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Abstract.  Real-time hybrid testing (RTHT) involves virtual splitting of the structure into two parts: physical 

substructure that contains the key region of interest which is tested in a laboratory and numerical 

substructure that contains the remaining part of the structure in the form of a numerical model. This paper 

numerically assesses four step-by-step integration methods (Central difference method (CDM), Operator 

splitting method (OSM), Rosenbrock based method (RBM) and CR-integration method (CR)) which are 

widely used in RTHT. The methods have been assessed in terms of stability and accuracy for various 

realistic damping ratios of the physical substructure. The stability is assessed in terms of the spectral radii of 

the amplification matrix while the accuracy in terms of numerical damping and period distortion. In order to 

evaluate the performance of the methods, five carefully chosen examples have been studied - undamped 

SDOF, damped SDOF, instantaneous softening, instantaneous hardening and hysteretic system. The 

performance of the methods is measured in terms of a non-dimensional error index for displacement and 

velocity. Based on the error indices, it is observed that OSM and RBM are robust and performs fairly well in 

all the cases. CDM performed well for undamped SDOF system. CR method can be used for the system 

showing softening behaviour. The error indices indicate that accuracy of OSM is more than other method in 

case of hysteretic system. The accuracy of the results obtained through time integration methods for different 

damping ratios of the physical substructure is addressed in the present study. In the presence of a number of 

integration methods, it is preferable to have criteria for the selection of the time integration scheme. As such 

criteria are not available presently, this paper attempts to fill this gap by numerically assessing the four 

commonly used step-by-step methods. 
 

Keywords:  performance assessment; real-time hybrid testing; step-by-step integration; stability; 

accuracy 

 

 

1. Introduction 
 

Real-time hybrid testing (RTHT) is based on the concept of structural partitioning. The 

structure of interest is partitioned into two substructure-physical and numerical. The two  
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substructures are made to interact with each other in such a way that they emulate the dynamic 

response of the structure of interest. The structural component whose behaviour is not well 

understood or cannot be modelled accurately is generally taken as the physical substructure. Since 

the test is carried out in real-time, RTHT helps to capture the rate dependent behaviour which is 

often difficult to model. The calculation of the displacement response, application of the 

displacement on the structural component, measurement and feedback of the reaction forces are 

done in a single time step. RTHT has been used to evaluate the dynamic response for various types 

of structural systems (tuned liquid damper (Lee et al. 2007), pantograph catenary (Facchinetti and 

Bruni 2012), coupled rotor blade - lag damper (Wallace et al. 2007)). 

The integration schemes developed in the past for structural dynamics needs to be modified 

appropriately for RTHT. Blakeborough et al. (2001), have suggested that the computational 

overhead of the time integration scheme used in RTHT should be less for stability reasons. 

Therefore, explicit schemes should be preferred. Explicit schemes are conditionally stable and 

needs a short time step to ensure stability. Conditionally stable schemes are used only when the 

numerical substructure is limited to SDOF system (low natural frequency). Bonnet et al. (2008), 

have investigated and compared various time integration schemes used in RTHT. A multi-tasking 

strategy was also proposed within which the performance of various implicit and explicit 

algorithms was evaluated. Newmark explicit method was found to be computationally efficient 

and accurate within its stability region. Newmark-Chang method was found to be computationally 

more efficient than the operator splitting method (OSM) and was recommended for the cases 

where numerical stability could not be achieved with Newmark explicit scheme. The α-OSM 

scheme was found to be efficient for numerical dissipation of the higher modes. The work carried 

out by Bonnet et al. (2008), did not concentrate on the stability limits and the accuracy of the 

results obtained through time integration methods for different damping ratios of the physical 

substructure which is being currently addressed in the present study. In the presence of a number 

of integration methods, it is preferable to have criteria for their selection. As such criteria are not 

available presently, this paper attempts to fill this gap by numerically assessing the four commonly 

