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Abstract.  System identification is regarded as the most basic technique for structural health monitoring to 

evaluate structural integrity. Although many system identification techniques extracting mode information 

(e.g., mode frequency and mode shape) have been proposed so far, it is also desired to identify physical 

parameters (e.g., stiffness and damping). As for high-rise buildings subjected to long-period ground motions, 

system identification for evaluating only the shear stiffness based on a shear model does not seem to be an 

appropriate solution to the system identification problem due to the influence of overall bending response. 

In this paper, a system identification algorithm using a shear-bending model developed in the previous 

paper is revised to identify both shear and bending stiffnesses. In this algorithm, an ARX (Auto-Regressive 

eXogenous) model corresponding to the transfer function for interstory accelerations is applied for 

identifying physical parameters. For the experimental verification of the proposed system identification 

framework, vibration tests for a 3-story steel mini-structure are conducted. The test structure is specifically 

designed to measure horizontal accelerations including both shear and bending responses. In order to obtain 

reliable results, system identification theories for two different inputs are investigated; (a) base input motion 

by a modal shaker, (b) unknown forced input on the top floor. 
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1. Introduction 
 

System identification (SI) techniques play an important role in investigating and reducing gaps 

between the constructed structural systems and their structural design models and in structural 

health monitoring for damage detection. In the field of SI, there are many achievements (see, for 

example, World Conferences on Structural Control; Housner et al. 1994, Kobori et al. 1998, 

Casciati 2002, Johnson and Smyth 2006, Fujino et al. 2010). 

It is well recognized that the modal-parameter SI and physical-parameter SI are two major 

branches in SI (Hart and Yao 1977, Kozin and Natke 1986). The former is suitable for identifying 

the overall mechanical properties of a structural system and exhibits stable characteristics 
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in its implementation. This characteristic may be related to the fact that the modal parameters are 
system performances representing global properties of a structural system. While the latter is 
important from different viewpoints, e.g., enhancement of reliability and robustness in active 
controlled structures (Doebling et al. 1996, Housner et al. 1997, Bernal and Beck 2004) or 
base-isolated structures, its development is limited due to the requirement of multiple and accurate 
measurements or the necessity of complicated manipulation. A few approaches have been 
developed so far in the physical-parameter SI, i.e., the multiple-input-single-output (MISO) 
approaches pioneered by Bendat and co-workers. These approaches, capable of identifying 
mechanical properties of structural systems have been generalized to handle a wide range of 
nonlinear time-variant systems excited by non-stationary signals of arbitrary evolutionary power 
spectrum form (e.g., Bendat et al. 1992, Bendat 1998, Spanos and Lu 1995, Kougioumtzoglou and 
Spanos 2013). On the other hand, a mixed approach is often used in which physical parameters are 
identified from the modal parameters obtained by the modal-parameter SI. However, in view of 
inverse problem formulation, a sufficient number of modal parameters must be obtained for the 
unique and accurate identification of the physical parameters. This requirement is usually hard to 
be satisfied. 

In this paper, a shear-bending model is used for reliable identification of high-rise buildings. 
While a shear building model has been a well-used model for system identification (for example 
Zhang and Johnson 2013), Kuwabara et al. (2013) and Minami et al. (2013a) introduced a 
shear-bending model and developed system identification theories for high-rise buildings. 
However their researches are limited mainly to theoretical ones. The corresponding experimental 
one is developed here. The proposed method has the following merits: (i) the simplicity of system 
identification requiring only two consecutive floor data in the identification of the story stiffness 
for a shear model and a shear-bending model and (ii) the robustness to noise by taking advantage 
of the ARX model. 
 
 
2. System Identification algorithm for shear and bending stiffnesses 

 
Fundamental algorithms of system identification for shear and bending stiffnesses of a 

shear-bending model have been proposed in the references (Kuwabara et al. 2013, Minami et al. 
2013a, b). In this section, the proposed system identification algorithms using floor acceleration 
records for base input and unknown vibration source are briefly explained. It should be remarked 
that, since the shear-bending model is an ideal mechanical model, actual buildings and test 
structures cannot be modeled by this model exactly. In other words, the shear and bending 
stiffnesses of the shear-bending model depend on the loading distributions. 

