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Abstract. Within the context of Structural Health Monitoring (SHM), it is often the case that structural
systems are described by uncertainty, both with respect to their parameters and the characteristics of the
input loads. For the purposes of system identification, efficient modeling procedures are of the essence for a
fast and reliable computation of structural response while taking these uncertainties into account. In this
work, a reduced order metamodeling framework is introduced for the challenging case of nonlinear
structural systems subjected to earthquake excitation. The introduced metamodeling method is based on
Nonlinear AutoRegressive models with eXogenous input (NARX), able to describe nonlinear dynamics,
which are moreover characterized by random parameters utilized for the description of the uncertainty
propagation. These random parameters, which include characteristics of the input excitation, are expanded
onto a suitably defined finite-dimensional Polynomial Chaos (PC) basis and thus the resulting representation
is fully described through a small number of deterministic coefficients of projection. The effectiveness of the
proposed PC-NARX method is illustrated through its implementation on the metamodeling of a five-storey
shear frame model paradigm for response in the region of plasticity, i.e., outside the commonly addressed
linear elastic region. The added contribution of the introduced scheme is the ability of the proposed
methodology to incorporate uncertainty into the simulation. The results demonstrate the efficiency of the
proposed methodology for accurate prediction and simulation of the numerical model dynamics with a vast
reduction of the required computational toll.

Keywords: nonlinear dynamics; earthquake excitation; metamodeling; nonlinear ARX models;
polynomial chaos expansion; system identification; uncertainty quantification

1. Introduction

The assessment of the dynamic behavior of structural systems subjected to extreme loading
conditions, such as earthquakes, is of particular importance for the safe operation of civil
structures and forms a significant chapter within the broad topic of Structural Health Monitoring
(SHM) (Farrar 2007). Nevertheless, for the vast majority of such structures, it is hardly ever
possible to perform dynamic response testing on the actual structure or even realistic simulation
tests on an appropriately scaled structural model.
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The advancements achieved in the field of Finite Element (FE) modeling methods have played
a key role in overcoming this hurdle by enabling the realization of sophisticated simulation
experiments emulating structural response even in the nonlinear range (Bathe 2009). However,
despite the rapidly growing computational power and the continuous development of increasingly
efficient algorithms, the accompanying growth in the complexity of FE models as well as the
necessity for more detailed descriptions of both structural geometry and mechanical properties
render the use of highly detailed FE models almost prohibitive for complex, large structures
(Gholizadeh and Salajegheh 2009).

The problem is even more pronounced when taking into account that structural systems are
commonly characterized by parameter uncertainty to what concerns for instance the mechanical
properties of the structure (Hernandez and Bernal 2008, Christodoulou et al. 2008, Vanik et al.
2000, Beck and Katafygiotis 1998). Thus, the analyst is faced with the task of performing a
number of simulations in order to obtain an accurate numerical model of an existing structure.
Moreover, when the linearity assumption is relaxed in favor of increased modeling accuracy the
numerical model must be tested for a number of different excitation scenarios. In the case of
stochastic dynamic loading, which might often be the case (Katkhuda et al. 2005, Poulimenos and
Fassois 2006, Lourens et al. 2012, Naets et al. 2013, Kalkan and Chopra 2010), the statistical
characteristics of the input excitation need also be treated as uncertain random variables.

Thus, for processes requiring a mutliplicity of forward simulations, such as design
optimization, or model updating procedures based on time history loading, a simpler
representation of the FE model should be considered, able to accurately reproduce the behavior of
the structure for a wide range of excitations. To this end, several researchers have dealt with the
extraction and identification of models of reduced order both in the case of linear (Fraraccio ef al.
2008, Caicedo et al. 2004, Faravelli et al. 2011) and nonlinear dynamics (Chatzi and Smyth 2009,
Smyth et al. 2002, Yun and Shinozuka 1980, Corigliano and Mariani 2004, Katkhuda et al. 2005,
Lin et al. 2001, Moaveni et al. 2010).

