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Abstract.  Within the context of Structural Health Monitoring (SHM), it is often the case that structural 

systems are described by uncertainty, both with respect to their parameters and the characteristics of the 

input loads. For the purposes of system identification, efficient modeling procedures are of the essence for a 

fast and reliable computation of structural response while taking these uncertainties into account. In this 

work, a reduced order metamodeling framework is introduced for the challenging case of nonlinear 

structural systems subjected to earthquake excitation. The introduced metamodeling method is based on 

Nonlinear AutoRegressive models with eXogenous input (NARX), able to describe nonlinear dynamics, 

which are moreover characterized by random parameters utilized for the description of the uncertainty 

propagation. These random parameters, which include characteristics of the input excitation, are expanded 

onto a suitably defined finite-dimensional Polynomial Chaos (PC) basis and thus the resulting representation 

is fully described through a small number of deterministic coefficients of projection. The effectiveness of the 

proposed PC-NARX method is illustrated through its implementation on the metamodeling of a five-storey 

shear frame model paradigm for response in the region of plasticity, i.e., outside the commonly addressed 

linear elastic region. The added contribution of the introduced scheme is the ability of the proposed 

methodology to incorporate uncertainty into the simulation. The results demonstrate the efficiency of the 

proposed methodology for accurate prediction and simulation of the numerical model dynamics with a vast 

reduction of the required computational toll. 
 

Keywords:  nonlinear dynamics; earthquake excitation; metamodeling; nonlinear ARX models; 

polynomial chaos expansion; system identification; uncertainty quantification 

 

 

1. Introduction 
 

The assessment of the dynamic behavior of structural systems subjected to extreme loading 

conditions, such as earthquakes, is of particular importance for the safe operation of civil 

structures and forms a significant chapter within the broad topic of Structural Health Monitoring 

(SHM) (Farrar 2007). Nevertheless, for the vast majority of such structures, it is hardly ever 

possible to perform dynamic response testing on the actual structure or even realistic simulation 

tests on an appropriately scaled structural model. 
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The advancements achieved in the field of Finite Element (FE) modeling methods have played 
a key role in overcoming this hurdle by enabling the realization of sophisticated simulation 
experiments emulating structural response even in the nonlinear range (Bathe 2009). However, 
despite the rapidly growing computational power and the continuous development of increasingly 
efficient algorithms, the accompanying growth in the complexity of FE models as well as the 
necessity for more detailed descriptions of both structural geometry and mechanical properties 
render the use of highly detailed FE models almost prohibitive for complex, large structures 
(Gholizadeh and Salajegheh 2009). 

The problem is even more pronounced when taking into account that structural systems are 
commonly characterized by parameter uncertainty to what concerns for instance the mechanical 
properties of the structure (Hernandez and Bernal 2008, Christodoulou et al. 2008, Vanik et al. 
2000, Beck and Katafygiotis 1998). Thus, the analyst is faced with the task of performing a 
number of simulations in order to obtain an accurate numerical model of an existing structure. 
Moreover, when the linearity assumption is relaxed in favor of increased modeling accuracy the 
numerical model must be tested for a number of different excitation scenarios. In the case of 
stochastic dynamic loading, which might often be the case (Katkhuda et al. 2005, Poulimenos and 
Fassois 2006, Lourens et al. 2012, Naets et al. 2013, Kalkan and Chopra 2010), the statistical 
characteristics of the input excitation need also be treated as uncertain random variables.  

Thus, for processes requiring a mutliplicity of forward simulations, such as design 
optimization, or model updating procedures based on time history loading, a simpler 
representation of the FE model should be considered, able to accurately reproduce the behavior of 
the structure for a wide range of excitations. To this end, several researchers have dealt with the 
extraction and identification of models of reduced order both in the case of linear (Fraraccio et al. 
2008, Caicedo et al. 2004, Faravelli et al. 2011) and nonlinear dynamics (Chatzi and Smyth 2009, 
Smyth et al. 2002, Yun and Shinozuka 1980, Corigliano and Mariani 2004, Katkhuda et al. 2005, 
Lin et al. 2001, Moaveni et al. 2010).  