used step-by-step methods, viz. Central difference method; Operator splitting method, Rosenbrock 

based method and CR-integration method in terms of stability and accuracy. In order to benchmark 

the performance of the step-by-step integration method, a non-dimensional error index has been 

defined. In order to carry out a comprehensive review five different cases, undamped SDOF, 

damped SDOF, instantaneous softening, instantaneous hardening and hysteretic system, have been 

studied. The first two examples assess the performance of the scheme in the linear while the other 

three in nonlinear regime. To cover a broad spectrum, three different types of nonlinearities are 

considered-softening, hardening and hysteresis in the present study. The present work will help in 

making a better decision for choosing a particular time integration method in the paradigm of 

RTHT. 

 

 

2. Review of step-by-step integration methods 
 

The dynamic behaviour of a SDOF system can be represented by the following 

equation 

  ̈( )   (   ̇)   ( )                                                               (1) 

where   is the mass, r is the restoring force, f is the excitation force, x is the displacement,  ̇ is the  
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Fig. 1 Partitioning of a SDOF system-(a) Full system, (b) numerical substructure, (c) physical substructure 

 

 

velocity and  ̈ is the acceleration. 
In the present study, SDOF system has been partitioned as shown in Fig. 1. Mass and stiffness 

are taken as the numerical substructure while damping alone is taken as the physical substructure.  

Therefore, the Eq. (1) can be rewritten as 

  ̈( )         ( )                                                            (2) 

                                                                             (3) 

     ̇                                                                        (4) 

where the superscript n and p corresponds to the numerical and the physical substructure, 

respectively. The time discretized equation of the motion of substructured SDOF system at i
th
 time 

step can be written as 

  ̈   
 
   

 
                                                          (5) 

The following section briefly describes some of the time integration schemes which have been 

selected for assessment. 

 
2.1 Central difference method (CDM) 
 
Central difference method (CDM) is an explicit method which is obtained by substituting the 

velocity and acceleration terms from the difference equations in the dynamic equations of motion 
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where Δt is the integration time step. This scheme has been widely used by many researchers 

(Nakashima et al. 1992, Shing et al. 1996, Horiuchi et al. 1999, Nakashima and Nobuaki 1999, 

Darby et al. 2001, Darby et al. 2002). Wu et al. (2005, 2009), have studied the stability and 

accuracy of central difference method (CDM) for RTHT. 

 

2.2 Operator splitting method (OSM) 
 
The mathematical formulation of the OSM is similar to the constant average acceleration 

method. OSM predicts the displacement and velocity by following equations 

 ̃          ̇  
   

 
 ̈                                                    (8) 

 ̃̇     ̇  
  

 
 ̈                                                          (9) 

      ̃    
   

 
 ̈                                                      (10) 

 ̇     ̃̇    
  

 
 ̈                                                       (11) 

where  ̃ and  ̃̇ are the predictor displacement and velocity, respectively. 
Wu et al. (2006) have proposed an updated formulation of the OSM for application of the 

scheme to systems with non-linear damping.  

 

2.3 Rosenbrock based method (RBM) 
 
Bursi et al. (2008), have presented a real-time compatible time integration scheme based on 

Rosenbrock schemes. The work of Bursi et al. (2008), was further extended by Lamarche et al. 

(2009). Rosenbrock-W method was proposed in which the mechanical properties of the physical 

substructure were included in the Jacobian matrix. The stability and accuracy of the scheme were 

investigated in both linear as well as nonlinear regime. The scheme was found to be second order 

accurate in the nonlinear regime even when the initially assumed Jacobain matrix was not exact.  

