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Abstract.  An iterative hybrid structural dynamic reliability prediction model has been developed under 
multiple-time interval loads with and without consideration of stochastic structural strength degradation. 
Firstly, multiple-time interval loads have been substituted by the equivalent interval load. The equivalent 
interval load and structural strength are assumed as random variables. For structural reliability problem with 
random and interval variables, the interval variables can be converted to uniformly distributed random 
variables. Secondly, structural reliability with interval and stochastic variables is computed iteratively using 
the first order second moment method according to the stress-strength interference theory. Finally, the 
proposed method is verified by three examples which show that the method is practicable, rational and gives 
accurate prediction. 
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1. Introduction 
 

Structural reliability is an important indicator in structural performance evaluation. One of the 

challenges in reliability analysis is that loads and structural strength are uncertain. Random 

methods (Ditlevsen and Madsen 1996, Madsen 1985), Madsen et al. 1986, Tee et al. 2013, Tee et 

al. 2011) and fuzzy analysis (Ayyub and Lai 1992, Jiang and Chen 2003) are among the main 

solutions to cope with the problems in structural engineering. However, all the developed methods 

are strongly relied on known information. Probability distribution function and fuzzy membership 

function are not easy to determine because sufficient data is difficult to obtain. The reliability 

prediction results are very sensitive to the accuracy of the estimated distribution parameters. The 

results may contain large error due to inaccurate distribution parameters (Ellishkoff 1995). 

Therefore, the random methods and fuzzy analysis have been rarely applied in engineering 

practice because of this limitation.  

On the other hand, the interval or convex model can be used to solve structural reliability 
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problems when the information of the distribution parameters is little known (Ben-Haim 1994, 

Elishakoff 1995) Besides that, the structural non-probabilistic reliability model based on interval 

analysis has been developed, and the structural reliability under interval load has been estimated 

(Qiu 2005, Guo et al. 2001). In real-world engineering applications, both random and interval 

uncertain elements should be considered together in reliability analysis of structures during their 

whole life services. Thus, the hybrid model which takes into account both elements (random-

interval) is more credible than the model considers only one element (Zhu et al. 2008). The 

Sequential Single-Loop Method (SSLM) has been employed to solve random-interval reliability 

problems, but only static force is considered in the analysis (Du et al. 2005). In addition, static 

force has been researched as an interval variable and structural reliability is estimated numerically 

(Jiang et al. 2008), Gao et al. 2007), Gao et al. 2007). Nevertheless, structural reliability based on 

time response is also influenced by other external and internal uncertain effects, such as vibration, 

shock, fatigue, corrosion, etc (Jiang et al. 2014)). The probability density evolution method has 

been proposed to evaluate structural dynamic reliability under repeated random loads (Fang et al. 

2013). Two cases with and without structural strength degeneration are considered in the analysis. 

The structural non-probabilistic reliability model using time response has been investigated and 

the model can precisely predict structural reliability under interval loads with structural strength 

degeneration (Fang et al. 2012). 

This study is based on structural dynamic reliability theory with little information on the 

applied loads. The interval loads which are applied on the structure several times are analyzed 

using the random-interval theory. The hybrid structural dynamic reliability prediction model under 

repeated interval loads is obtained with and without stochastic structural strength degradation. The 

interval parameters are converted to the random parameters and the structural dynamic reliability 

index is computed by using the first order second moment method (FOSM). Finally, the proposed 

method is verified by three examples which show that the method is practicable, rational and gives 

accurate prediction.  

 
 
2. Analysis of applied loads and structural strength based on time response 
 

2.1 Applied loads 
 

The loads applied on the structure are uncertain in terms of their amplitude and interval 

variables. The characteristics and assumptions on interval load analysis for structural reliability are 

given as follows. 

 (1) The structural service period T  is divided into n  equal-time sections T n  . The 

interval upper bound ( )is t and interval lower bound ( )is t of the stress of the maximum interval 

load at time   can be determined by using statistical analysis. Thus, ( )is t  and ( )is t  are 

considered as the interval stress where ( ) [ ( ), ( )], , 1,2, , .I

i i is t s t s t t i i n    The mean and standard 

deviation of interval stress are ( ), ( )c r

i is t s t , respectively and the diameter of the interval is 

( ) ( ) ( )I

i i is t s t s t   . 

1062



 

 

 

 

 

 

An iterative hybrid random-interval structural reliability analysis 

(2) It is assumed that ( ),I

is t t i  is independent with each other. 

If the structure does not fail under the maximum interval stress, then the structure will also not 

fail under the multiple-time repeated interval loads. Thus, the structural reliability analysis under 

the multiple-time repeated interval loads is equivalent to the analysis under the maximum interval 

load. This can be expressed by ( ) max{ ( )}I I

is t s t   . ( )Is t  is denoted as ( )Is t  where ( )Is t  

is the maximum interval stress under the multiple-time repeated loads.  

Suppose 

( ) [ ( ), ( )]Is t s t s t                                                      (1) 

where ( ), ( )s t s t  is the lower bound and the upper bound of the maximum interval stress, 

respectively. 