 
2.1 System Identification algorithm under base input 
 
Consider a building frame as shown in Fig. 1(a) and an N-story shear-bending model as shown 

in Fig. 1(b). Comparing with the scheme of the system identification for shear model (Takewaki 
and Nakamura 2000, 2005, Takewaki et al. 2011), the transfer function with respect to absolute 
horizontal accelerations (also displacements), i.e., the jth-floor acceleration to the (j-1)th-floor 
acceleration) can be introduced as  
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Fig. 1 Shear-bending model 
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where ,g jU U   are the Fourier transforms of base and jth-floor accelerations ,g ju u  . For evaluating 

shear and bending stiffnesses, the identification function (IDF) is defined in terms of Gj as 
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By defining the stiffness ratio Rj≡kbj/ksj of the bending to the shear, the shear and bending 
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s b /j j jk k R  (3b)

Assuming that the damping coefficient is in proportion to the stiffness, the relationship between 
Gj and Gj-1 can be derived by considering the dynamic equilibrium of a free body of the 
shear-bending model as follows 
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Fig. 2 Flowcharts of two system identification methods; (a) Base input, (b) Unknown internal forced input
 
 

  2
1

1
s s

2

b b

2

1 s 1 s 1 1

1 ( )
1/ 1 1

i ( 1) ( )

( )

i ( 1) ( )

( )

i ( 1) ( )

N
j j i

j
j j j i j

l
N l kk j

j
j j l j

N
j i

j j j i j

H G m GG i
G

H k c GG j GG j

m GG l H
H

k c GG j GG j

H m GG i

H k c GG j GG j



















    

        


  

    








       (4) 

where Hj, ksj, kbj, csj, cbj are the structural parameters of the shear-bending model shown in Fig. 1. 
In addition, 

1
( )

j
kk

GG j G . From Eq. (4), it can be observed that the transfer function Gj-1 is 

formulated in terms of the transfer functions from the jth through the Nth-story. 
Fig. 2(a) shows the flowchart of the proposed system identification method using the floor 

accelerations under base input. Regarding the stiffness ratios R as variable parameters, the 
stiffnesses are identified so that the transfer function evaluated by Eq. (4) as the function of R 
approximately coincides with that computed by using an ARX model. The SQP (Sequential 
Quadratic Programming) is applied to find the optimal stiffness ratio R so as to minimize the 
objective function J defined by  
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2.2 System Identification algorithm under unknown vibration source in structure 
 
Consider the same building model excited by an unknown vibration source f(t) at the top floor 

as shown in Fig. 1(c). Let Vj denote the Fourier transform of the interstory drift vj (=uj −uj-1). The 
transfer function gj of the interstory drift ratio can be evaluated from the records of floor 
accelerations as  
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From the estimation of the recurrence relation between the shear stiffness ratio rsj=ksj+1/ksj 
through the investigation of a few degrees-of-freedom shear-bending model, the shear stiffness 
ratio rsj can be derived (Minami et al. 2013b) as the function of the stiffness ratio Rj and gj (ω) as 
follows 
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where Nt

j ii j
H H


 . This recurrence relationship was also proved by the mathematical induction in 

the reference (Minami et al. 2013b). From Eq. (7), by regarding the stiffness ratio Ri (i=1,2,…, N) 
as the variables, it can be observed that the shear and bending stiffnesses of all the stories can be 
derived recurrently by specifying the first story shear stiffness. 

Fig. 2(b) shows the flowchart of the system identification method for an unknown vibration 
source. Considering any story stiffness as a leading parameter, the stiffness can be identified so 
that the fundamental natural circular frequency computed by the eigenvalue analysis is equal to 
that obtained as the reference value from another record (e.g., microtremor measurement). Then, 
the stiffness ratios R can be determined by the SQP method to minimize the objective function J, 
i.e., the difference of second and third natural circular frequencies. The objective function used in 
this system identification method is defined by  

(2) (2) (2) (3) (3) (3)/ /J                              (9) 

where ( )j  and ( )j  denote the jth natural circular frequency computed by the eigenvalue 
analysis of the identified model and the reference one. 
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3. Experimental verification 
 
Since it is difficult to obtain the true value of shear and bending stiffnesses for existing 

structures, an experimental verification of the proposed system identification methodology was 
conducted using a scaled structural model. By comparing the shear and bending stiffnesses 
identified by the proposed methodologies with those evaluated by the static loading test, the 
reliability of the proposed system identification methodologies is investigated. As stated above, it 
should be remarked that, because the shear-bending model is an ideal mechanical model, actual 
test structures cannot be modeled by this model exactly. The shear and bending stiffnesses of the 
shear-bending model depend on the loading distributions and the identified stiffnesses in various 
loading conditions do not necessarily coincide in principle. For this reason, the lower and upper 
bounds of the shear and bending stiffnesses as the reference value are obtained from the static 
loading test. 