In this work, both structural properties and excitation uncertainties are treated by means of a 
time-series model with random parameters utilized for the description of uncertainty propagation 
through the nonlinear numerical model. The time series model is of a nonlinear autoregressive 
with exogenous input form. Methodologies of this type have previously been explored in the 
works of Samara et al. (2013), Cheng et al. (2007), Rutherfor et al. (2007), Kerschen et al. (2006), 
Adams and Farrar (2002), Worden and Tomlinson (2000), and have been proven efficient in 
simulating the dynamics of nonlinear systems or extracting nonlinear features. In the approach 
introduced herein, uncertainty of the structural and loading parameters is incorporated via 
implementation of a Polynomial Chaos (PC) expansion representation. More specifically, the 
random responses of a large-scale numerical model are approximated by a suitably defined 
Polynomial Chaos Nonlinear AutoRegressive with eXogenous input (PC-NARX) metamodel. The 
latter is able to describe both aforementioned types of uncertainties, i.e., regarding the structural 
properties and the input excitation, by expansion of its random model parameters onto a finite-
dimensional PC basis (Spiridonakos and Chatzi 2012, Blatman and Sudret 2010, Sapsis and 
Lermusiaux 2009). Thus, the PC-NARX metamodel is described by a small number of 
deterministic coefficients of projection, and is therefore appropriate for simulating the structural 
system at hand under a significantly reduced computational effort. 

The method’s effectiveness is demonstrated through the identification of a metamodel for a 
five-storey building with nonlinear material properties. Toward this end, a limited number of 
simulation experiments is carried out, with the FE numerical model being subjected to different 
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realizations of synthetic earthquakes. Synthetic earthquakes are produced by filtering a white noise 
process through a non-stationary impulse response filter and a non-stationary modulating function 
in order to simulate the time-varying characteristics for both the temporal and spectral content of a 
real earthquake as proposed in the work of Rezaeian and Der Kiureghian (2010). The non-
stationary filter and the modulating functions are described by a small number of uncertain 
parameters, with sample observations of the latter being estimated through fitting of the model to 
real recorded earthquake ground motion signals. One of the important features of the introduced 
approach therefore lies in the parallel parameterization of the input. 

The remainder of the paper is organized as follows: The description of the PC-NARX class of 
models is presented in Section 2 along with the proposed model parameter and model structure 
selection methods. The model for the parametric representation of real earthquakes, along with the 
estimation results obtained by modeling the PEER database earthquake accelerograms, are 
described in Section 3. The numerical application involving a five-storey frame, the conducted 
simulations and the metamodeling results are presented in Section 4, while the main conclusions 
of the study are drawn in Section 5. 
 
 
2. Polynomial chaos NARX models 
 

Metamodeling refers to the process of identifying a reduced order, computationally efficient 
representation of a large scale numerical model. In the present work, a metamodel is sought for the 
accurate representation of the nonlinear dynamics of a refined numerical model and the accurate 
simulation and/or prediction of its time history loading response.  

Let us consider a structural system represented by a numerical model M  that is characterized 
by a number of input parameters relating to the properties of the modeled structure (mechanical 
and/or geometric). It is assumed that Ms of these parameters are subject to uncertainty and that 
they may be described by independent random variables gathered in a random vector 

1 2[ , , , ]
SS M    T . Superscript T denotes transpose of a vector or a matrix while it is noted that 

for simplicity of notation no distinction is made between a random variable and its value(s). 
Since the dynamic behavior of a nonlinear system is also a function of the input excitation 

characteristics, it is also considered that the set of excitation signals used for the dynamic loading 
of the numerical model may be parameterized by a small number of random variables 

1 2[ , , , ]
S SS XX M M M M      T . 