The state space equation of the system can be expressed as 

 ̇   (   )  0
 ̇

 

 
(      ̇)1                                                     (12) 

where    [   ̇]  defines the state vectors. Rosenbrock method evaluates the states for the next 

time step based on the following equations 

                                                                 (13) 

   [      ]
   (     )                                               (14) 

                                                                 (15) 

   [      ]
  ( (         )      )                                 (16) 

where   ,   ,  ,   are algorithmic parameters and   is the Jacobian matrix defined as 

   [
  

   ⁄    ⁄
]                                                           (17) 

1328



 

 

 

 

 

 

Numerical assessment of step-by-step integration methods in the paradigm… 

The following values are recommended for RTHT (Lamarche et al. 2009) 

    ⁄                               
 
 ⁄                                    (18) 

 
2.4 CR- integration 

 
CR-integration method was proposed by Chen and Ricles (2008). The displacement and the 

velocity are predicted as 

           ̇    
    ̈                                               (19) 

 ̇     ̇       ̈                                                     (20) 

        
  

            
                                             (21) 

where    and    are the integration parameters. The explicit nature and the second order accuracy 

of the CR-integration for displacement and velocity makes it ideal for RTHT. The accuracy and 

stability of the method was investigated by Chen and Ricles (2008), Chen et al. (2009), in both 

linear and nonlinear regime. It was demonstrated that the method is unconditionally stable as long 

as the system is of the softening type. 

 

 

3. Stability analysis 

 
Free vibration of the SDOF system is considered in order to analyse the stability of different 

time integration schemes. The stability of an algorithm can be evaluated from the free vibration 

solution. The states between the two adjacent time steps are related and written in the recursive 

form (Wu et al. 2005) 

                                                                     (22) 

where yi is the state of the system at i
th
 time step and   is the amplification matrix. 

The stability of an algorithm depends upon the eigenvalues of the amplification matrix. A time 

integration scheme is said to be stable if the following condition is satisfied (Wu et al. 2005) 

 ( )                                                                 (23) 

where   ( ) is the spectral radius of A. Spectral radius of a matrix is defined as the absolute 

maximum of the eigenvalues of the matrix. The amplification matrix for the different schemes is 

expressed in terms of   ,   and   which are defined as (Wu et al. 2005) 

   
 

   
                                                              (24) 

                                                                   (25) 

  √
 

 
                                                               (26) 

The next step involves the derivation of the amplification matrix for various schemes. 
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3.1 Amplification matrix for CDM 
 

The state vector for CDM can be represented as (Wu et al. 2005) 

   [         ̇   ]
                                                      (27) 

Using Eq. (6), the displacement for the (i+1)
th
 step for a free vibration problem can be written 

as 
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(29) 

The equations can be represented in the matrix form as shown below 

.
    
  

 ̇     
/  [

           
   

           
] .

  
    

 ̇   
/                                     (30) 

  [
           
   

           
]                                                  (31) 

Similar expression is obtained if we substitute the damping ratio of the numerical substructure 

as zero in the expression obtained by Wu et al. (2005). 

 

3.2 Amplification matrix for OSM 
 

The state vectors for OSM are given below (Wu et al. 2006) 

   [ ̃   ̃̇     ̈   
 ]
 
                                                  (32) 

Using Eqs. (10) and (11), the displacement and velocity for the i
th
 step can be written as 

    ̃  
   

 
 ̈                                                        (33) 

 ̇   ̃̇  
  

 
 ̈                                                         (34) 

Substituting the expression for    and  ̇  in Eq. (8) 

 ̃     ̃  
   

 
 ̈    ( ̃̇  

  

 
 ̈ )  

   

 
 ̈     ̃   ̃̇     ̈   

                 (35) 
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Multiplying Eq. (9) with Δt and substituting expression for  ̇  

 ̃̇      ( ̃̇  
  

 
 ̈ )   

   

 
 ̈   ̃̇     ̈   

                                 (36) 

The discretized equation of motion at (i+1)
th
 step can be written as 

  ̈      ̇                                                            (37) 

Eq. (27) can be represented in the following form using Eq. (26) 

 ̈         ̇     
                                                     (38) 

Using Eqs. (35) and (36) and simplifying we get the following equations 
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In matrix form, the equations can be represented as 
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Similar expression is obtained if we substitute the damping ratio of the numerical substructure 

as zero in the expression obtained by Wu et al. (2005). 