 
3.1 Design of test structure 
 
The test structure was designed so as to have certain amounts of remarkable shear and bending 

properties. Fig. 3 shows the schematic diagram of the test structure; floor plates, column plates, 
spacer blocks (SUS304, 2B) and angle bars supporting columns (steel). The vibration of this test 
structure along with x axis was investigated as shown in Fig. 3. As a preliminary experiment, 
vibration tests of a 3-story test structure composed of one column plate in each story were 
conducted. From that preliminary experiment, it was confirmed that the bending deformation was 
predominant. In order to obtain an appropriate ratio of shear and bending responses, the test 
structure was re-designed to have two column plates and adjustable spacer blocks. In this paper, 
the inner distance between two column plates was set to 10 mm. The base of the test structure was 
made by a relatively thick stainless plate (14 mm) for the static loading test. In the vibration test 
for the system identification, the test structure was based on the shake table where the modal 
shaker was used as the source of the excitation.  

 
 

 
Fig. 3 Schematic diagram of test structure 
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3.2 Static loading test 
 
For evaluating the reference values of the shear and bending stiffnesses of the test structure for 

the following system identification, the relationship between force and deformation was 
investigated by the static loading tests. Figs. 4(a), (b) show the photo of the static loading test; (a) 
Setup of loading system, (b) Detailed placement of load cell and vertical displacement sensor. For 
the investigation of the influence of various loading conditions, four different loading variations of 
the static forces were conducted. The static forces were transmitted through a manually controlled 
loading system with the load cell (LTS-2KA, Kyowa Dengyo). The loading scenarios are 
summarized in Table 1. 

The rotational angle θi(i=1,2,3) of the floor plate was evaluated by measuring vertical 
displacements of the two points in the same floor mass plate using conventional displacement 
transducers (CDP-50, Tokyo Sokki). As for the horizontal displacement measurement, since the 
stiffness of the conventional displacement transducer may influence the horizontal stiffness, the 
horizontal displacement was measured by the laser displacement sensor (IL-300, IL-1050, 
KEYENCE). Fig. 5 illustrates the loading location and displacement sensor positions of the test 
structure. 

The estimated shear and bending stiffnesses ksi, kbi (i=1,2,3) from the static loading test were 
evaluated by the equilibrium equations including measured horizontal displacements and rotational 
angles of the floor plates which can be evaluated by vertical displacements of the floor plate. 
These are expressed as 
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where fi is the static load at the ith floor. Fig. 6 shows the evaluated shear and bending stiffnesses 
using Eqs. 10(a)-(c) from the static loading test for each scenario. In this static loading test, 
judging from the measurement system design of the load cell placement, the test structure may be 
subjected to the bending moment around the center of the floor plate. For this reason undesirable 
deformation was observed which may be related with instability of the rotation angle of the floor 
plate. This phenomenon causes a difficulty of the evaluation of shear and bending stiffnesses. For 
instance, the bending stiffnesses attain large values when the interstory rotation angel θi−θi-1 is 
small. This is because, even though the static loading at the top story floor keeps increasing, the 
interstory rotation angle θi−θi-1 varies from the negative value in the low-level deformation to the 
positive value in the high-level deformation.  

 
 

Table 1 Loading scenario of static forces 

 First story Second story Third story 

Case 1 Turnbuckle 
(Relatively slow 

control) 

0.0[N] 8.0[N] 0.0[N] 8.0[N] 0.0[N] 8.0[N] 

Case 2 - - 0.0[N] 8.5[N] 

Case 3 Man power 
(Relatively fast 

control) 

- - 0.0[N] 15.0[N]

Case 4 - 0.0[N] 9.0[N] 0.0[N] 9.0[N] 
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Fig. 8 Transfer function of horizontal acceleration (sweep vibration test) (a) Third story/base, (b) 
Second story/base, (c) First story/base 
 

Table 3 Natural frequencies and transfer function amplitudes of test structure  

mode Natural frequency [Hz] 
Transfer function amplitude 

2F/base 3F/base 4F/base 

1 2.76 16.36 29.68 38.16 

2 9.06 47.32 19.33 42.63 

3 12.72 18.06 25.65 17.65 

 
 
3.3.2 Sweep test 
So as to evaluate the modal frequencies of the test structure, the sweep test was conducted first. 

The target frequency band of the sweep base input was set from 2 [Hz] to 30 [Hz]. The minimum 
frequency control range of the shaker was limited by 2 [Hz] and a target base acceleration was 
controlled as 0.2 [m/s2]. 

