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Abstract.  Structural Health Monitoring (SHM) of steel towers has become a hot research topic. From the 

literature, it is impractical and impossible to develop a “general” method that can detect all kinds of damages 

for all types of structures. A practical method should make use of the characteristics of the type of structures 

and the kind of damages. This paper reports a feasibility study on the use of measured modal parameters for 

the detection of damaged braces of tower structures following the Bayesian probabilistic approach. A 

substructure-based structural model-updating scheme, which groups different parts of the target structure 

systematically and is specially designed for tower structures, is developed to identify the stiffness 

distributions of the target structure under the undamaged and possibly damaged conditions. By comparing 

the identified stiffness distributions, the damage locations and the corresponding damage extents can be 

detected. By following the Bayesian theory, the probability model of the uncertain parameters is derived. 

The most probable model of the steel tower can be obtained by maximizing the probability density function 

(PDF) of the model parameters. Experimental case studies were employed to verify the proposed method. 

The contributions of this paper are not only on the proposal of the substructure-based Bayesian model 

updating method but also on the verification of the proposed methodology through measured data from a 

scale model of transmission tower under laboratory conditions. 
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1. Introduction 
 

Structural Health Monitoring (SHM) becomes more and more important. Many countries, such 

as China and Australia, are trying to include SHM in their design codes. Structural damage 

detection is an important component in SHM. Many damage detection methods have been 

developed to monitor the health status of structures; they can be divided into two categories: local 

approach (also called non-destructive evaluation) and global approach. The local approach 

includes traditional techniques, such as visual inspection, dye penetrant methods and ultrasonic 

techniques (Burdekin 1993, Popovics and Rose 1994). The global approach includes mainly the 

dynamic methods, such as the non-model based methods (Kim et al. 1992, Yang et al. 2004) and 
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model-based methods (Lam et al. 2004, Lam et al. 2008). The proposed method in this paper 
follows the global approach utilizing the vibration measurements of the target structure under the 
undamaged (reference) and possibly damaged status. The dynamic responses of the target structure 
are measured and modal parameters, such as natural frequencies and mode shapes, are identified. 
Next, the modal parameters identified from the undamaged and possibly damaged structures are 
used to update the structure models separately. The two updated models are compared to identify 
the existence, location and extent of the damage. Although the traditional local approach has been 
well developed, the relatively new dynamic methods are attracting more and more attention. This 
is because the local approach requires the direct accessibility of the investigation locations and the 
preliminary knowledge of the damage locations. Furthermore, the equipment involved in the local 
approach is usually expensive and the operations are time consuming. Unlike the local approach, 
the dynamic methods can identify damage in a global sense without prior information about the 
locations of damage. Moreover, with the advances in measurement technologies, dynamic 
responses of structures can be measured accurately and economically. Although the dynamic 
damage detection methods have many superior aspects, there are challenges, which have to be 
addressed through intensive research. Model updating is an inverse problem, and uncertainties due 
to incomplete measurement and modeling error make this inverse problem non-unique (sometimes 
even ill-posed). This paper addresses the problem of uncertainty by following the Bayesian 
probabilistic approach, which was first developed by Beck and Katafygiotis in references (Beck 
and Katafygiotis 1998, Katafygiotis and Beck 1998). 

Transmission towers, as a kind of steel towers, play a significant role in people’s daily life. For 
this type of structures, the buckling of secondary members (braces) due to strong wind during 
typhoon is common. If the buckled braces are not detected and repaired, the accumulation of 
damage may lead to collapse of the tower and result in unimaginable loss. For example, Hundreds 
of transmission towers bulked during the ice storm in Canada 1998 (Magix 2008). Over 4 million 
people in Canada and parts of the US lose power supply in the middle of winter for over three 
weeks. Multiple deaths were reported, and many from hypothermia. From the accident report, it 
was found that the braces of these collapsed transmission towers were seriously damaged, but the 
foundations were basically undamaged. On 14 December 2011, another tragedy happened in 
Sichuan, China. A transmission tower collapsed when 13 labors was doing daily maintenance 
work, killing 8 and injuring 3 (ChinaFotoPress/Getty Images AsiaPac 2011). Many other 
transmission tower damage related disasters were reported worldwide. These incidents clearly 
show the importance of structural damage detection of steel towers. 

Damage detection of large-scale three-dimensional structures, like steel towers, is a difficult 
task. Apart from the difficulties in extracting reliable modal parameters and establishing an 
accurate computer model, the large number of structural members is an essential problem. Even 
with modern computer technology, it is time consuming to consider the stiffness values of all 
members individually in the model updating process. Despite the computational efficiency, the 
uncertainties associated with the large number of identified model parameters will be extremely 
high if the among of measurement cannot be increased accordingly. This is because the 
information that can be extracted from the measurement is limited. Therefore, an appropriate 
substructure scheme to group members together so as to reduce the number of uncertain model 
parameters is critical for the success of structural damage detection in large-scale structures. 
Although many vibration-based damage detection methods were developed, due to the above 
mentioned difficulties, they were verified using simple structures and computer simulations like 
two-dimensional trusses (Li and Law 2010), beams (Zhong and Oyadiji 2011), and shear buildings 
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(Lam and Ng 2008). It is unclear if these methods are applicable for large-scale and three-
dimensional structures. One of the contributions of this paper is the verification of the proposed 
method by a scale model of a three-dimensional transmission tower with hundreds of DOFs. 