In this work, both structural properties and excitation uncertainties are treated by means of a
time-series model with random parameters utilized for the description of uncertainty propagation
through the nonlinear numerical model. The time series model is of a nonlinear autoregressive
with exogenous input form. Methodologies of this type have previously been explored in the
works of Samara et al. (2013), Cheng et al. (2007), Rutherfor et al. (2007), Kerschen et al. (2006),
Adams and Farrar (2002), Worden and Tomlinson (2000), and have been proven efficient in
simulating the dynamics of nonlinear systems or extracting nonlinear features. In the approach
introduced herein, uncertainty of the structural and loading parameters is incorporated via
implementation of a Polynomial Chaos (PC) expansion representation. More specifically, the
random responses of a large-scale numerical model are approximated by a suitably defined
Polynomial Chaos Nonlinear AutoRegressive with eXogenous input (PC-NARX) metamodel. The
latter is able to describe both aforementioned types of uncertainties, i.e., regarding the structural
properties and the input excitation, by expansion of its random model parameters onto a finite-
dimensional PC basis (Spiridonakos and Chatzi 2012, Blatman and Sudret 2010, Sapsis and
Lermusiaux 2009). Thus, the PC-NARX metamodel is described by a small number of
deterministic coefficients of projection, and is therefore appropriate for simulating the structural
system at hand under a significantly reduced computational effort.

The method’s effectiveness is demonstrated through the identification of a metamodel for a
five-storey building with nonlinear material properties. Toward this end, a limited number of
simulation experiments is carried out, with the FE numerical model being subjected to different
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realizations of synthetic earthquakes. Synthetic earthquakes are produced by filtering a white noise
process through a non-stationary impulse response filter and a non-stationary modulating function
in order to simulate the time-varying characteristics for both the temporal and spectral content of a
real earthquake as proposed in the work of Rezaeian and Der Kiureghian (2010). The non-
stationary filter and the modulating functions are described by a small number of uncertain
parameters, with sample observations of the latter being estimated through fitting of the model to
real recorded earthquake ground motion signals. One of the important features of the introduced
approach therefore lies in the parallel parameterization of the input.

The remainder of the paper is organized as follows: The description of the PC-NARX class of
models is presented in Section 2 along with the proposed model parameter and model structure
selection methods. The model for the parametric representation of real earthquakes, along with the
estimation results obtained by modeling the PEER database earthquake accelerograms, are
described in Section 3. The numerical application involving a five-storey frame, the conducted
simulations and the metamodeling results are presented in Section 4, while the main conclusions
of the study are drawn in Section 5.

2. Polynomial chaos NARX models

Metamodeling refers to the process of identifying a reduced order, computationally efficient
representation of a large scale numerical model. In the present work, a metamodel is sought for the
accurate representation of the nonlinear dynamics of a refined numerical model and the accurate
simulation and/or prediction of its time history loading response.

Let us consider a structural system represented by a numerical model M that is characterized
by a number of input parameters relating to the properties of the modeled structure (mechanical
and/or geometric). It is assumed that M of these parameters are subject to uncertainty and that
they may be described by independent random variables gathered in a random vector

& =1&.4,,.. "§Ms 1" . Superscript T denotes transpose of a vector or a matrix while it is noted that

for simplicity of notation no distinction is made between a random variable and its value(s).

Since the dynamic behavior of a nonlinear system is also a function of the input excitation
characteristics, it is also considered that the set of excitation signals used for the dynamic loading
of the numerical model may be parameterized by a small number of random variables

T
Sy = [§MS+1’§MS+2""’§MS+MX] :

As a result of the uncertainty propagation, the dynamic response of the numerical model to a
given input excitation will also be a random variable which in addition depends on time, that is

y[taé] =M (x[laéX]’x[ZagX]a"-7x[t7§X]7§S) (1)

with ¢ =1,2,...,T designating normalized by the sampling period discrete time, x[f, &y] the
excitation input signal, y[t,§] the corresponding numerical model response signal, and
E=[ &, & the M —dimensional (M=Mst+My) complete vector of input random variables with
known joint probability density function (pdf) f($).

In order to approximate the numerical model dynamic response y[z, ] for every realization of &
in an efficient way, a novel metamodeling method based on Polynomial Chaos Nonlinear
AutoRegressive with eXogenous input (PC-NARX) models is introduced in the present study. The
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nonlinear form being key to the accurate representation of a structural system subjected to
significant amplitudes of input ground motion. The general PC-NARX model, in the linear-in-the-
parameters form, is given by the following relationship (for the purposes of notational simplicity
the dependency of the input and output signals on & is not indicated explicitly in the following
relationships)

H11=26,(8)- g, () +elr] )

where g,(z[f]) are the nonlinear model terms generated from the regression vector z[f]=[y[¢-
11,...y[t-na) x[f],... .x[t-ns]]" with ngn, designating the maximum output and input time lags,
respectively, and ¢[¢]~ NID(0,0°) the model’s residual sequence with NID (-,") denoting a

Normally Independently Distributed process with the indicated mean and variance. It should be
mentioned that the model terms g;(z[¢]) may be constructed from a variety of local or global basis
functions including polynomials, splines, neural networks, wavelets and others (Wei et al. 2004).