As a result of the uncertainty propagation, the dynamic response of the numerical model to a 
given input excitation will also be a random variable which in addition depends on time, that is 

 [ , ] [1, ], [2, ], , [ , ],X X X Sy t x x x t M                        (1) 

with t =1,2,…,T designating normalized by the sampling period discrete time, x[t, ξX] the 
excitation input signal, y[t,ξ] the corresponding numerical model response signal, and 

[ , ] S X T T T    the M  dimensional (M=MS+MX) complete vector of input random variables with 

known joint probability density function (pdf) f(ξ).  
In order to approximate the numerical model dynamic response y[t, ξ] for every realization of ξ 

in an efficient way, a novel metamodeling method based on Polynomial Chaos Nonlinear 
AutoRegressive with eXogenous input (PC-NARX) models is introduced in the present study. The 
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nonlinear form being key to the accurate representation of a structural system subjected to 
significant amplitudes of input ground motion. The general PC-NARX model, in the linear-in-the-
parameters form, is given by the following relationship (for the purposes of notational simplicity 
the dependency of the input and output signals on ξ is not indicated explicitly in the following 
relationships) 

   
1

[ ] [ ] [ ]
n

i i
i

y t g t e t





    z                            (2) 

where gi(z[t]) are the nonlinear model terms generated from the regression vector z[t]=[y[t-
1],…,y[t-na],x[t],…,x[t-nb]]

T with na,nb designating the maximum output and input time lags, 
respectively, and 2[ ] ~  NID(0, )ee t   the model’s residual sequence with NID (·,·) denoting a 

Normally Independently Distributed process with the indicated mean and variance. It should be 
mentioned that the model terms gi(z[t]) may be constructed from a variety of local or global basis 
functions including polynomials, splines, neural networks, wavelets and others (Wei et al. 2004). 

The important feature of PC-NARX models, in comparison with the conventional NARX 
models (Chen and Billings 1989), is that they are characterized by parameters θi(ξ) which are 
random variables themselves. These parameters are actually represented by a deterministic 
mapping which describes their relation to the input random variables. More specifically, assuming 
that the PC-NARX model parameters θi(ξ) have finite variance, they admit the following 
polynomial chaos representation (Soize and Ghanem2004) 







1

)()(
j

ξξ d(j)ji,i                                (3) 

where θi,j are unknown deterministic coefficients of projection, d(j) is the multi-index of the 
multivariate polynomial basis, and φd(j) are multivariate basis functions that are orthonormal with 
respect to the joint pdf of ξ, that is 

    


 


otherwise   0

for      1
E ,

βα
ξξ βαβα  ,                        (4) 

Each probability density function may be associated with a well-known family of orthogonal 
polynomials. For instance, the normal distribution is associated with Hermite polynomials while 
the uniform distribution with Legendre. A list of the most common probability density functions 
along with the corresponding orthogonal polynomials and the relations for their construction may 
be found in (Soize and Ghanem 2004). 

For purposes of practicality, the infinite series of expansion of Eq. (3) must be truncated by 
selecting an appropriate functional subspace consisting of a finite number of terms p. In this way, 
the resulting PC-NARX model is fully parametrized in terms of a finite number (nθ×p) of 
deterministic coefficients of projection θi,j, while the complete PC-NARX identification problem 
consists of the subproblems of model parameter estimation and model structure selection, which 
are discussed in the following sections. 

At this point it should be noted that PC-ARIMA models with a-priori known deterministic 
coefficients of projection have been considered before for the characterization of terrain topology 
by Wagner and Ferris (Wagner and Ferris 2007). Moreover, linear PC-ARX models have been 
used in the metamodeling context in previous of work of the authors (Spiridonakos and Chatzi 
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2012). Similarly linear ARX models with functionally dependent parameters have also been used 
in a number of studies for the purposes of structural identification and damage detection (for 
instance see Kopsaftopoulos and Fassois (2013) and the references therein), and have been 
extended to the nonlinear case for aircraft virtual sensor design in Samara et al. (2013). However, 
in these studies the input parameters are not related with a known probability density function and 
thus the basis is constructed from an arbitrarily selected family of orthogonal basis functions. 
 

2.1 Parameter estimation 
 
As already mentioned, the estimation of a PC-NARX metamodel refers to the determination of 

the coefficients of projection parameter vector θ 

 Tp,nθ
θθθ ,,, 1,21,1 θ                               (5) 

The calculation has to be based on the availability of time history data for the input excitation 
and output response of the numerical model. These may be acquired for a small number of 
simulations, conducted for different realizations of the input random vector using the full scale 
numerical model. 