Lam and co-workers proposed to integrate the dynamic condensation method and structural 
model updating in developing a damage detection method for transmission towers (Yin et al. 2009, 
Lam and Yin 2011). After condensation, the transmission tower was parameterized as a multistory 
building with one uncertain parameter per story. As a result, only the damaged story can be 
detected. Furthermore, the modeling error of the condensed structure is relatively large that affect 
the accuracy of the damage detection results. This paper presents a method that is different from 
the one in reference (Yin et al. 2009, Lam and Yin 2011) for the damage detection of braces of 
steel towers by integrating a substructure scheme with the Bayesian model updating method.  

A scale model of steel tower was built in the Structural Vibration Laboratory (SVL) of City 
University of Hong Kong (see Fig. 1). Impact hammer tests were carried out, and the natural 
frequencies and mode shapes of the steel tower were identified. Model updating was conducted by 
following Bayesian model updating approach (Vanik et al. 2000). The superior aspect of the 
Bayesian model updating approach is that all information in the measured data can be fully 
utilized, while many methods usually use only the mean values (or the most probable values) of 
measured modal parameters. It must be pointed out that the Bayesian model updating approach 
focuses not only on the most probable values (MPV) of model parameters but also the 
corresponding reliability by calculating the posterior PDF of uncertain model parameters 
conditional on the selected class of models and the set of measured data. This is essential for 
decision making in practice.  

In the experimental verification, different damage patterns were considered by removing brace 
members at different locations. For each damage pattern, the modal parameters of the “damaged” 
tower were identified utilizing vibration data from impact hammer tests. Bayesian model updating 
was conducted to identify the “optimal” model of the structure in each damage pattern. “Damage” 
is defined as the reduction in stiffness of the braces, or equivalently, a reduction in braces’ modulus 
of elasticity. The damage can then be identified by comparing the model updating results based on 
the measurements from the “undamaged” and “damaged” tower. The experimental verification 
results are very encouraging showing that structural damage detection of steel towers based on 
Bayesian model updating is feasible. 

 
 

2. Proposed methodology 
 
The proposed structural damage detection methodology consists of three main components. 

These are the modal identification, the substructure-based model updating, and structural damage 
detection utilizing the model updating results. The MODE-ID method (Beck 1978) is adopted for 
modal identification in this study. Owing to the limited space in this paper, the formulation of the 
MODE-ID method is not repeated here. In the following subsections, the details of the Bayesian 
model updating, the proposed substructure scheme and structural damage detection methodology 
are presented. 

 
2.1 Bayesian model updating 
 
The original formulation of the Bayesian statistical system identification framework (Beck and 
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Katafygiotis 1998) was developed using measured time domain data. It was extended to use 
measured modal parameters in reference (Vanik et al. 2000). For a complicated structure like the 
transmission tower, model updating in time domain is extremely difficult. This paper focuses on 
the application of the Bayesian model updating method (Vanik et al. 2000) utilizing measured 
modal parameters. 

Instead of pinpointing a set of model parameters in the deterministic approach, the Bayesian 
approach aims in calculating the posterior PDF of the uncertain model parameters conditional on a 
selected class of models and a given set of measurements (Beck and Katafygiotis 1998) 

     , ,p S cp S p Sθ D θ D θ  (1)

where θ is the vector of uncertain model parameters to be identified; D represents the set of 
measured data and it is the measured modal parameters in this study; S represents the selected 
model class (including both the class of deterministic structural models and the class of 
probabilistic models for describing the uncertainty associated with the prediction error); c is a 
normalizing constant such that the integration of the posterior PDF over the parameter space 
equals to unity; p(θ|S) is a prior PDF allowing the subjective judgment from engineers or 
researchers to be incorporated in the model updating process. A uniform prior PDF can be used to 
let the measured data control the results of model updating. The essential part in Eq. (1) is the 
likelihood function p(D|θ,S). In an impact hammer test, a set of modal parameters can be identified 
per impulse. In practice, many impulses can be applied separately. Therefore, many sets of modal 
parameters can be measured. It is assumed that the measured modal parameters in different data 
sets are independent. Furthermore, the independence is also assumed among different modes as 
well as between natural frequency and mode shape (Yaglom 1987, Yuen et al. 2002). As a result, 
Eq. (1) can be expressed as 

     2
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m sN N

n i n i n
i n
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where Dn represents the nth set of data, which consists of measured modal parameters of the first 
Nm modes. Ns is the number of data sets (i.e., the number of impulses considered). 2

,ˆi n  and ,ˆ i nφ  
are the squared circular natural frequency (i.e., eigenvalue in (rad/s)2) and mode shape of the ith 
mode identified from the nth set of data, respectively; c0 is a constant which absorbed the 
normalizing constant c and the uniform prior PDF. The formulation of PDF for natural frequency 
and mode shape (i.e.,  2