The important feature of PC-NARX models, in comparison with the conventional NARX
models (Chen and Billings 1989), is that they are characterized by parameters (&) which are
random variables themselves. These parameters are actually represented by a deterministic
mapping which describes their relation to the input random variables. More specifically, assuming
that the PC-NARX model parameters 6,(&) have finite variance, they admit the following
polynomial chaos representation (Soize and Ghanem2004)

‘95(5) = i ei,j : ¢d0)(§) (3)
=

where 0;; are unknown deterministic coefficients of projection, d(j) is the multi-index of the
multivariate polynomial basis, and ¢, are multivariate basis functions that are orthonormal with
respect to the joint pdf of &, that is

Elp, (&) 0, €)= 0., = {1 fora = (4)

0 otherwise

Each probability density function may be associated with a well-known family of orthogonal
polynomials. For instance, the normal distribution is associated with Hermite polynomials while
the uniform distribution with Legendre. A list of the most common probability density functions
along with the corresponding orthogonal polynomials and the relations for their construction may
be found in (Soize and Ghanem 2004).

For purposes of practicality, the infinite series of expansion of Eq. (3) must be truncated by
selecting an appropriate functional subspace consisting of a finite number of terms p. In this way,
the resulting PC-NARX model is fully parametrized in terms of a finite number (n,Xp) of
deterministic coefficients of projection 6;;, while the complete PC-NARX identification problem
consists of the subproblems of model parameter estimation and model structure selection, which
are discussed in the following sections.

At this point it should be noted that PC-ARIMA models with a-priori known deterministic
coefficients of projection have been considered before for the characterization of terrain topology
by Wagner and Ferris (Wagner and Ferris 2007). Moreover, linear PC-ARX models have been
used in the metamodeling context in previous of work of the authors (Spiridonakos and Chatzi
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2012). Similarly linear ARX models with functionally dependent parameters have also been used
in a number of studies for the purposes of structural identification and damage detection (for
instance see Kopsaftopoulos and Fassois (2013) and the references therein), and have been
extended to the nonlinear case for aircraft virtual sensor design in Samara et al. (2013). However,
in these studies the input parameters are not related with a known probability density function and
thus the basis is constructed from an arbitrarily selected family of orthogonal basis functions.

2.1 Parameter estimation

As already mentioned, the estimation of a PC-NARX metamodel refers to the determination of
the coefficients of projection parameter vector 8

0=16,.6....6, (5)

The calculation has to be based on the availability of time history data for the input excitation
and output response of the numerical model. These may be acquired for a small number of
simulations, conducted for different realizations of the input random vector using the full scale
numerical model.

Let us consider a series of K simulations conducted for a corresponding number of input
random vector realizations ¢ -[¢ ¢,....& [ (for £ =1,2,...K), and the resulting set of

excitation signals x; ={x,[1],x,[2],...,x[T]} -

.....

The corresponding dynamic response of the full scale numerical model is indicated as
yi ={»[1,»[2],....,y,[T]} and as already mentioned it is assumed to follow the general PC-

NARX model of Eq. (2)

g

l1=36,&) gz l)+eld, t=1,..T, k=1,.K (6a)

i=1

e [{]~ NID(0,5, ), (6b)

o.-6,, fori=j

E{ei[t],ej[t—r]}:{ (6¢)

0 fori+j

In the relationships above, uncorrelatedness of the residual series between different simulation
experiments is also assumed. For these simulations, the input vector &, is generated from the input
parameter space either randomly or by using a structured sampling technique, such as the Latin
Hypercube Sampling (LHS) (Helton and Davis 2003).

According to the intended use of the metamodel, the estimation of the parameter vector # may
be based upon the minimization of either the Simulation Error (SE) criterion or Prediction Error
(PE) criterion.

2.1.1 Simulation error method
The SE estimation method must be employed when a PC-NARX metamodel that may replace
the numerical model for additional simulations is sought.