 

3.3 Amplification matrix for RBM 
 

The state vector of the Rosenbrock scheme is given below 

   [    ̇]
                                                          (45) 

The amplification matrix for the Rosenbrock scheme was derived by Lemarche et al. (2009), by 

neglecting damping. The amplification matrix arrived at in the present study takes into account the 

damping of the physical substructure. 

Eq. (12) can also be represented as 

 ̇   (     )                                                        (46) 

Using Eqs. (14) and (46), 
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   [      ]
                                                         (47) 

Substituting   
 

 
 in Eq. (15) 
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Using Eqs. (16), (47) and (48) 
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From Eqs. (13), (18) and (49) we get the following equations 
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After simplification, the amplification matrix is obtained as 
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3.4 Amplification matrix for CR-integration 
 
The state vector of the CR-integration scheme (Chen et al. 2008), is represented as 

   [    ̇   ]
                                                    (54) 

The discretized equation of motion at the i
th
step can be written as 

  ̈    ̇                                                     (55) 

 ̈       ̇   
                                                (56) 

 ̈        ̇   
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From Eqs. (19) and (57), 

           ̇    
  (      ̇   
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Similarly, from Eqs. (20) and (57) 
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Expressing Eqs. (58) and (59) in matrix form 
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Table 1 Amplification matrix for different integration methods 

Method State vector Amplification matrix 
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(a) (b) 

  
(c) (d) 

Fig. 2 Spectral radii - (a) CDM, (b) OSM, (c) RBM, (d) CR 

 

 

The state vector and the amplification matrix for the different time integration methods are 

summarized in Table 1. The spectral radius of the amplification matrix for different methods is 

plotted for various values of   and   . The plots obtained are shown in Fig. 2. The plots obtained 

for CDM and OSM are found to be in agreement with those reported in the literature. 

Based on Fig. 2, it can be inferred that: 

(a) The stability limit   for CDM decreases with the increase in the damping ratio of the 

physical substructure which is given by (Wu et al. 2005) 

  √     
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(b) The spectral radii of OSM, Rosenbrock and CR integration methods is less than unity for all 

the cases. Thus, it is demonstrated that these schemes are unconditionally stable for RTHT. 

 

 
4. Accuracy analysis 

 
The accuracy of an integration algorithm is quantified in terms of period distortion and 

numerical damping which are derived from the eigenvalues of the amplification matrix. 

The complex eigenvalue ( ) of the amplification matrix can be expressed as (Wu et al. 2005) 

                                                                     (63) 

      ((   ̂   ) ̅)                                                     (64) 

where, 

  ̂   
  (     )
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                                                          (65) 

 ̅        (
 

 
)                                                         (66) 

The displacement response for a free vibration case can be expressed as (Wu et al. 2005) 

      (  ̂ ̅   )(      ̅          ̅   )                               (67) 

where,  ̅    ̅   . The values of the constants cj are determined from the initial conditions. For a 

free vibration case, the closed form solution for displacement response of viscously underdamped 

system can be written as (Wu et al. 2005) 

      (  ̂ ̅    )(      ̅           ̅    )                            (68) 

where 

  
 ̂

√   ̂ 
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 ̅   ̅                                                               (70) 
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√   ̂ 
                                                            (71) 

The numerical damping ratio is defined as 

 ̅                                                                  (72) 

The period distortion for the damped system is expressed as 

   

  
 
    ̅ 

  
   

  

 ̅ 
   

 

 ̅
√    

 
                                  (73) 

The numerical damping ratio and period distortion of various methods are plotted for different 

values of damping ratio of the physical substructure. The plots are shown in Figs. 3 and 4. 
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(a) (b) 

  
(c) (d) 

Fig. 3 Numerical damping - (a) CDM, (b) OSM, (c) RBM, (d) CR 

 

 

Based on Figs. 3 and 4, following observations have been made: 

(a) The numerical damping ratio of CDM increases with the increase in the damping ratio of 

the physical substructure. The period distortion is also found to increase up to a value of 0.5 

damping ratio after which it starts decreasing. 