,ˆ ,i np S θ  and  ,ˆ ,i np Sφ θ ) are given in reference (Vanik et al. 2000) 
and are not repeated here. By substituting these two expressions into Eq. (2) one obtains the 
posterior PDF of the uncertain parameters as follows 
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(3)

In Eq. (3),  2
i θ  and  iψ θ  are the calculated squared circular natural frequency and mode 

shape of the ith mode, respectively. Their dependence on the uncertain parameter θ is emphasized. 
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The superscript “T” represents the transpose of a matrix. εi
2 is the sample variance of the squared 

circular natural frequency. It can be calculated using the identified natural frequencies from 
different data sets. Similarly, σi

2 is the variance of the mode shape, and it can be calculated as 
(Vanik et al. 2000) 

2

,2
2

1
,

ˆ1

ˆ

sN
i n i

i
ns i n

N





 

φ φ

φ
 (4)

||·|| represents the Euclidean norm. iφ  is the sample mean of the mode shape of the ith mode. I is 
the identity matrix. Note that all mode shapes are normalized to have unit Euclidean norm. The 
measure-of-fit function (i.e., the objective function) J(θ) is defined as 
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θ
ψ θ

 (5)

To obtain the most probable parameter vector θ* one needs to maximize the PDF of uncertain 
parameters in Eq. (3). It is equivalent to minimize the objective function J(θ) in Eq. (5). Under the 
deterministic approach, only the mean values are considered and a lot of information in the 
measured data is in fact sacrificed. In the Bayesian probabilistic approach, one can see in Eq. (5) 
that the terms with the subscript n represent the individual measured data set. All the measured 
data are fully utilized to make the statistical inference. The factors 1/εi

2 and 1/σi
2 in Eq. (5) can be 

treated as the “weighting factors” in model updating. It is clear that the weighting factor for a 
measured quantity will be become large if the corresponding variance (i.e., uncertainty) is low. 
This is a well-known characteristic of the Bayesian approach. The objective function J(θ) is 
implicit, and the numerical minimization of J(θ) is conducted by the active-set algorithm for 
obtaining the most probable model parameter vector θ*, which is considered as the optimal model 
based on the sets of measurement, Dn. 

 
2.2 Damage detection 
 
In order to do damage detection, the optimal model of the undamaged structure is first 

identified, which is used as a reference (or baseline). Usually the number of members of a tower is 
large and the information that can be extracted from the measurement is limited. If one assigns one 
uncertain parameter to each member, the updated model parameters will be unreliable. Therefore, 
the parameterization according to the type of damages to be detected and the characteristics of the 
target structure is crucial. This is the main reason why it is difficult to develop a “general” method 
for detecting all kinds of damages for all kinds of structures. A substructure scheme was proposed 
to organize the structural members in potential damaged groups. A theoretically rigorous 
substructure method for Bayesian model updating can be found in reference (Papadimitriou et al. 
2013). By considering only brace damages of steel towers, the proposed damage detection 
procedures are summarized as follows: 

(1) To estimate the nominal values of material properties: The Young’s modulus of steel and 
aluminum (the braces are made of aluminum), and the mass of steel plates at joints (small steel 
plates are welded at joints to work as gusset plates for connecting the braces) need to be estimated. 
Model updating is carried out with the uncertain parameter vector θa=[θm,θEs,θEa], where θm, θEs, 

939



 
 
 
 
 
 

Heung-Fai Lam and Jiahua Yang 

and θEa scale the plate mass, Young’s modulus of steel, and Young’s modulus of aluminum, 
respectively, by minimizing Eq. (5) using data from the undamaged structure. 

(2) To identify the reference system: According to experience, the lower part of a transmission 
tower is usually easier to be damaged by wind load than the upper part. It is proposed that only the 
lower five levels of the tower (see Fig. 2) are considered for damage detection. Using the 
symmetrical property of the tower, only two uncertain stiffness parameters are used for each level 
(see Fig. 2 for the definition of levels). One scales the Young’s modulus of braces on faces 
perpendicular to the x-axis (Faces A and C), and the other is for the braces on faces perpendicular 
to y-axis (Faces B and D). Altogether, there are ten uncertain parameters in the model updating 
process. The uncertain parameter vector is defined as 

 1 1 2 2 3 3 4 4 5 5, , , , , , , , ,ud AC BD AC BD AC BD AC BD AC BD         θ  (6)

The subscript “ud” represents that this vector is for the undamaged structure. The subscript 
“1AC” consists of two parts. The first digit shows the level number and the two letters represents 
the faces. Therefore, 1AC represents the stiffness factor for braces on Faces A and C at the first 
level. Based on the nominal values estimated in step 1, model updating is conducted for 
identifying the parameter vector in Eq. (6) based on the measured data of the undamaged structure. 
The optimal model identified in this step is treated as the reference model. 