Figs. 8(a)-(c) show the transfer function of each story acceleration to the base acceleration for a 
record which was calculated by the ensemble average of power spectrum. Considering the control 
frequency band of the sweep input, the transfer functions are smoothly obtained between the target 
frequencies as shown in Fig. 8. The mode frequencies identified from the peak of the transfer 
functions and the transfer function amplitudes of the test structure are given in Table 3.  

 
3.3.3 System identification of shear and bending stiffnesses using base input 
The system identification method explained in Section 2.1 was verified by using floor 

accelerations under base inputs; (a) White noise, (b) El Centro NS (1940). For comparing the 
influence of deformation amplitude dependency caused by geometrical nonlinearity of the test 
structure, several cases with different input motion’s amplitudes were investigated. Figs. 9(a)-(c) 
show the comparison of the transfer functions (Eq. (1)) of the interstory drift derived by the ARX 
model with that calculated by the raw data. The IDF can be described in a manner as shown in 
Figs. 10(a)-(c). Compared with the IDF by the raw data in Fig. 10, it can be confirmed that the 
IDFs using the transfer function derived by the ARX model are obtained smoothly even in the 
low-frequency range. 

The identified shear and bending stiffnesses for various amplitudes of the base input are 
summarized in Figs. 11(a), (b), where the initial stiffness ratio was R={1}. In Fig. 11, the 
estimated bounds of those stiffnesses as the reference values (Table 1) are also shown. From Fig. 
11, the variability of the identified shear stiffnesses seems to be low, while the values of the 
bending stiffnesses are relatively high. Similar results were observed for the base input of the 
white noise. Compared with the bounds obtained from the static loading tests, it is understood that 
the identified shear stiffnesses can be evaluated within an acceptable error. On the other hand, it 
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seems that the identified bending stiffnesses, especially of the lower stories, have some differences 
from the reference values. As explained before, since it is difficult to measure the rotation angles 
of the floor mass in the static loading test, the bounds of the bending stiffnesses should be regarded 
as merely the reference values. Fig. 12 shows the comparison of the simulated time-history 
acceleration of the bending-shear model, which was derived by the identified stiffnesses with 
damping ratio h=0.005, with that of recorded data at the top story. It can be observed from Fig. 12 
that the response under base input can be simulated within an allowable accuracy by the proposed 
SI method. 

 
 

Fig. 9 Comparison of transfer functions by ARX model with that by raw data for base input (El Centro 
NS 10%), (a) Third story, (b) Second story, (c) First story 
 

 
Fig. 10 Comparison of identification functions by ARX model with that by raw data for base input (El 
Centro NS 10%), (a) Third story, (b) Second story, (c) First story 
 

Fig. 11 Shear and bending stiffnesses identified in various amplitudes of the base input (El Centro 
NS), (a) Shear stiffness, (b) Bending stiffness 
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Fig. 12 Comparison of the simulated time history of the floor acceleration at the top floor with that of 
actual record (El Centro NS 10%, h=0.005) 
 

Fig. 13 Floor accelerations (man-power shaking test at the third story) (a) Third story, (b) Second 
story, (c) First story 
 

 
Fig. 14 Comparison of transfer functions of interstory drift ratio (a) Re[g1], (b) Re[g2]  

 
 
3.3.4 System identification of shear and bending stiffnesses using unknown vibration 

source in structure 
The system identification method explained in section 2.2 was also verified by using the floor 

accelerations under an unknown vibration source. The test structure was excited at the top floor, by 
man power. The accelerations on the base plate and each floor were recorded for about 60 seconds. 
The recorded accelerations are shown in Figs. 13(a)-(c). As mentioned in section 2.2, in applying 
the proposed method under an unknown vibration source, it is undesirable to cause vibration at the 
base. Therefore, the base plate was placed on the floor. The root mean square of the accelerations 
at the base was 4.69×10-3 [m/s2] which was extremely smaller than 2.10 [m/s2] at the third story. 