Let us consider a series of K simulations conducted for a corresponding number of input 
random vector realizations  TMkkkk ξξξ ,,2,1 ,,, ξ  (for k =1,2,…,K), and the resulting set of 

excitation signals  [1], [2], , [ ]T
k k k kx x x x T  . 

The corresponding dynamic response of the full scale numerical model is indicated as 
 [1], [2], , [ ]T

k k k ky y y y T   and as already mentioned it is assumed to follow the general PC-

NARX model of Eq. (2) 

    KkTttetgθty
θn

i
kkikik  1,       ,,1,   , ][][][

1

 


zξ               (6a) 

[ ] ~ NID(0, ),
kk ee t                                (6b) 

2
,  for 

{ [ ], [ ]}
0  for 

ie t
i j

i j
e t e t

i j

 


    


E                       (6c) 

In the relationships above, uncorrelatedness of the residual series between different simulation 
experiments is also assumed. For these simulations, the input vector ξk is generated from the input 
parameter space either randomly or by using a structured sampling technique, such as the Latin 
Hypercube Sampling (LHS) (Helton and Davis 2003). 

According to the intended use of the metamodel, the estimation of the parameter vector θ may 
be based upon the minimization of either the Simulation Error (SE) criterion or Prediction Error 
(PE) criterion. 

 
2.1.1 Simulation error method 
The SE estimation method must be employed when a PC-NARX metamodel that may replace 

the numerical model for additional simulations is sought. 
Let us consider again the same set of K input excitation signals ( 1, 2, , )T

kx k K  . For each T
kx  
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the simulated response [ ]ky t  of a PC-NARX metamodel may be obtained by using the input 

excitation signals and the following relationship applied recursively with respect to time t 

 
1

[ ] ( ) [ ]
n

k i k i
i

y t g t





   z                                (7) 

with given initial conditions [0], , [ ]k k ay y n  . The responses [ ]ky t  of the metamodel should be as 

close as possible to that of the numerical model yk[t], thus the estimation of a PC-NARX 
metamodel may be based on the minimization of the following SE criterion 

 2 2

1 1 1 1

arg min [ ] [ ] arg min [ˆ ]
s s

K T K T

k k k
k t t

s
k

y t y t t
   

   
     

   
 

 
                  (8) 

where εk[t] designates the simulation error and arg min stands for the minimizing argument. This 
optimization problem may be solved by iterative nonlinear optimization methods. However, such 
methods are normally amenable to local minima convergence problems when arbitrary initial 
conditions are used, resulting to models with poor simulation performance or even models with 
unstable simulated responses. For this reason the optimization procedure should be initialized 
either by derivative-free search methods or by the parameter vector θ obtained through the PE 
method of the following section. 

 
2.1.2 Prediction error method 
Beyond providing initial estimates for the nonlinear optimization procedure of SE method, the 

PE-based estimation method may also provide PC-NARX metamodels for the online prediction of 
the structural dynamic response, when the structural system corresponding to the numerical model 
is appropriately instrumented. This metamodel may in turn be used in real-time implementations 
within the context of vibration-based SHM and control. In such an effort issues such as the 
coupling of the model with the real structure (model updating) and possibly the modelling of 
responses of unobserved degrees-of-freedom should be addressed, however a more detailed 
investigation of these points lies outside the scope of the present study. 

The PE criterion consists in the sum of squares of the model’s one-step-ahead prediction errors 
for the complete set of simulation experiments. As it may be easily demonstrated, the one-step-
ahead prediction errors coincide with the model’s residual sequence, and thus θ has to be estimated 
by the following minimization problem 

      

















  
  

K

k

T

t
k

K

k

T

t
kk tettyty

1 1

2

1 1

2
argmin1argmin


θθ

θ ˆˆ              (9) 

with ˆ [ | 1]ky t t   designating the model’s one-step-ahead prediction, and ek[t] the prediction error. 