(3) To update the possibly damaged structure: The data measured from the possibly damaged 
structure are used to do model updating (minimize the objective function in Eq. (5)) with the same 
model class as the reference model. Finally, the stiffness distributions of the undamaged 
(reference) and possibly damaged structures are compared, and damage can be detected at the 
positions of stiffness reduction. 

 
 

3. Experimental verification 
 
3.1 Experimental setup 
 
Fig. 1 shows the scale model of a transmission tower, which consists of 8 levels, and 4 types of 

members: (1) the four columns, (2) beams, (3) cross arm members, and (4) braces. The columns, 
beams and cross arm members are made of steel, and all braces are made of aluminum. The 
columns, beams and cross arm members are connected by welding. Small steel plates are welded 
to all beam-column joints for the installation of braces through bolted connections. There are four 
faces named Faces A, B, C and D at each level. For example, nodes 2-3-12-11 enclose Face A of 
level 2, and nodes 11-12-30-29 enclose Face B of level 2 (see Fig. 2). Face A of level 2 is 
highlighted by dash line in Fig. 2 to show the definition of face. 

In real application of structural damage detection, it is difficult to distribute sensors throughout 
the entire structure. To simulate this situation, sensors were installed only on one column for 
measuring vibrations in x and y directions. The instrumented column is the one with nodes 1 to 9 
as shown in Fig. 2. Since only 9 sensors were available, the measurement was divided into two 
setups. They are measurements along the x and y direction, respectively, and a reference sensor 
was installed at node 9 at an angle of 45 between the positive x and y directions (see Fig. 3). This 
reference sensor can pick up the vibration in both x and y directions. As a result, even one setup 
focused on vibration along x direction and the other focused on vibration along y direction, the  
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Fig.1 Scale model of 
transmission tower 

Fig. 2 Finite element model of the steel tower 

 

 
Fig. 3 Directions of sensors in setup 2 
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reference sensor can help in identifying modes with vibration in both directions, such as the 
torsional modes, and assembling mode shapes from the two setups. The configurations of the 
sensors of the two setups are shown in detail in the middle and right parts of Fig. 2. In the first 
setup, eight sensors were installed at nodes 2 to 9 along the x direction. The eight sensors were 
connected to channels 1 to 8 of the NI-9234 module with channel 9 as the reference sensor. The 
impact excitation was individually applied many times at levels 2, 3 and 8 along the x direction 
(see the circled levels in Fig. 2). In the second setup, the eight sensors were installed at nodes 2 to 
9 along the y direction. The impact excitations were applied in a similar manner as in the first 
setup but along the y direction. The arrows in Fig. 3 show the positive directions of sensors. 

 
3.2 Impact hammer test and modal identification 
 
The modal parameters of measured responses along the x direction are identified first. Fig. 4 

shows the acceleration response at channel 1 when the steel tower was excited by impact hammer 
along x direction (measurement from other sensors are similar). The responses in all channels were 
cut into segments according to the impulses as illustrated in Fig. 4. Each segment of responses can 
be treated as a free vibration response. In this way multiple data sets were obtained (each data set 
corresponding to one impulse). The cross-spectral of all channels (with channel 9 as the reference) 
were calculated. Fig. 5 shows the average cross-spectrum (average over all segments, all excitation 
locations in all channels) for vibration along x direction. The frequencies at the peaks are indicated 
in the average spectrum for reference. Those frequencies are employed as initial trials for modal 
identification of each segment of measured data using the MODE-ID method.  

For vibration along x direction, there are 62 segments of data in total. Each segment of data, 
which consists of responses from 9 sensors, was analyzed one by one using MODE-ID. Multiple 
sets of identified modal parameters are available for model updating. The mean values (average 
over all segments of data) of identified natural frequencies for vibration along x direction are 
shown in Table 1 (modes 2, 3 and 5). The variances of the squared circular natural frequencies are 
also shown. The larger the value of variance, the higher the uncertainty associated with the 
identified modal parameters will be. Fig. 6 shows the identified mode shapes along x direction. 
The lines with circle markers represent the undeformed shapes of the measured column. The dash 
lines with triangular markers represent the upper and lower bounds of the identified mode shapes. 
It means that all the mode shapes identified from different segments of time domain data vary 
within the area between the two dash lines. The solid lines with triangular marker represent the 
average mode shapes. From Fig. 6, the second mode shape varies in a wider range than the other 
two modes showing that the uncertainty of the second mode shape is larger than the other two. The 
upper and lower bounds of the first mode shape almost overlap, which indicates that the first mode 
shape is very certain. The “sample variances” of mode shapes along x direction calculated by Eq. 
(4) are also shown in Table 1 (modes 2, 3 and 5). In Bayesian model updating, the objective 
function J(θ) in Eq. (5) is minimized with appropriate weighting factors determined from the 
variances in Table 1. 