(b) The behavior of OSM and RBM is found to be similar in nature. Numerical damping is 

negative for all the damping ratios considered in the present study. The absolute value of the 

numerical damping increases with the increase in the damping of the physical substructure. Period 

distortion is also found to increase with the increase in the damping ratio of the physical 

substructure. 

(c)The numerical damping of CR integration decreases up to 0.3 damping ratio after which it 

starts increasing. In general, period distortion is found to increase with the increase in the damping 

ratio of the physical substructure. 
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(a) (b) 

  
(c) (d) 

Fig. 4 Period distortion - (a) CDM, (b) OSM, (c) RBM, (d) CR 

 

 

5. Numerical assessment 
 
In order to assess the different methods of time integration for RTHT, different examples are 

studied. The examples have been chosen so as to cover the wide range of structure which can be 

encountered in case of RTHT. The first two examples considers linear physical substructure while 

the last three considers nonlinear physical substructure. In the nonlinear regime, three different 

types of nonlinearities are considered for comprehensive assessment. 

 

5.1 Example 1: Undamped SDOF system 
 
The system considered has 100 kg mass and 16100 N/m stiffness. Since there is no damping, 

stiffness alone is taken as physical substructure. The system is subjected to unit initial 

displacement and zero initial velocity. The equation of motion of the system and initial conditions 

can be represented using the following second order differential equation 
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     ( )     ̇( )                                          (74) 

The closed form solution of the system is evaluated by solving the above differential equation. 

The solution obtained is referred to as the exact solution and is given by the following equation 

     (√    )                                                          (75) 

The simulation of the system response using different time integration methods has been 

carried out using different time steps as listed in Table 2. The displacement response and 

displacement-velocity phase plots obtained using different time integration methods is compared 

with the exact solution in Figs. 5 and 6, respectively. 

In order to quantify the performance of the method, the following error index ( ) is defined 

  
‖    ‖

‖ ‖
                                                              (76) 

where    and y are the response vector obtained from the time integration method and exact 

solution, respectively. The displacement and velocity error index obtained for different time steps 

are given in Table 2. 

 

 

 
Fig. 5 Comparison of displacement response for undamped SDOF system (   0.01 s) 
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Fig. 6 Displacement-velocity phase plot for undamped SDOF system (   0.01s) 

 
Table 2 Error indices for undamped SDOF system 

Δt (s) 
Displacement error index Velocity error index 

CDM OSM RBM CR CDM OSM RBM CR 

0.010 1.4466 2.8837 2.8837 4.0402 5.1501 3.0040 3.0040 3.0040 

0.009 1.1721 2.3381 2.3381 3.8087 4.7410 2.4281 2.4281 2.4281 

0.008 0.9257 1.8476 1.8476 3.5422 4.3125 1.9233 1.9233 1.9233 

0.007 0.7091 1.4161 1.4161 3.2493 3.8567 1.4679 1.4679 1.4679 

0.006 0.5207 1.0403 1.0403 2.9127 3.3819 1.0819 1.0819 1.0819 

0.005 0.3617 0.7227 0.7227 2.5398 2.8806 0.7513 0.7513 0.7513 

0.004 0.2315 0.4627 0.4627 2.1245 2.3548 0.4808 0.4808 0.4808 

0.003 0.1302 0.2604 0.2604 1.6646 1.8042 0.2704 0.2704 0.2704 

0.002 0.0579 0.1158 0.1158 1.1582 1.2284 0.1201 0.1201 0.1201 

0.001 0.0145 0.0289 0.0289 0.6038 0.6271 0.0300 0.0300 0.0300 

 
 
5.2 Example 2: Damped SDOF system 

 
The system considered is similar to the one used in example 1 expect viscous damping of 127 

Ns/m is introduced. The equation of motion of the system and initial conations are given by 
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     ( )     ̇( )                                   (77) 

The solution of the above differential equation is found to be 

   
     

   *   (
√        

   
)  

   

√       
    (

√        

   
)+                        (78) 

The displacement and velocity error index is calculated in the same way as it was calculated for 

example 1 and is summarized in Table 3. The comparison of the displacement response with the 

exact solution for different methods is shown in Fig. 7. The comparison of the displacement-

velocity phase plot is shown in Fig. 8. 

