finite element artificial boundary 

method. The two sites are the soft soil and rock sites given in reference (Wolf and Obernhuber 

1983). The results obtained by the 1D finite element artificial boundary method are compared with 

those by the transfer matrix method with fast Fourier transform. 

 

5.1 Soft soil site 
 

The first site is the Leibstadt site in Switzeland (Wolf and Obernhuber 1983). Its geometry and 

material constants see Table 1. The artificial boundary is set at z=60 m so that the responses in a  

 

 
Table 2 The constants for Koeberg site in South Africa 

Layer thickness/m Mass density/kg/m
3
 P wave velocity/m/s S wave velocity/m/s 

5 2600 2236 1074 

5 2600 2380 1144 

10 2600 3397 1387 

10 2600 4297 1754 

10 2600 5262 2148 

10 2600 5477 2631 

10 2600 6029 3223 

20 2600 6349 3453 

20 2600 6856 3848 

20 2600 7386 4206 

  2600 7596 4385 
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(a) The relative displacement on site surface (b) The acceleration on site surface 

  
(c) The peak relative displacement along depth (d) The peak acceleration along depth 

 
(e) The peak maximum principle stress and peak maximum shear stress along depth 

Fig. 7 The Koeberg site responses from the impulse as P wave of 0° angle incidence 

 

 

part of underlying half space can be observed. The plane wave is obliquely incident at the artificial 

boundary. The time history at the intersection point of the artificial boundary and z coordinate axis 

is chosen as a finite difference approximation of Dirac delta function. The displacement time 

history can be written as 

 0

1 1 3
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(49) 

where 3( ) ( )Z a a H a  with Heaviside function ( )H a  ( ( ) 0H a  if 0a  and ( ) 1H a  if  
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(a) The relative displacement on site surface (b) The acceleration on site surface 

  
(c) The peak relative displacement along depth (d) The peak acceleration along depth 

 
(e) The peak maximum principle stress and peak maximum shear stress along depth 

Fig. 8 The Koeberg site responses from the impulse as P wave of 30° angle incidence 

 

 

0a ); A is the peak value of the impulse; and T is the acting time of the impulse. The frequency 

spectrum of this impulse is known analytically as 
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                    (50) 

where   is the circular frequency and 1 i  is the imaginary unit. 0 (0) 0.375U AT . As 

shown in Fig. 2, we take the peak value A=0.1 m and the acting time T=0.3 s, so that this impulse 

load can contain the main frequency region of earthquake. If an earthquake record is used as the  
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(a) The relative displacement on site surface (b) The acceleration on site surface 

  
(c) The peak relative displacement along depth (d) The peak acceleration along depth 

 
(e) The peak maximum principle stress and peak maximum shear stress along depth 

Fig. 9 The Koeberg site responses from the impulse as SV wave of 0° angle incidence 

 

 

incident wave, the displacement results obtained by the transfer matrix method can be identical 

very well with those by the proposed method. However, the acceleration and stress results contain 

noises due to the fast Fourier transform. This leads to that the two methods cannot be compared. 

The impulse is therefore chosen instead of an earthquake record. The proposed method avoids the 

noises arising from the fast Fourier transform used in the frequency-domain method.  
The impulse shown in Fig. 2 is used to form the incident P or SV wave. The finite-element 

spatial and temporal steps satisfying the requirements of the accuracy and stability are chosen in 

the 1D finite element artificial boundary method. For the P wave incidence, the proposed method 

is effective for the incident angle varying from 0° to 90°, and its results are identical very well  
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(a) The relative displacement on site surface (b) The acceleration on site surface 

  
(c) The peak relative displacement along depth (d) The peak acceleration along depth 

 
(e) The peak maximum principle stress and peak maximum shear stress along depth 

Fig. 10 The Koeberg site responses from the impulse as SV wave of 30° angle incidence 

 

 

with those of the transfer matrix method with fast Fourier transform. Note that the acceleration 

results are slightly different, which arises from the noises caused by the fast Fourier transform in 

the transfer matrix method. The results of two typical incident angles 0° and 30° are shown in 

Figs. 3 and 4, respectively. The results in each figure are (a) the time histories of the horizontal and 

vertical displacements on the site surface relative to those at the location of impulse incidence, (b) 

the time histories of the horizontal and vertical accelerations on the site surface, (c) the peak values 

of the relative horizontal and vertical displacement time histories varying along depth, (d) the peak 

values of the horizontal and vertical acceleration time histories varying along depth, and (e) the 

peak values of the maximum principal and maximum shear stress time histories varying along 
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depth, respectively. It can be noted that the proposed method is applicable to the vertical incidence 

of 0° angle by setting 1/cx=0.  

For the SV wave incidence, the proposed method is effective for the incident angle varying 

from 0° to the critical angle, and its results are still identical very well with those of the transfer 

matrix method except the slightly distinguishable acceleration. The SV wave critical angle of this 

site is about 32.31°. The results of two typical incident angles 0° and 30° are shown in Figs. 5 and 

6, respectively. In each figure the same subfigures as those in the P wave incidence case are given. 

 

5.2 Rock site 
 

The second site is the Koeberg site in South Africa (Wolf and Obernhuber 1983). Its geometry 

and material constants see Table 2. The artificial boundary is set at z=140 m so that the responses 

in a part of underlying half space can be observed. The time history shown in Fig. 2 is used to 

form the plane P or SV wave of incidence at the artificial boundary. The 1D finite element artificial 

boundary method is effective for this rock site just as for the above soft soil site. The results are 

still identical very well with those of the transfer matrix method. For the P wave incidence, the 

results of two typical incident angles 0° and 30° are shown in Figs. 7 and 8, respectively. For the 

SV wave incidence, the critical angle of this site is about 35.26°, and the results of two typical 

incident angles 0° and 30° are shown in Figs. 9 and 10, respectively. In each figure the same 

subfigures as those in the soft soil site are given.  

 
 
6. Conclusions 
 

The 1D finite element artificial boundary method is proposed to solve the plane wave 

propagation in the elastic layered half space from the oblique incident seismic wave. The proposed 

method is compared in detail with the well-known stiffness matrix method proposed by Kausel 

and Roesset (1981). It is proved that the proposed method is the time-domain form of the spatial 

discrete revision of the frequency-domain stiffness matrix method for the plane elastic wave 

propagation case. The proposed method is applied to analyze the Leibstadt site in Switzeland and 

the Koeberg site in South Africa subjected to the obliquely incident plane body wave. The 

solutions obtained by the proposed method are identical very well with those by the frequency-

domain transfer matrix method with fast Fourier transform. Because the transfer matrix method is 

the origin of the stiffness matrix method, the above results in the numerical experiments should be 

obvious in theory. The present paper considers only the homogeneous plane elastic wave 

propagation in the layered half space. Its extension to the inhomogeneous plane wave case, the soil 

damping case and the nonlinear soil material case will be studied in the future. 
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