Following a similar procedure, experiments were conducted for vibration along y direction. 
Due to the limited space, the average spectrum and the identified mode shapes for vibration along 
y direction are not presented here. The average natural frequencies for vibration along y direction 
together with the variances are shown in Table 1 (modes 1, 3 and 4). It must be pointed out that the 
second mode along x and y directions belong to the same mode, which is a torsional mode (i.e., 
mode 3 in Table 1). Finally, five modes were identified. They are two x-translational modes (the 
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2nd and 5th modes), two y-translational modes (1st and 4th modes) and one torsional mode (the 3rd). 
These five modes were employed in the model updating process for the purpose of damage 
detection. 

 
 

 
Fig. 4 Typical measured time-domain response under impact excitation 

 

 
Fig. 5 The average spectrum for vibration along x direction 
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Table 1 Measured average natural frequencies () of undamaged tower together with the sample variances 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

 
1st translational 

along y 
1st translational

along x 
Torsional 2nd translational 

along y 
2nd translational 

along x x  y  

 (rad/s) 222.23 256.03 425.74 428.69 578.22 836.77 

Variance of 2 
((rad/s)4) 

4.221×102 5.008×103 2.417×107 4.565×106 3.494×107 1.703×107 

Variance of 
mode shape 

2.298×10-7 4.684×10-7 2.192×10-2 3.837×10-3 1.339×10-2 2.610×10-3 

 

 
Fig. 6 Identified mode shapes along x direction 

 
 
3.3 Bayesian model updating results 
 
3.3.1 Undamaged structure 
A self-developed finite element (FE) code is used to establish a three-dimensional FE model of 

the steel tower based on the matrix stiffness method (Kassimali 2011). Fig. 7 shows the three-
dimensional mode shapes calculated by the self-developed FE program before model updating. 
The calculated mode shapes corresponding to the measured DOFs can be extracted from the three-
dimensional mode shapes. With the measured and calculated modal parameters, one can update the 
computer model by following the Bayesian approach as presented in section 2.1 and obtain an 
optimal model to represent the structure.  

The initial guesses of the mass of the steel plates at the joints, the Young’s modulus of steel and 
aluminium are 21.06 g, 200 GPa and 69 GPa, respectively. To estimate a more reliable nominal 
values for these three model parameters, model updating was conducted by minimizing Eq. (5) 
with respect to uncertain parameter vector θa=[θm,θEs,θEa] (as discussed in section 2.2). All the 
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identified modal parameters from all data sets were employed in calculating the objective function 
value in Eq. (5). The most probable vector θa

*=[3.2018,1.1918,0.7616]. It must be pointed out that 
those updated values are not the “true” values of plate mass and Young’s modulus of steel and 
aluminum. They are the “equivalent” values after the consideration of measurement noise and 
modeling error. For example, the updated value of Young’s modulus of steel is about 1.2. It doesn’t 
mean that the “true” value of Young’s modulus of the steel used in this tower is 20% higher than 
the standard value of 200GPa. It is just the “equivalent” value of Young’s modulus under the 
assumed class of models. One of the sources of modeling error is the rigid-joint assumption at the 
two ends of the braces. The natural frequencies of the updated model are compared to the 
measured ones (average) in Table 2. The small differences between the measured and model-
predicted natural frequencies show that the result of model updating is acceptable. The optimal 
scaling factors in θa* are multiplied to the initial values of the mass of the steel plate, Young’s 
modulus of steel and aluminium, respectively, to obtain the nominal values.  

To obtain the reference system for damage detection, Bayesian model updating is conducted 
utilizing the data from the undamaged structure using the 10-parameter model class as given in Eq. 
(6). The optimal vector θud

* is shown in Table 3. The identified stiffness factors are in general close 
to unity except for the stiffness for braces on Faces B and D at level 1. This may be caused by the 
workmanship issue during the construction of the tower. The comparisons of calculated and 
average measured modal parameters are summarized in Table 4 and Fig. 8, respectively. The first 
and second rows of Fig. 8 correspond to mode shapes along x and y directions, respectively. Each 
column of Fig. 8 corresponds to an individual mode. Noted that mode 3 is a torsional mode with  
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Table 2 Comparison of the calculated and average natural frequencies of the undamaged tower for θa
* 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Measured (rad/s) 222.25 256.04 426.86 578.12 836.98 

Calculated (rad/s) 222.01 257.88 401.48 642.94 831.75 

% Difference -0.11% 0.72% -5.94% 11.21% -0.63% 

 
Table 3 The optimal vector θud

* (the identified brace stiffness distribution in the undamaged case) 

θ1AC
* θ1BD

* θ2AC
* θ2BD

 * θ3AC
* θ3BD

 * θ4AC
* θ4BD

* θ5AC
* θ5BD

* 

0.9651 0.5376 0.9484 0.9655 1.1701 1.2256 1.0394 1.0332 1.2292 1.1077

 
Table 4 Comparison of the calculated and average natural frequencies of the undamaged tower for ud

* 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Measured (rad/s) 222.25 256.04 426.86 578.12 836.98 

Calculated (rad/s) 222.30 256.27 408.97 635.32 831.12 

% Difference 0.02% 0.09% -4.19% 9.89% -0.70% 
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Fig. 8 Comparison of the calculated and average measured mode shapes of the undamaged tower for ud