Toward this end, and by using Eq. (3), Eq. (6a) may be rewritten as 

     

            
 

][   ][][][

][][][

1,1

,

11

1 1

te

θ

θ

tgtgty

tetgθty

k

p,nt

knkpkkdk

n

i
kkikj

p

j
i.jk

θ
T

k

θ

θ




















 
 


  



ξπ

d

d

zξzξ

zξ





 
(10)
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or by stacking all time-instants in a single vector 

 

 
 

 
      

















111

][

    

[2]

[1]

   

,

      

,2

,1

][

    

[2]

[1]

1,2

1,1






























































































Tkpθn

θ

pθnTk
Tk e

k

k

k

p,n
T

k

T

k

T

k

y

k

k

k

Te

e

e

θ

θ

θ

TTy

y

y

θξ

ξ

ξ

ξ

Φ







 

where subscripts in brackets indicate the respective matrix/vector dimensions. Finally, by pooling 
all the available simulation experiments, the following linear regression model is obtained 

 
[ 1] [ 1][ ] [ 1]

1,11 1 1

1,22 2 2

,

( )

( )

( )

( )

KT KTKT n p n p

n pK K K











  

    
    
     
    
    


 
 
 
 

  
 
   

Y Φ

Φ

Φ

Φ

 






E

y e

y e

y e








                           (11) 

where Φ(ξ) is the regression matrix. Thus, the minimization problem of Eq. (9) may be rewritten 
as follows 

 EE  T
argmin

θ

θ̂                                (12) 

which due to the linear dependence of the residual sequence E on the parameter vector θ leads to a 
linear ordinary least squares estimator for the latter, that is 

 1(  ( ) ( ) )( ) ( )   Φ Φ Φ Y   T T                        (13) 

 
2.2 Model structure selection 

 
Model structure selection may be considered as the optimization procedure during which 

metamodels corresponding to various candidate “structures” are estimated (through the methods of 
the previous section), and the one providing the “best fitness” to the simulation data is selected. 

Particularly, the PC-NARX model structure selection procedure concerns the determination of: 
i) the nonlinear model terms gi(z[t]) and ii) the PC basis functional subspace. 

 
2.2.1 NARX terms 
Given the specific family of functions (e.g., polynomials, splines, neural networks, or 

wavelets), and the maximum output and input lags na and nb, a finite number of appropriate 
nonlinear terms must be selected. This selection cannot be based on a trial-and-error approach, 
since the dimension of the initial search space is usually excessive, while also the nonlinear 
optimization procedure required for the SE estimation method is computationally intensive. For 
these reasons a more automated and computationally inexpensive approach is proposed herein.  

The nonlinear terms selection procedure is initialized by selecting the simulation dataset 
exhibiting the highest nonlinearity, assuming that this set will require the maximum number of 
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nonlinear terms for its accurate representation. This dataset may be chosen based on either 
physical insight (e.g., simulated response corresponding to the highest excitation forces) or 
nonlinearity quantification criteria such as coherence or cross-bicoherence functions (Choudhury 
et al. 2008).  

Assuming that experiment ko is selected for this purpose, the excitation signal 
o

T
kx  and the 

simulated response 
o

T
ky  are utilized along with a Genetic Algorithm (GA) (Coley 1999) in order to 

determine promising subregions of the complete search space. Each GA individual is a bit-string, 
with each bit representing the existence (1) or not (0) of the corresponding nonlinear term from the 
initial search space. For example considering the initial search space, given as{y[t-1], y[t-1]2, y[t-
1]3, x[t], x[t]2, x[t]3}, each individual will be represented by a 6-bit vector, with a hypothetical 
optimal solution [101100] corresponding to g(z[t])={y[t-1], y[t-1]3, x[t]}. 

Each candidate NARX model created by the GA, is estimated by means of the PE method, 
although judged in terms of its simulation capabilities. This simplification is based on an implicit 
assumption on the proximity of the PE-based and SE-based estimated models and it is employed in 
order to circumvent the nonlinear optimization procedure of the SE method.  

In order to refine, and potentially reduce model dimensionality, the concept of backward 
elimination may be used as a second step. Starting from the GA solution, the nonlinear term whose 
removal has the minimum effect on the SE criterion is dropped, with the procedure being repeated 
till no more regressors are available. In this way, only the nonlinear terms which play a significant 
role in SE criterion minimization are retained.  