Figs. 14(a), (b) show the comparison of the transfer function of the interstory drift ratio (Eq. 
(6)) derived by an ARX model with that by raw records. Since this transfer function described by 
the ARX model is used to identify shear and bending stiffnesses, an appropriate selection of the 
band pass filter is quite important in this method. The reliability of the proposed SI method will be 
discussed elsewhere. The identified structural properties, where the initial stiffness ratios were 
assumed as R={1}, are summarized in Table 4. Lower and upper frequencies of the band-path 
filter for the optimally identified stiffnesses were 19[rad/s] and 94[rad/s], respectively. 
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Table 4 Identified stiffnesses and modal frequencies of test structure 

Story 
Shear stiffness 

ks [N/m] 
Bending stiffness

kb [Nm/rad] 

Stiffness 
ratio 

R 
Mode

Natural circular 
frequency 
ω [rad/s] 

Error ratio of ω [%]

First 5700 2565 0.45 1 17.34 -0.13 

Second 4928 14178 2.88 2 56.91 0.00 

Third 7494 7494 1.00 3 80.24 0.37 

 
Table 5 Summary of the test results 

SI method Story 

Shear stiffness ks [N/m] Bending stiffness kb [Nm/rad] 

Average 
Standard 
deviation 

Reference 

Average 
Standard 
deviation 

Reference 

Low Low 
Upper Upper 

Base 
Input 

1 5021.3 370.7 
4990 

6354.2 2561.2 
4140 

7750 8280 

2 5580.2 421.6 
4190 

5722.0 603.6 
3360 

6530 4910 

3 5492.8 930.6 
2490 

5492.8 930.6 
1800 

6270 3870 

Unknown 
Inner 

Vibration 
Source 

1 5650.0 70.7 
4990 

2542.5 31.8 
4140 

7750 8280 

2 4995.0 94.7 
4190 

17788.0 5106 
3360 

6530 4910 

3 7324.5 239.7 
2490 

7324.5 239.7 
1800 

6270 3870 
 
 
3.4 Summary of identification of shear and bending stiffnesses 
 
The comparison of the identified shear and bending stiffnesses with the estimated bound of 

those stiffnesses derived by the static loading test is summarized in Table 5. In Table 5, the 
average and standard deviation of the stiffnesses identified by the SI method for the base input 
include the results for all the records of both El Centro NS and white noise inputs. On the other 
hand, those for an unknown vibration source were evaluated by a series of measurements. 

As for the shear stiffness, by comparing the results identified by the SI method for the base 
input with those for an unknown vibration source, acceptable values compatible with the results by 
the static loading test have been obtained. On the other hand, as for the bending stiffnesses, it is 
concluded that the results by the SI method for an unknown vibration source are worse in view of 
the variability of the bending stiffness at the second story than that for the base input. This may be 
due to the difference of the objective function J. Since a difference between the second and third 
mode frequencies of the identified shear-bending model and those of the reference value is 
minimized in the SI method for an unknown vibration source, the variability of the natural 
frequencies higher than the third mode frequency caused by the change of bending stiffnesses is 
not necessarily reflected. 
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4. Conclusions 
 

The following conclusions have been derived. 
(1)The system identification theories using two consecutive floor data for a shear model and a 

shear-bending model were compared in detail. The theories use the base acceleration input or 
forced input in a building model. 

(2)The system identification results by the static loading, the base acceleration input and the 
forced input in a building model have been compared for mutual confirmation of the reliability of 
these identification theories. 

(3)The shear and bending stiffnesses as the reference value were derived by the static loading 
test. Because the difficulty exists in the loading system setup and measurement of the vertical 
displacements, lower and upper bounds of those stiffnesses were obtained. 

(4)The shear stiffnesses of the test structure identified by the proposed SI methods were 
acceptable compared with those derived by the static loading test. The standard deviation of the 
identified story stiffness becomes larger in the upper story. 

(5)The bending stiffnesses of the test structure identified by the SI method for the base input 
were compatible with the reference values. Those derived by the SI method for an unknown 
vibration source were not appropriate because of a large variability in the second story. 

It should be remarked again that, because the shear-bending model is an ideal mechanical 
model, actual test structures cannot be modeled by this model exactly. The shear and bending 
stiffnesses of the shear-bending model depend on the loading distributions and the identified 
stiffnesses in various loading conditions do not necessarily coincide in principle. There are some 
SI methods developed so far. The most well-known one is the modal parameter SI which identifies 
the natural frequencies from the transfer functions. Furthermore some additional information may 
be obtained from a forced vibration test. However, it seems difficult to identify the shear and 
bending stiffnesses of the shear bending model directly from these natural frequencies and forced 
vibration data. As another method for shear models, several SI methods using repetitive algorithms 
have been developed (for example, Nayeri et al. 2008, Zhang and Johnson 2013). However these 
methods are not direct compared to the proposed method and cannot be applied to high-rise 
buildings. 
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