*

 
 

components in both x and y directions. Other modes are translational modes with only x or y 
component but not both. The matching is basically very good. From Table 4, it is observed that the 
percentage differences for modes 3 and 4 are larger than the others. This can be explained by the 
relatively large variances for natural frequencies in modes 3 and 4 (see Table 1). Since the 
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measured natural frequencies in these two modes are less certain, the Bayesian model updating 
assigned smaller weighting factors to these two modes. As a result, the system automatically 
spends less effort in matching these two natural frequencies. The identified optimal parameter 
factors of the undamaged structure (in Table 3) are multiplied to corresponding brace stiffness in 
the class of finite element model. The modified model class will be used to update the damaged 
structure. As a result, a parameter factor of value 1 represents no damage on the brace, and a value 
of say 0.6 represents a 40% reduction in brace stiffness. 

 
3.3.2 Damage case 1 
One brace on Face A at level 2 and one on Face D at level 4 are removed in this damage case 

(see Fig. 9). Modal identification was carried out for measured time-domain data from the 
damaged tower. The first five modes were identified, and Table 5 summarizes the mean values of 
identified natural frequencies averaged over all segments of data. The variances of the squared 
circular natural frequencies are shown in the table. Two natural frequency variances are available 
for mode 3. This is because mode 3 is a torsional mode and it was measured by two setups: one for 
vibration along x and the other for vibration along y. The comparison of the average natural 
frequencies for the damaged and undamaged tower is given in Table 5. The damage reduces the 
natural frequencies showing a reduction in stiffness in the damaged structure. The average mode 
shapes are shown Fig. 10. The “variances” of measured mode shapes are also given in Table 5.  

By using the measured modal parameters of the damaged structure, Bayesian model updating is 
conducted using the 10-parameter model class. The vector of uncertain model parameters is 
denoted by d1=[1AC,1BD,2AC,2BD,3AC,3BD,4AC,4BD,5AC,5BD]. Note that the arrangement of d1 
is exactly the same as that of ud. The only difference is the subscript “d1”, which represents 
damage case 1.  

 
 

Fig. 9 Description of damage case 1 
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Table 5 Average measured natural frequencies () of damage case 1 together with the sample variances 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

 (damaged) (rad/s) 220.80 254.57 407.17 566.63 837.08 

 (undamaged) (rad/s) 222.25 256.04 426.86 578.12 836.98 

% Difference -0.65% -0.57% -4.61% -1.99% 0.01% 

Variance of 2 ((rad/s)4) 1.057×103 1.405×104 x y 
5.323×107 3.120×107

2.530×106 9.392×105

Variance of mode shape 3.088×10-7 1.297×10-6 5.597×10-3 9.404×10-4 5.117×10-2 4.875×10-3

 
Table 6 Comparison of calculated and average natural frequencies of damaged case 1 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Measured (rad/s) 220.80 254.57 407.17 566.63 837.08 

Calculated (rad/s) 220.90 255.21 402.64 605.53 827.12 

% Difference 0.04% 0.25% -1.11% 6.87% -1.19% 
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Fig. 10 Comparison of calculated and average measured mode shapes of damaged case 1 

 
 
All the measured data sets were employed to minimize the objective function in Eq. (5). After 

model updating, the matching between the measured and calculated modal parameters is shown in 
Table 6 and Fig. 10. They match well indicating that the 10-parameter model class for detecting 
this type of damages is good. Based on the model updating result, the reductions in stiffness for all 
substructures are summarized in Fig. 11. It is obvious that the stiffness values for substructures 
2AC and 4BD are reduced. This is consistent with the actual damage simulated on the structure.  
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Fig. 11 Damage detection result of damage case 1 

 
 

Small stiffness reduction can be observed for substructures 1BD, 3AC and 3BD, but their values 
are relatively small.  

 
3.3.3 Damage case 2 
In damage case 2, a large damage is introduced by removing both braces on Face D at level 4 

(see Fig. 12). The experiment was carried out and the average measured natural frequencies were 
obtained and summarized in Table 7. The measured mode shapes are shown together with the 
calculated ones in Fig. 13. Table 7 also shows the variances of the measured natural frequencies 
and mode shapes. Compared to the undamaged tower, it can be observed that the damage induces 
large changes in the natural frequency and mode shape of the 3rd mode. Bayesian model updating 
is conducted with the vector of uncertain model parameters d2=[1AC, 1BD, 2AC, 2BD, 3AC, 3BD, 
4AC, 4BD, 5AC, 5BD]. The subscript “d2” represents damage case 2. The stiffness reductions in all 
substructures are calculated and summarized in Fig. 14. It is very clear that the stiffness reduction 
for substructure 4BD is the largest and very outstanding. This is consistent with the damage 
simulated on the structure in this damage case. It can be concluded that the proposed method 
successfully detects the damage in this case. 