 

 
Table 3 Error indices for damped SDOF system 

Δt (s) 
Displacement error index Velocity error index 

CDM OSM RBM CR CDM OSM RBM CR 

0.010 4.6380 1.6174 1.6174 5.1850 4.2246 1.6518 1.6518 1.6518 

0.009 4.1026 1.3108 1.3108 4.7555 3.8024 1.3371 1.3371 1.3371 

0.008 3.5837 1.0365 1.0365 4.3084 3.3831 1.0571 1.0571 1.0571 

0.007 3.0800 0.7940 0.7940 3.8439 2.9626 0.8086 0.8086 0.8086 

0.006 2.5927 0.5838 0.5838 3.3595 2.5439 0.5946 0.5946 0.5946 

0.005 2.1211 0.4056 0.4056 2.8553 2.1239 0.4129 0.4129 0.4129 

0.004 1.6652 0.2598 0.2598 2.3300 1.7030 0.2642 0.2642 0.2642 

0.003 1.2252 0.1462 0.1462 1.7826 1.2806 0.1486 0.1486 0.1486 

0.002 0.8010 0.0650 0.0650 1.2123 0.8563 0.0660 0.0660 0.0660 

0.001 0.3926 0.0163 0.0163 0.6184 0.4296 0.0165 0.0165 0.0165 

 

 
Fig. 7 Comparison of displacement response for damped SDOF system (  =0.01s) 
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Fig. 8 Displacement-velocity phase plot for damped SDOF system (  =0.01s) 

 
 
5.3 Example 3: Instantaneous softening  
 

The system consists of a two storey shear building (Fig. 9). The stiffness of the upper storey is 

subjected to instantaneous softening which is modelled using the following equation 

     (   √|  |)                                                 (79) 

Where    is the initial stiffness and |  | is the inter storey drift. Since the behaviour of upper 

storey is nonlinear, it is taken as physical substructure while the bottom storey is assumed to 

behave linearly and is taken as numerical substructure. The example has been adopted from Chang 

(2009). The properties of the system are given in Table 4. The dynamic response of the system is 

evaluated for the base acceleration of      (  ) where t is the time in seconds. The displacement 

time histories and the phase plots obtained for the upper storey using different time integration 

schemes for 0.01s time step are shown in Fig. 10. The corresponding displacement-velocity phase 

plots are shown in Fig. 11. The error index is calculated based on the Eq. (76) and is given in 

Table 5 for different time steps of integration. The exact solution of the system is obtained using 

ode15s in Matlab.  

 

 
Table 4 Properties for the shear building model 

Parameter Value 

m1 (kg) 10
4
 

m2 (kg) 10
3
 

k1 (N/m) 10
8
 

k0 (N/m) 10
5
 

  (Example 3) -0.2 
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-1 -0.5 0 0.5 1
-15

-10

-5

0

5

10

15

Displacement (m)

V
e

lo
c
it
y
 (

m
/s

)

 

 

Exact CDM

-1 -0.5 0 0.5 1
-15

-10

-5

0

5

10

15

Displacement (m)

V
e

lo
c
it
y
 (

m
/s

)

 

 

Exact OSM

-1 -0.5 0 0.5 1
-15

-10

-5

0

5

10

15

Displacement (m)

V
e

lo
c
it
y
 (

m
/s

)

 

 