Let us consider again the same set of K input excitation signals x; (k=1,2,...,K). For each x;
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the simulated response 7 [¢] of a PC-NARX metamodel may be obtained by using the input

excitation signals and the following relationship applied recursively with respect to time ¢
7il=20.8) g (311 )
i=1

with given initial conditions{j;k[o],,,,jk [_”a]}' The responses 1] of the metamodel should be as

close as possible to that of the numerical model y;[#], thus the estimation of a PC-NARX
metamodel may be based on the minimization of the following SE criterion

) = argmm {i y (v 11— } =argmin {iigk[t]z} 3
6, = 6,

k=1 t k=1 t=1

where g[f] designates the simulation error and arg min stands for the minimizing argument. This

optimization problem may be solved by iterative nonlinear optimization methods. However, such
methods are normally amenable to local minima convergence problems when arbitrary initial
conditions are used, resulting to models with poor simulation performance or even models with
unstable simulated responses. For this reason the optimization procedure should be initialized
either by derivative-free search methods or by the parameter vector # obtained through the PE
method of the following section.

2.1.2 Prediction error method

Beyond providing initial estimates for the nonlinear optimization procedure of SE method, the
PE-based estimation method may also provide PC-NARX metamodels for the online prediction of
the structural dynamic response, when the structural system corresponding to the numerical model
is appropriately instrumented. This metamodel may in turn be used in real-time implementations
within the context of vibration-based SHM and control. In such an effort issues such as the
coupling of the model with the real structure (model updating) and possibly the modelling of
responses of unobserved degrees-of-freedom should be addressed, however a more detailed
investigation of these points lies outside the scope of the present study.

The PE criterion consists in the sum of squares of the model’s one-step-ahead prediction errors
for the complete set of simulation experiments. As it may be easily demonstrated, the one-step-
ahead prediction errors coincide with the model’s residual sequence, and thus & has to be estimated
by the following minimization problem

K T 5 K T >
= A A = i t (9)
argml {;Z}(yk[] yk[\ ]) } argl:nn{“ >el] }
with ,[¢]t—1] designating the model’s one-step-ahead prediction, and e[7] the prediction error.
Toward this end, and by using Eq. (3), Eq. (6a) may be rewritten as

wl =230, 0ule)- g al)+ el =

i=1 j=1
0, (10)
yilel = [¢d(l)(§k )gl (zk[t]>'” (pd(p)(ék )gnH (zk [t])] Pt el

7:[6‘ ,I]T 0110,/7
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or by stacking all time-instants in a single vector

v [eetl | [ou ] e
w2 _|ele2] | |0n |, |al

T
yk [T] _qp[é:k , T] ) Hnﬁ,p ek [T]
T (& )[TXNHP] Ong 1) CH{rx1]

where subscripts in brackets indicate the respective matrix/vector dimensions. Finally, by pooling
all the available simulation experiments, the following linear regression model is obtained

Vi (D(§1) 91,1 e,

o |_| &) | 6, e (11
yK q)(gk) gn,,,p eK

—_ - O =

Y 0@y G E

where ®(¢) is the regression matrix. Thus, the minimization problem of Eq. (9) may be rewritten
as follows

0= argmin {ET E} (12)

[4

which due to the linear dependence of the residual sequence E on the parameter vector 6 leads to a
linear ordinary least squares estimator for the latter, that is

0=(0"(&) &))" -(®&)-Y) (13)

2.2 Model structure selection

Model structure selection may be considered as the optimization procedure during which
metamodels corresponding to various candidate “structures” are estimated (through the methods of
the previous section), and the one providing the “best fitness” to the simulation data is selected.

Particularly, the PC-NARX model structure selection procedure concerns the determination of:
i) the nonlinear model terms g(z[¢]) and ii) the PC basis functional subspace.

2.2.1 NARX terms

Given the specific family of functions (e.g., polynomials, splines, neural networks, or
wavelets), and the maximum output and input lags n, and n,, a finite number of appropriate
nonlinear terms must be selected. This selection cannot be based on a trial-and-error approach,
since the dimension of the initial search space is usually excessive, while also the nonlinear
optimization procedure required for the SE estimation method is computationally intensive. For
these reasons a more automated and computationally inexpensive approach is proposed herein.

The nonlinear terms selection procedure is initialized by selecting the simulation dataset
exhibiting the highest nonlinearity, assuming that this set will require the maximum number of
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nonlinear terms for its accurate representation. This dataset may be chosen based on either
physical insight (e.g., simulated response corresponding to the highest excitation forces) or
nonlinearity quantification criteria such as coherence or cross-bicoherence functions (Choudhury
et al. 2008).