Apart from the substructure 4BD, the reductions in stiffness for substructures 1AC and 3BD are 
not small. This error may be caused by the employed sub-structure scheme, in which a single 
factor is employed to scale the brace stiffness on two parallel faces of a given level. The advantage 
of this sub-structure scheme is to reduce the number of uncertain model parameters in model 
updating. However, the trade-off is the introduction of large modelling error when the brace 
stiffness values on the two faces are very different. This is the situation in Damage case 2. When 
the two braces on Face D are removed, the brace stiffness on this face is dropped to almost zero 
while the brace stiffness on the opposite face (i.e., Face B) is 100%. Under such situation, the 
modelling error of the 10-parameter model class is not small. 
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Fig. 12 Description of damage case 2 

 
Table 7 Average measured natural frequencies () of damage case 2 together with the sample variances 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

 (damaged) (rad/s) 222.04 247.29 383.85 574.14 833.17 

 (undamaged) (rad/s) 222.25 256.04 426.86 578.12 836.98 

% Difference -0.09% -3.42% -10.08% -0.69% -0.46% 

Variance of 2 ((rad/s)4) 2.224×103 2.420×103 x y 
1.799×106 8.445×107

6.558×104 1.653×105

Variance of mode shape 1.353×10-7 3.476×10-6 1.380×10-3 2.926×10-3 2.396×10-3 2.145×10-3

 
Table 8 Comparison of calculated and average measured natural frequencies of damage case 2 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Measured (rad/s) 222.04 247.29 383.85 574.14 833.17 

Calculated (rad/s) 221.65 247.10 383.58 609.64 799.02 

% Difference -0.17% -0.07% -0.07% 6.18% -4.10% 

 
 
To check if the class of models employed in model updating is appropriate, the average 

measured modal parameters and the modal parameters calculated by the optimal model are 
summarized in Table 8 and Fig. 13. The matching of natural frequencies is as good as that of 
natural frequencies in damage case 1. However, the matching of mode shape of mode 3 along the x 
direction is no good. It is not difficult to observe that the mode shape is only fitted in an “average” 
sense. Although there is limitation in the selected class of models, it is doing a reasonable job for 
both fitting the measurement and damage detection. 

One possible way to improve the model class is to increase the number of uncertain parameters 
(i.e., increase the complexity of the model class). For example, one can increase the two 
parameters per level to four parameters per level. Then, the class of models can capture the 
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individual variation in brace stiffness on the four faces of a given level. In fact, this more 
complicated model class was employed, and the fitting between the measured and calculated mode 
shapes is very good including mode 3 (the results are not presented in this paper, owing to the 
limited space). However, the additional uncertain parameters require additional measurement to 
identify their values in acceptable accuracy. If no additional measurement is available, the 
uncertainties of the identified model parameters will become very large. Under such situation, the 
results of damage detection become very bad. 
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Fig. 13 Comparison of calculated and average measured mode shapes of damage case 2 

 

 
Fig. 14 Damage detection result of damage case 2 
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3.4 Comparison with damage vector method 
 
The conventional damage vector method (Zimmerman and Kaouk 1994) was selected to do the 

damage detection of Damage case 1 again for comparison purpose. The most important 
formulations of the damage vector method are summarized here for the completeness of this paper. 
Considering the equation of motion of an n-DOF finite element model gives 

  Mx Cx Kx 0   (7)

where M, C and K are the n by n mass, damping and stiffness matrices, respectively. The 
eigenvalue problem of Eq. (7) can be expressed as 

 2
hi hi hi   M C K φ 0  (8)

where λhi and φhi are the ith eigenvalue and eigenvector of the healthy structure, respectively (the 
subscript h denotes “healthy”). The eigenvalue problem of the damaged structure can be obtained 
based on Eq. (8) as 

      2 0di di di         M M C C K K φ  (9)

where the subscript d denotes damaged; ΔM, ΔC and ΔK are the perturbation mass, damping and 
stiffness matrices due to structural damage, respectively. A damage vector di for the ith mode is 
defined by grouping the perturbation matrices on the right-hand side of Eq. (9) 

 2
i di di

di di di 

     

d Z φ
M C K φ

 (10)

where the matrix Zdi is obtained as follows 

2
di di di   Z M C K  (11)

Two observations are obtained from Eq. (10) and Eq. (11). Firstly, if the jth DOF of the structure 
is not directly affected by the damage, the jth rows of the perturbation matrices will be zero. As a 
consequence, the jth component of di will be zero. In other words, di can be used as the damage 
indicator, whose jth nonzero component indicates that the jth DOF of the structure is directly 
affected by the damage. Secondly, the damage vector di can be determined based on the healthy 
structure (the original mass, damping and stiffness matrices) and the measured eigenvalues and 
eigenvectors of the damaged structure. The computation for the perturbation matrices is thus 
unnecessary. Eq. (10) gives the jth component of di 

     ,: ,: cos j
i di di di di ij j j  d Z φ Z φ  (12)

where Zdi(j,:) denotes the jth row of the matrix Zdi and θi
j is the angle between the vectors Zdi(j,:) 

and φdi. Note from Eq. (12) that if di(j) equals to zero, θi
j will equal to 90, and if di(j) is different 

from zero, θi
j will not equal to 90. Therefore, the difference between θi

j and 90 (denoted by αi
j) 

can be used to locate damage 

180
90j j

i i 


 
  

 


  (13)
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If αi
j is dramatically different from zero, the corresponding DOF is considered to be damaged. 