Exact RBM

-1 -0.5 0 0.5 1
-15

-10

-5

0

5

10

15

Displacement (m)

V
e

lo
c
it
y
 (

m
/s

)

 

 

Exact CR

1341



 

 

 

 

 

 

Mohit Verma, J. Rajasankar and Nagesh R. Iyer 

Table 5 Error indices for instantaneous softening 

Δt (s) 
Displacement error index Velocity error index 

CDM OSM RBM CR CDM OSM RBM CR 

0.010 7.5669 4.8668 3.2295 1.2862 8.0516 6.9959 4.2874 5.0832 

0.009 6.8121 4.4047 2.9402 1.0394 7.2383 6.3120 3.9009 4.4308 

0.008 6.0552 3.9457 2.6476 0.8224 6.4615 5.6658 3.5253 3.8117 

0.007 5.2945 3.4670 2.3496 0.6281 5.6473 4.9706 3.1308 3.2249 

0.006 4.5378 2.9924 2.0442 0.4619 4.8490 4.2879 2.7286 2.6723 

0.005 3.7812 2.5101 1.7308 0.3204 4.0507 3.5983 2.3161 2.1506 

0.004 3.0248 2.0236 1.4072 0.2049 3.2467 2.8989 1.8861 1.6607 

0.003 2.2681 1.5273 1.0737 0.1148 2.4355 2.1839 1.4403 1.2013 

0.002 1.5116 1.0255 0.7283 0.0512 1.6278 1.4670 0.9793 0.7725 

0.001 0.7559 0.5168 0.3710 0.0127 0.8157 0.7388 0.4997 0.3722 

 

 
Fig. 9 Model of the structure considered for instantaneous softening and hardening case 

 

 
Fig. 10 Comparison of displacement response for instantaneous softening (  =0.01s) 
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Fig. 11 Displacement-velocity phase plot for instantaneous softening (  =0.01s) 

 
 

5.4 Example 4: Instantaneous hardening 
 
The system considered is same as the previous example. The hardening behaviour is modelled 

by modifying the parameter   in example 3. A positive value of   is chosen to simulate 

instantaneous hardening system. The dynamic response of the system is evaluated for the two 

different time steps. The displacement time histories and the phase plots obtained for the upper 

storey using different time integration schemes are shown in Figs. 18 to 21. The error indices 

calculated for different time steps are given in Table 7. The exact solution of the system is this 

case also is obtained using ode15s in Matlab. 

 

 

 
Fig. 12 Comparison of displacement response for instantaneous hardening (   0.01s) 
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Fig. 13 Displacement-velocity phase plot for instantaneous hardening (  =0.01s) 

 
Table 6 Error indices for instantaneous hardening 

Δt (s) 
Displacement error index Velocity error index 

CDM OSM RBM CR CDM OSM RBM CR 

0.010 8.1233 3.7797 3.3460 0.9941 8.1671 6.4942 4.4502 5.5198 

0.009 7.2427 3.3494 3.0339 0.8038 7.2962 5.7550 4.0586 4.8459 

0.008 6.4068 2.9329 2.7311 0.6358 6.4049 5.0437 3.6543 4.1922 

0.007 5.5623 2.5362 2.4142 0.4865 5.5577 4.3619 3.2458 3.5730 

0.006 4.7320 2.1452 2.0944 0.3573 4.7116 3.6896 2.8273 2.9804 

0.005 3.9202 1.7679 1.7691 0.2482 3.8863 3.0397 2.3949 2.4148 

0.004 3.1143 1.4026 1.4344 0.1587 3.0790 2.4106 1.9505 1.8780 

0.003 2.3178 1.0432 1.0888 0.0890 2.2887 1.7925 1.4892 1.3692 

0.002 1.5362 0.6910 0.7366 0.0397 1.5101 1.1860 1.0105 0.8865 

0.001 0.7630 0.3437 0.3736 0.0098 0.7479 0.5895 0.5151 0.4302 

 
 