Assuming that experiment k, is selected for this purpose, the excitation signal kao and the

simulated response y; are utilized along with a Genetic Algorithm (GA) (Coley 1999) in order to

determine promising subregions of the complete search space. Each GA individual is a bit-string,
with each bit representing the existence (1) or not (0) of the corresponding nonlinear term from the
initial search space. For example considering the initial search space, given as{y[t-1], y[t-11%, y[¢-
17, x[], x[#]%, x[#]’}, each individual will be represented by a 6-bit vector, with a hypothetical
optimal solution [101100] corresponding to g(z[]))={y[t-1], y[t-1T’, x[£]}.

Each candidate NARX model created by the GA, is estimated by means of the PE method,
although judged in terms of its simulation capabilities. This simplification is based on an implicit
assumption on the proximity of the PE-based and SE-based estimated models and it is employed in
order to circumvent the nonlinear optimization procedure of the SE method.

In order to refine, and potentially reduce model dimensionality, the concept of backward
elimination may be used as a second step. Starting from the GA solution, the nonlinear term whose
removal has the minimum effect on the SE criterion is dropped, with the procedure being repeated
till no more regressors are available. In this way, only the nonlinear terms which play a significant
role in SE criterion minimization are retained.

This phase is concluded by estimating “local” NARX models for each simulation experiment.
The local NARX model parameters 5*/_1°°ﬂl(§k)(i =1,....n,and k=1,...,K) are estimated by means of

the SE method.

2.2.2 PC basis

This second phase, is based on the estimated local NARX model parameters in order to define
appropriate PC basis subspaces for their expansion. Toward this end, the estimated parameter
vector §°°(¢) is initially projected onto a PC basis consisting of a small number of functions by
using the following linear regression model and ordinary least squares optimization

0" (5) = iem‘ “Paii (5)+ w; (14)

where w; designates the vector of the expansion residuals. Then, it is examined whether the
addition of more PC basis functions significantly contributes to the reduction of the residual sum
of squares criterion

ng K
RSS=>">"w?, 15)
i=l k=1
The significance of the added term is checked by the partial F-test, that is the F-statistic
RSS, —RSS,
__ D4 (16)
F RSS,

Kn,-q,
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Table 1 PC-NARX model structure selection procedure

Select k, dataset (either by taking into consideration characteristics of the input random

Step 1. vector realization or based on a nonlinearity measure).
Step 2. Define initial search space for nonlinear terms.
Step 3. GA for the selection of nonlinear terms.
Step 4. Refine GA results of the previous step by dropping excessive terms.
Step 5. Estimate local NARX models for each simulation dataset (SE method).

Use partial F-test in order to determine an appropriate sparse PC basis (maximum total
Step 6.

degree has to be preselected).

Step 7 Refine PC-NARX model by using coefficients of projection of the previous step and SE

method.

is calculated, with RSS; designating the residual sum of squares of the initial model (model 1) with
q1 coefficients of projection and RSS, that of model 2 with ¢, coefficients of projection, while Kng
is the total dimension of the 6 vector. Under the null hypothesis, model 2 does not provide a
significantly better fit than model 1. The F-statistic will follow an F distribution, with (¢,-¢;, Kng-
q») degrees of freedom, while the null hypothesis will be rejected if the F-statistic is greater than
the critical value of the F-distribution for a selected false-rejection probability. Thus, PC basis
functions may be added till the F-statistic becomes lower than the critical value of the F-
distribution.

Normally, the process above may be started with the expansion of the local NARX parameters
onto the constant basis ¢ )(¢) with d;,=[0 0 0...0]" and the addition each time of a single PC basis
function - the one which leads to the highest reduction of the RSS criterion. The final coefficients
of projection 6;; are used as initial estimates for the final PC-NARX model which is refined
through SE-based nonlinear optimization. The basic steps of the PC-NARX model structure
selection procedure are summarized in Table 1.

3. Parametric representation of synthetic earthquakes

In the present study, the stochastic ground motion model proposed in (Rezaeian and Der
Kiureghian 2010) is employed for the parametric representation of synthetic earthquake ground
motion acceleration signals. According to this model the ground motion is produced by time-
modulating a normalized filtered white noise process. In order to simulate the time-varying
characteristics of both the temporal and spectral content of a real earthquake, the modulating
function and the Impulse Response Filter (IRF) of the aforementioned model have non-stationary
properties.

More specifically, the non-stationary modulating function is defined as a gamma function of the
following form

q(t,@) = at™ " exp(—at) (17

where a=[a;, a, 0(3]T, with ;>0 the parameter of the process intensity, a,>1 the parameter
controlling the shape of the modulating function, and a;>0 the duration of the motion. These
parameters may be directly estimated from three time-domain characteristics of a ground motion
accelerogram: i) the expected Arias intensity /,, which forms a measure of the total energy
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contained in the motion, ii) the effective duration of the motion Ds.os (the time interval between the
instants at which the 5 and 95% of the expected Arias intensities are reached), and finally, iii) the
time #,;q at which a 45% level of the expected Arias intensity is reached.