By applying Eq. (13) for each DOF the damage can be located. The above discussion assumes that 
only one mode is available. In practice, usually multiple modes are measured. The multi-mode 
version of Eq. (13) is given as follows (Zimmerman and Kaouk 1994) 

1

1 M
j j

i
iM

 


   (14)

where M is the number of measured modes. The procedures of damage vector method are 
summarized as follows: 

1. Establish the finite element model of the target structure and calculate the matrix Zdi for each 
mode by using Eq. (11). Note that the measured natural frequencies of the possibly damaged 
structure will be used for calculating the eigenvalues in Eq. (11). 

2. Expand the measured mode shapes of the possibly damaged structure such that the DOFs of 
the measured mode shapes are consistent with the DOFs of the finite element model. The system 
equivalent reduction expansion process (O’Callahan et al. 1989) is adopted in this study. 
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Fig. 15 Damage indicators of the transmission tower for damage case 1 
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3. Calculate the damage indicators of each DOF based on Eq. (14) using all the measured 
modes. 

By following the damage vector method, the damage indicators for Damage case 1 were 
calculated and are presented in Fig. 15. It is clear from Fig. 15 that the damage indicators for 
DOFs 6, 12, 18, 24, 30, 36, 54, 60, 66, 72, 102, 108, 114, 120, 126, 132, 150, 156, 162, 168, 198, 
204 and 210 are relatively large. They are corresponding to nodes 2 to 7, nodes 11 to 14, nodes 20 
to 25, nodes 29 to 32 and nodes 37 to 39 (see Fig. 2 for the node numbering system. There are 6 
DOFs at each node except the 4 support nodes. The numbering of the DOFs follows the order of 
the nodes). In Damage case 1, only two braces were damaged and the corresponding nodes are 2, 
12, 22 and 5. However, the results from the damage vector method show that the damage is almost 
throughout the entire tower. Even the nodes affected by the simulated damage are in the list of 
detected damaged nodes, the number of false alarms is too large. As a result, it is very difficult to 
conclude the damaged location by using the damage vector method with the system equivalent 
reduction expansion process. Note that the Bayesian damage detection method proposed in this 
paper can narrow down the damage precisely without false alarms in Damage case 1. 

Based on the formulation, the damage vector method requires an accurate finite element model 
of the target structure. Therefore, model updating is unavoidable for the success of the damage 
vector method. In addition, mode shape expansion or model reduction is unavoidable. This 
introduces significant errors to the results of damage detection by using the damage vector 
method.  

 
 

4. Conclusions 
 
A damage detection method following Bayesian model updating is proposed. The PDF of 

uncertain model parameters conditional on a given model class and a given set of measurements 
was derived. Unlike the deterministic method, measurement from all data sets can be fully utilized 
without relying only on the mean values of the measured modal parameters. Since natural 
frequencies and mode shapes of different modes have different level of measurement noise, 
different weighting factors should be assigned to them in the model updating formulation. By 
applying Bayesian model updating method, these weighting factors can be calculated through a 
theoretically rigorous way based on the uncertainties of the measurement. To verify the proposed 
method, a scale model of a transmission tower was built. Impact hammer tests were carried out on 
the undamaged structure and two damage cases with limited number of measured DOFs under a 
multiple setup arrangement. Modal identification on the measured time-domain data was carried 
out. The identified modal parameters from the undamaged and damaged structures are employed 
to update the computer model of the target structures. In order to reduce the number of uncertain 
model parameters, a substructure scheme is proposed. After the identification of the reference 
structure, the damage in both damage cases was detected by comparing the model updating results 
of the undamaged and damaged tower. The results of the experimental verification are very 
positive showing that the proposed damage detection method is feasible for brace damages of 
tower structures. In the experimental verification, vibration data of only one column was 
measured. All the simulated damage in both cases can be successfully detected by using only one 
model class.  

The proposed method was verified using data collected from impact hammer tests. In the real 
application of the proposed method, the property owner may not allow researchers to carry out 
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impact hammer test. This is because the required magnitude of impact force has to be very large to 
ensure an appropriate signal to noise ratio, and such a large impact force may damage the 
structure. It is suggested adopting ambient vibration test to collect vibration data for the purpose of 
damage detection in real application of the proposed method (Au 2011a; Au et al. 2012; Au and 
Zhang 2012).  

In the impact hammer test, the measurement was divided into two setups due to the limited 
number of accelerometers available. Only one reference was employed (at 45 between the 
positive x and y directions) for assembling the mode shapes from the two setups. The quality of 
vibration measurement from this reference sensor is essential for the identification of the torsional 
modes (with vibration in both x and y directions). For the implementation of the proposed 
methodology in real situation, it is strongly recommended to install more than one reference sensor 
along different directions, and the mode shapes can be assembled based on the least square method 
(Au 2011b) to enhance the robustness of the experimental setup and increase the accuracy of the 
identified modal parameters. 
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