5.5 Example 5: Hysteretic system 
 
The system considered in this case is a three storey frame equipped with the lead rubber 

dampers in the bracing of the 1
st 

storey (Fig. 14). The frame is taken as the numerical substructure 

while the lead rubber bearing is taken as physical substructure. The properties of the structure has 

been adopted from Lu and Zhou (2002). It is assumed that the lead rubber bearing is installed only 

in the 1
st 

storey. The hysteretic behaviour of the lead rubber bearings is simulated by using Bouc-

Wen model (Wen 1976). The restoring force obtained by solving the Bouc-Wen model equations 

was given to the different time integration schemes as the restoring force corresponding to the 

physical substructure. The properties of the structure and the parameters of the Bouc-Wen model 
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are also adopted from Lu and Qiang (2002). The frame is subjected to the North-South component 

of the El-Centro 1940 earthquake record with 0.35 g peak ground acceleration (PGA), and the 

displacement of the 1
st 

storey is evaluated based on different time integration schemes. The time 

step of the integration was taken as 0.01s. The exact solution is obtained using ode15s in Matlab. 

The displacement time history and phase plot for the 1
st 

storey are shown in Figs. 15 and 16. The 

hysteresis curve for the lead rubber bearing is shown in Fig. 17. The error indices for the different 

time integration schemes are given in Table 7.  

 

 

 
Fig. 14 Model of the structure considered for hysteretic system case 

 

 
Fig. 15 Comparison of displacement response for hysteretic system (  =0.01s) 
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Fig. 16 Displacement-velocity phase plot for hysteretic system (   0.01s) 

 

 
Fig. 17 Displacement-velocity phase plot for hysteretic system (  =0.01s) 
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Table 7 Error indices for hysteretic system 

Δt (s) 
Displacement error index Velocity error index 

CDM OSM RBM CR CDM OSM RBM CR 

0.010 10.0202 3.4724 6.8105 3.4498 15.5545 12.2715 21.4739 17.9087 

 
Table 8 Summary of the stability and accuracy analysis 

 Accuracy order 
Unconditional 

Stability 
Numerical damping Period distortion 

CDM 2
nd

 No Yes Yes 

OSM 2
nd

 Yes Yes Yes 

RBM 2
nd

 Yes Yes Yes 

CR 2
nd

 Yes Yes Yes 

 

 
6. Conclusions 

 
The assessment of the four different time integration schemes that are widely used for real-time 

hybrid testing (RTHT) has been carried out. The schemes have been assessed on the basis of 

stability and accuracy for different damping ratios of the physical substructure. The summary of 

the stability and accuracy analysis for a linear system is given in Table 8.  

Based on the stability analysis, it has been observed that CDM is conditionally stable where as 

OSM, RBM and CR are unconditionally stable. The accuracy analysis suggested that the trend in 

numerical damping and period distortion is similar for OSM and RBM. In order to evaluate the 

performance of the different step-by-step integration methods, five example studies have been 

carried out. The examples have been selected so as to cover the wide range of physical 

substructures that one may encounter in RTHT. The first two examples studied the performance of 

the integration method in linear regime. The first two example considered a SDOF system with 

and without damping. The third and fourth examples have been selected to study the performance 

of the integration method in the nonlinear regime. Example three and four studied the effect of the 

instantaneous softening and hardening on the accuracy of the time integration method. The fifth 

example consisted of a nonlinear hysteretic system. The hysteretic behaviour has been represented 

using Bouc-Wen model. The error indices obtained for the different examples gives as indication 

of the accuracy of the integration method. The indices help in making an informed choice of the 

time integration method for a particular type of physical substructure. CDM is found to perform 

well only for undamped SDOF system. OSM and RBM are found to be robust and performed 

fairly well in all the examples studied. Though CR integration performed well for the nonlinear 

systems, it is unconditionally stable as long as the system is of the softening type. Therefore, its 

usage should be limited to only system showing softening behaviour. 
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