On the other hand, the non-stationary IRF is given by the following expression

o, (Z_)efgfwf(f)(tfr) .sin [0)/- (0)(t=7)4f1 - 5/2_ J

M , T<t

with {; designating the damping ratio of the filter and w(7) the filter’s frequency. The latter is
defined as wAt)=wmiat® (T-tmiq) With wniq representing the filter frequency at .4, and o’ the rate
of change of the filter frequency with time.

Therefore, given a target accelerogram, the parameters wmiq,&w’, s Iy, Ds.os, and fyiq may be
identified by matching the properties of the recorded motion with the corresponding statistical
measures of the stochastic ground motion model (Rezaeian and Der Kiureghian 2010). The
identified model may be subsequently used for the generation of synthetic ground motion
accelerograms with similar time-frequency characteristics with that of the real recorded motion.

In a similar way, a pdf may be identified for each of the stochastic ground motion model
parameters in order to represent not a single but a set of real earthquake accelerograms. This
procedure is presently applied for the modeling of the 3297 ground motion signals of the PEER
database (horizontal components only with less than 10000 samples; (Peer 2012)). From the
identified sets of parameters, only the first 2000 with the best model fitting are kept for the
subsequent analysis. The resulting histograms for the identified parameters and the fitted, by the
means of the maximum likelihood estimation method, pdfs are shown in Fig. 1. Dsgs and #,;4 are
shown in normalized discrete time #7, while the results of fitting {; by a parametric pdf were not
satisfactory. It is also noted that the square root of the Arias intensity estimated values are used for
this parametric fitting.

Wt—1]= (18)

500
10001t distribution(-0.33,0.2,1.73) [
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Fig. 1 Histograms of the stochastic ground motion model parameters along with the fitted
probability density function
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4. Numerical example

A FE model of a building frame structure is presently considered for the validation of the
introduced method (Fig. 2). The identification of the frame’s metamodel is based on recordings of
the horizontal velocity of the top floor of the building measured at node 12 (Fig. 2) obtained by the
time history loading of the FE model with various synthetic earthquake ground motion signals.

yT_' 16 kN/m V.,
" 11 (15) 12
9 (10)
16 kN/m
(7) (8)
16 kN/m
T 13) 8
() (6)
16 kN/m
YYtbYIrYYEVYYY
5 (12) 6
(3) (4)
16 kN/m
TR RRREY!
I ®|4
(11)
= )
¥ 1 2
Y Y
| I
Lp ! 4m I

Fig. 2 The ﬁvé—storey shear frame model

Table 2 Geometric and mechanical properties of the five-storey shear frame model

Geometric )
- 3 Mechanical

Cross-sectional area cm

1* storey columns 484 Poisson ratio 0.29
2™ storey columns 400 Density (kg/m®) 7850
3" storey columns 324 Yield stress (MPa) 50
4™ storey columns 256 Tangent modulus (GPa) 10
5™ storey columns 196

Horizontal beams 324
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Table 3 Random input variables

Variable Distribution pdf parameters
E (GPa) Uniform min=180, max=220
Wmia (Hz) Log-Logistic ©=3.52,06=024

Inverse Gaussian

T

1£=026,1=0.11

The elements of the shear frame are considered to have square cross sections and being made of
steel with isotropic behavior described by a bilinear stress-strain curve. The constant, characterized
by negligible uncertainty, mechanical and geometric properties of the structure are summarized in
Table 2. On the other hand, the steel’s Young modulus £ is considered to be uncertain, modeled by
a random variable following a uniform distribution £~U(180,220) (GPa).

The uncertain input parameter vector of this numerical example includes also the stochastic
ground motion model parameters w4 and \/T which follow the distributions indicated in Fig. 1.

For this case study, the rate of change of the filter frequency w’, the IRF filter damping ratio {; and
the time variables #,q and Ds.s are considered constant and equal to the PEER database mean
estimated values for all synthetic earthquake accelerograms. That is, @’ =-0.4160, {;=0.2514, tniq
=0.1296, and Ds.95=0.4080.

Summarizing, in total three independent input random variables with known pdfs are
considered for this metamodeling problem (see Table 3).