This phase is concluded by estimating “local” NARX models for each simulation experiment. 
The local NARX model parameters  local ( 1, ,  and 1, , )i k i n k K      are estimated by means of 

the SE method. 
 
2.2.2 PC basis 
This second phase, is based on the estimated local NARX model parameters in order to define 

appropriate PC basis subspaces for their expansion. Toward this end, the estimated parameter 
vector θlocal(ξ) is initially projected onto a PC basis consisting of a small number of functions by 
using the following linear regression model and ordinary least squares optimization 

    ij

p

j
ji,i θ wξξθ d  


)(

1

local
1

                             (14) 

where wi designates the vector of the expansion residuals. Then, it is examined whether the 
addition of more PC basis functions significantly contributes to the reduction of the residual sum 
of squares criterion 

2
,

1 1

RSS
n K

i k
i k

w


 

                                  (15) 

The significance of the added term is checked by the partial F-test, that is the F-statistic 

1 2

2 1

2

2

RSS RSS

RSS
q q

F

Kn q








                               (16) 

922



 
 
 
 
 
 

Metamodeling of nonlinear structural systems with parametric uncertainty subject… 

Table 1 PC-NARX model structure selection procedure 

Step 1. 
Select ko dataset (either by taking into consideration characteristics of the input random 

vector realization or based on a nonlinearity measure). 
Step 2. Define initial search space for nonlinear terms. 

Step 3. GA for the selection of nonlinear terms. 

Step 4. Refine GA results of the previous step by dropping excessive terms. 

Step 5. Estimate local NARX models for each simulation dataset (SE method). 

Step 6. 
Use partial F-test in order to determine an appropriate sparse PC basis (maximum total 

degree has to be preselected). 

Step 7. 
Refine PC-NARX model by using coefficients of projection of the previous step and SE 

method. 
 
 
is calculated, with RSS1 designating the residual sum of squares of the initial model (model 1) with 
q1 coefficients of projection and RSS2 that of model 2 with q2 coefficients of projection, while Knθ 

is the total dimension of the θlocal vector. Under the null hypothesis, model 2 does not provide a 
significantly better fit than model 1. The F-statistic will follow an F distribution, with (q2-q1, Knθ-
q2) degrees of freedom, while the null hypothesis will be rejected if the F-statistic is greater than 
the critical value of the F-distribution for a selected false-rejection probability. Thus, PC basis 
functions may be added till the F-statistic becomes lower than the critical value of the F-
distribution. 

Normally, the process above may be started with the expansion of the local NARX parameters 
onto the constant basis φd(1)(ξ) with d(1)=[0 0 0…0]T and the addition each time of a single PC basis 
function - the one which leads to the highest reduction of the RSS criterion. The final coefficients 
of projection θi,j are used as initial estimates for the final PC-NARX model which is refined 
through SE-based nonlinear optimization. The basic steps of the PC-NARX model structure 
selection procedure are summarized in Table 1. 

 
 

3. Parametric representation of synthetic earthquakes 
 

In the present study, the stochastic ground motion model proposed in (Rezaeian and Der 
Kiureghian 2010) is employed for the parametric representation of synthetic earthquake ground 
motion acceleration signals. According to this model the ground motion is produced by time-
modulating a normalized filtered white noise process. In order to simulate the time-varying 
characteristics of both the temporal and spectral content of a real earthquake, the modulating 
function and the Impulse Response Filter (IRF) of the aforementioned model have non-stationary 
properties.  