4.1 Simulation experiments

A total number of 100 simulation is conducted (K=100) for a corresponding number of input
random vector realizations &(k =1,2,...,100) sampled by the LHS method. The values of the
sampled variables along with their histograms are shown in Fig. 3.

For each simulation experiment, the shear frame model is excited by a synthetic ground motion
accelerogram applied in the x-axis direction (sampling frequency £=40 Hz; 1000 samples for each
accelerogram). The Peak Ground Acceleration (PGA) values of the synthetic accelerograms
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Fig. 3 The input random vector realizations for the 100 simulations conducted
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acceleration signal x; and (d) the corresponding plot of the total reaction-force calculated at the base
of the shear frame versus 1* floor displacement calculated at node 2

vary within an interval of 0.25 to 0.55 g (Fig. 4). The selected range is indeed capable of exciting
the nonlinear dynamics of the FE model, as indicated in Fig. 5(d) in which the displacement of the
FE model calculated for node 2 (1¥ floor), versus the corresponding sum of reaction forces
calculated at the base of the frame for simulation experiment 53 are depicted. In Fig. 5(b) the
corresponding plot for simulation experiment 5 is shown. These simulation experiments are those
with the lowest (experiment 5) and highest (experiment 53) degree of nonlinearity, according to
the mean value of the coherence function criterion (Choudhury et al. 2008, Spiridonakos and
Chatzi 2012).
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4.2 PC-NARX metamodel identification

For the metamodel structure selection problem PC-NARX models with n,=n,=10 are
considered, since the FE model may be approximated by a 5-dof system corresponding to a NARX
model with maximum lag equal to 10, while the appropriate nonlinear terms g,(z[¢]) are searched
among functions of the following form

glad)=z[t or g(&le)=z[t-|plt - /] (19)

with z[f]=[y[t—1],....y[t=10]1x[f]x[t—1],... x[+~10]]" and j=I,....,10. This type of nonlinear
functions have been shown to be appropriate for modelling bilinear material properties and in
general systems represented through a hysteretical mechanism (Spiridonakos and Chatzi 2014).
The application of the GA algorithm for the selection of the most significant terms is employed
along with the dataset of the input excitation and FE model output response of the simulation
experiment number 53 which, as already mentioned, corresponds to the simulation experiment
depicting the higher degree of nonlinearity. The GA leads to the selection of 124 linear and
nonlinear terms, while the backward elimination procedure applied on the GA indicates, as
illustrated in Fig. 6, that a significant number of terms may be dropped since their contribution in
the reduction of the SE criterion is insignificant. However, as shown in Fig. 6 there is no clear
indication of the number of functions that should be rejected since the simulation error criterion
depicts a linearly increasing trend with no clear minimum. In some cases, an educated guess is
required for the final selection of the salient nonlinear terms, or alternatively a trial-and-error
procedure may be followed. In this case study, and in order to compromise the dimensionality of
the approximation (included number of terms) with the accuracy attained the first 60 terms are
dropped since their rejection leads to an minor increase of the minimization criterion, lying below
0.2%. Thus, the number of finally selected nonlinear terms is equal to 64 (Table 4).

It must be noted that the selection of the appropriate functional form of the nonlinear regressors
and the subsequent selection of a subset of these regressors from a usually infinite set is a
demanding task (Piroddi and Spinelli 2003, Wei et al. 2004).
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Fig. 6 Backward elimination procedure results for the selection of the nonlinear terms
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Table 4 Selected nonlinear terms
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Fig. 7 Partial F-test procedure for the selection of the sparse PC basis

The F-test procedure outlined in section 2.2.2 is then utilized for the selection of the appropriate
PC basis functions. The initial search space is defined by the truncated set of multivariate Legendre
polynomials basis functions of maximum total degree equal to two. It is noted that the input random
variables listed in Table 3 are first transformed into standard uniform variables by using the inverse
cumulative density functions of the corresponding pdfs. The calculation of the F-statistic and the
corresponding critical values while increasing the dimension of the PC basis is shown in Fig 7. The
multi-indices vectors of the finally selected functions are given in Table 5.
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Table 5 Multi-indices vectors of the selected PC basis functions

¢i(E) & (Wmia) & ()
d(1) 0 0 0
dQ2) 1 0 0
d(3) 1 1 0
d4) 0 1 0
d(5) 0 2 0
d(6) 0 1 1
d(7) 0 0 1

It should be observed that according to these results the PC-NARX metamodel parameters 6;
and thus the dynamic properties of the corresponding numerical model seem to be more sensitive
to the input variable wq which defines the dominant frequency of the synthetic ground motion
signal used for the excitation of the FE model. On the other hand, the results of Table 5 indicate
lower sensitivity to input variables £ and /,, i.e., the Young modulus and the intensity of the
ground motion parameter. However, this fact may be attributed to the relatively narrow range of
their variability.

The performance of the estimated metamodel is assessed through its application on both
prediction and simulation of the dynamic response of the FE model excited by the N-S component
of the El Centro earthquake accelerogram. It is noted here that for the SE method the Levenberg-
Marquardt algorithm, i.e., the Isgnonlin MATLAB function is utilized with TolFun=1x10"",
TolX=1x107°. The Young modulus of the shear frame for this test case is selected as E=200 GPa,
while the rest of the input random variables are estimated from the actual accelerogram as
wmic=24.02 (Hz), 1,=0.95 (sampling frequency set equal to 40 Hz; 2688 samples).

The predictions of the PE-based and the simulations of the SE-based estimated PC-NARX
metamodels are contrasted to the dynamic response of the numerical model in Fig. 8. As it may be
observed, the estimated metamodel is capable of reproducing the dynamic response of the
numerical model with excellent accuracy. More specifically, the prediction error sum of squares
normalized by the sum of squares of the simulated dynamic response for the PE is equal to
0.1357% and the normalized simulation error sum of squares amounts to 1.3077% for the SE. It is
worth noting that these results are obtained for an excitation signal for which the silent
assumptions of w’'=-0.4160, (;=0.2514, t,;4=0.1296, and Ds 95=0.4080 are no longer valid.

Finally, it should be added that the PC-NARX based simulated response was calculated more
than 100 times faster than that of the FE model. A single simulation run of the PC-NARX
metamodel for an excitation of 1000 samples requires approximately 2 seconds (mean value of
100 simulations in MATLAB on a PC with quad-core Xeon 3.5 GHz CPU, 8 GB RAM), while a
simulation of the corresponding shear frame FEM on the same PC requires approximately 4
minutes. The reduction in computational time furnished by the proposed method is larger as the
dimension of the reference FE model increases; naturally it is not uncommon to deal with
structural FE models of thousands or even millions of DOF. However, it should be added that the
estimation of the PC-NARX model based on the SE method is followed by additional effort
required by the user for the PC-NARX structure selection and computational cost for the model
estimation, which usually comprises a trial-and-error procedure and may not be directly quantified.
This however takes place only once in a training stage of the overall analysis with the selected
configuration kept unaltered for subsequent runs.
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Fig. 8 (a) El Centro earthquake time history, (b) FE shear frame model displacement of the 1% floor
(node 2) versus the total reaction force calculated at the base of the frame, and (c) top floor velocity
response (v),) as calculated by the FE shear frame model and the corresponding PC-NARX one-step-
ahead prediction and simulation response signals

5. Conclusions

This work introduces a methodology for the metamodeling of large scale structural models with
uncertain parameters and under stochastic excitation.

*The proposed metamodel, termed PC-NARX, is based on the fusion of the Polynomial Chaos
expansion method with Nonlinear ARX models.

*The NARX model is able to account for the nonlinearity of the response for increased levels of
input (earthquake) excitation.

*The proposed framework is suitable for incorporating uncertainties into the simulation, since
the NARX model coefficients are treated as stochastic parameters, which are dependent upon the
input random variables. These variables include structural properties as well as characteristics of
the earthquake excitation. The aforementioned dependency is described via expansion on a
properly constructed polynomial chaos basis.

*The framework introduced herein provides a reliable metamodel of complex engineering
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systems, with significantly reduced computational toll, applicable for purposes of system
identification, SHM, control and uncertainty quantification.

When discussing applications in real-time control, this framework delivers an online model,
which is able to reliably estimate structural response of complex systems even in the nonlinear
range. Within a SHM framework, the proposed metamodel can substitute the full order FE models
that are often utilized in time consuming inverse problem formulations. Within an uncertainty
quantification framework, the proposed PC-NARX approach delivers a functional relationship
between structural response and the uncertain input variables, which can be straightforwardly used
for determining for instance the robustness of certain types of structures in earthquake prone
regions. The method has been applied for the metamodeling problem of a five-storey shear frame
FE model subject to synthetic earthquake ground motion, resulting in response of that lies outside
the linear elastic region. Random variables are used to describe the uncertainties of both the
material properties of the simulated structure and the input excitation signals. The PC-NARX
model succeeds in reproducing the complex response of the system while integrating uncertainty
into the simulation.
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