More specifically, the non-stationary modulating function is defined as a gamma function of the 
following form 

2 1
1 3( , ) exp( )q t t t                                (17) 

where α=[α1, α2, α3]
T, with α1>0 the parameter of the process intensity, α2>1 the parameter 

controlling the shape of the modulating function, and α3>0 the duration of the motion. These 
parameters may be directly estimated from three time-domain characteristics of a ground motion 
accelerogram: i) the expected Arias intensity Ia, which forms a measure of the total energy 
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Table 5 Multi-indices vectors of the selected PC basis functions 

ξ1(E) ξ2 (ωmid) ξ3 (Ia)
  

d(1) 0 0 0 
d(2) 1 0 0 
d(3) 1 1 0 
d(4) 0 1 0 
d(5) 0 2 0 
d(6) 0 1 1 
d(7) 0 0 1 

 
 
It should be observed that according to these results the PC-NARX metamodel parameters θi 

and thus the dynamic properties of the corresponding numerical model seem to be more sensitive 
to the input variable ωmid which defines the dominant frequency of the synthetic ground motion 
signal used for the excitation of the FE model. On the other hand, the results of Table 5 indicate 
lower sensitivity to input variables E and Ia, i.e., the Young modulus and the intensity of the 
ground motion parameter. However, this fact may be attributed to the relatively narrow range of 
their variability.  

The performance of the estimated metamodel is assessed through its application on both 
prediction and simulation of the dynamic response of the FE model excited by the N-S component 
of the El Centro earthquake accelerogram. It is noted here that for the SE method the Levenberg-
Marquardt algorithm, i.e., the lsqnonlin MATLAB function is utilized with TolFun=1×10−3, 
TolX=1×10−6. The Young modulus of the shear frame for this test case is selected as E=200 GPa, 
while the rest of the input random variables are estimated from the actual accelerogram as 
ωmid=24.02 (Hz), Ia=0.95 (sampling frequency set equal to 40 Hz; 2688 samples).  

The predictions of the PE-based and the simulations of the SE-based estimated PC-NARX 
metamodels are contrasted to the dynamic response of the numerical model in Fig. 8. As it may be 
observed, the estimated metamodel is capable of reproducing the dynamic response of the 
numerical model with excellent accuracy. More specifically, the prediction error sum of squares 
normalized by the sum of squares of the simulated dynamic response for the PE is equal to 
0.1357% and the normalized simulation error sum of squares amounts to 1.3077% for the SE. It is 
worth noting that these results are obtained for an excitation signal for which the silent 
assumptions of ω’ =−0.4160, ζf =0.2514, tmid =0.1296, and D5−95 =0.4080 are no longer valid. 

Finally, it should be added that the PC-NARX based simulated response was calculated more 
than 100 times faster than that of the FE model. A single simulation run of the PC-NARX 
metamodel for an excitation of 1000 samples requires approximately 2 seconds (mean value of 
100 simulations in MATLAB on a PC with quad-core Xeon 3.5 GHz CPU, 8 GB RAM), while a 
simulation of the corresponding shear frame FEM on the same PC requires approximately 4 
minutes. The reduction in computational time furnished by the proposed method is larger as the 
dimension of the reference FE model increases; naturally it is not uncommon to deal with 
structural FE models of thousands or even millions of DOF. However, it should be added that the 
estimation of the PC-NARX model based on the SE method is followed by additional effort 
required by the user for the PC-NARX structure selection and computational cost for the model 
estimation, which usually comprises a trial-and-error procedure and may not be directly quantified. 
This however takes place only once in a training stage of the overall analysis with the selected 
configuration kept unaltered for subsequent runs. 
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systems, with significantly reduced computational toll, applicable for purposes of system 
identification, SHM, control and uncertainty quantification.  

When discussing applications in real-time control, this framework delivers an online model, 
which is able to reliably estimate structural response of complex systems even in the nonlinear 
range. Within a SHM framework, the proposed metamodel can substitute the full order FE models 
that are often utilized in time consuming inverse problem formulations. Within an uncertainty 
quantification framework, the proposed PC-NARX approach delivers a functional relationship 
between structural response and the uncertain input variables, which can be straightforwardly used 
for determining for instance the robustness of certain types of structures in earthquake prone 
regions. The method has been applied for the metamodeling problem of a five-storey shear frame 
FE model subject to synthetic earthquake ground motion, resulting in response of that lies outside 
the linear elastic region. Random variables are used to describe the uncertainties of both the 
material properties of the simulated structure and the input excitation signals. The PC-NARX 
model succeeds in reproducing the complex response of the system while integrating uncertainty 
into the simulation. 
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