The mean and standard deviation of ( )Is t is given as follows, respectively 

( ) ( )
( )

2

c
s t s t

s t


                                                     (2) 

( ) ( )
( )

2

r
s t s t

s t


                                                   (3) 

 

2.2 Structural strength 
 
Structural strength is considered as a random variable during its service period because it is 

influenced by external and internal uncertain effects, such as vibration, shock, fatigue, corrosion, 

etc. The remaining structural strength at time t can be described using Weibull distribution ( Schaff, 

J.R., Davidson, B.D.(1997)) and is calculated as follows. 

( ) (0) ( (0) ( ))( )et
r t r r s t

T
                                             (4) 

where (0)r  is the initial strength, ( )s t  is the time history of applied stress on the structure, T  is 

the structural service period and e  is the degradation index of the material.  

Based on the property of the Weibull distribution and Eq. (4), the mean of the remaining 

structural strength at time t is given as follows. 

( ( )) ( (0)) ( ( (0)) ( (1)))( )et
r t r r r

T
                                         (5) 

where ( (0))r  is the mean of the initial structural strength and ( (1)) ( ( ))r s t   is the mean of 

the structural strength at the end of service period.  

The variance of the remaining structural strength can be calculated as follows. 
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( (0)) ( (0)) ( (1))
( ( )) ( ( )( ) ) ( ( ))

( (0)) ( (0)) ( (1))

er r r t
r t r t

r r r T

  
 

  
                       (6) 

where ( (0))r  is the variance of the initial structural strength and ( (1))r  is the variance of the 

structural strength at the end of service period. 

 
 
3. Computation of random-interval structural reliability 

 

For structural reliability problem with random and interval variables, the interval variables can 

be converted to uniformly distributed random variables. Thus, the random-interval problem is 

reduced to traditional random reliability problem and the reliability can be computed using FOSM. 

Based on the above concept, Eq. (1) can be rewritten as follows 

( ) ( ( ), ( )) ( ( ))Is t U s t s t F s t , ( ) [ ( ), ( )]s t s t s t                                     (7) 

where ( ( ),  ( ))U s t s t  is uniformly distributed interval ( ( ),  ( ))s t s t , its probability distribution and 

probability density function are ( ( ))F s t  and ( ( ))f s t , respectively. For simplicity, ( )Is t  is 

denoted as ( )s t . 

1 1
( ( )) , ( ) ( ) ( )

( )( ) ( )
f s t s t s t s t

s ts t s t
   


                                (8) 

The mean and variance of Eq. (8) are given as follows 

( ) ( )
( ( ))

2

s t s t
s t


                                                        (9) 

2
2 ( ( ))
( ( ))

12

s t
s t


                                                     (10) 

The limit state function under multiple interval loads with structural strength degradation can 

be obtained from Eq. (11) based on the stress-strength interference theory.  

( ( ), ( )) ( ) ( )g r t s t r t s t                                                  (11) 

For structural reliability estimated by FOSM, ( )s t  and ( )r t  at any time t can be transformed to 

the equivalent standard normal distribution ( ( ), ( ))X t Y t . Then, the structural reliability index 

can be obtained as follows 

2 2( ) ( ) ( )t X t Y t                                                    (12) 

The initial condition can be determined by Eq. (10) and structural reliability index at any time t 

can be obtained by computing Eq. (12) iteratively as follows 

* *2 *2( ) ( ) ( )t X t Y t                                              (13) 
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where 
*X (t), 

*Y (t) corresponds to ( ( ), ( ))r t s t which is the maximum failure point in Eq. (11). 

According to the iterative checking point method for accelerating convergence, the ( 1k  )th 

step of load calculation can be determined from Eq. (14)  

( 1) ( ) ( ) ( )( ) ( ) ( ( ( )) ( ( )) ( ))k k k ks t s t s t a s t s t A                     (14) 

where a  can be assigned to 2.25 in the first iteration and in the next subsequent iterations it is 

assigned to 0.75(Allaix, D.L., Carbone, V.I.(2011)). The initial value of Eq. (14) is given as 
(0) ( ) ( )s t s t . A in Eq. (14) can be obtained as follows  

( ) ( )
( )

( ) ( )

( ( ), ( ))

( ( ), ( )) ( ( ( )) ( ( )), ( ( )) ( ( ))

k k
k

k k

g r t s t
A

g r t s t g r t b r t s t a s t   


    
 

On the other hand, for structural strength ( )r t  calculation, if it is normal distribution, Eq. (15) 

can be neglected, or else Eq. (15) will be used. 

( 1) ( ) ( ) ( )( ) ( ( ) ( ( ( )) ( ( )) ( ))k k k kr t r t r t b r t r t B                        (15) 

where b is assigned to 3 in the first iteration and in the next subsequent iterations it is assigned to 

1 (Kang, S.C., Koh, H.M, Choo, J.F.(2010)). The initial value of Eq. (15) is given as 
(0) ( ) ( ( ))r t r t . B in Eq. (15) can be obtained as follows 

( ) ( )
( )

( ) ( )

( ( ), ( ))

( ( ), ( )) ( ( ( )) ( ( )), ( ( )) ( ( ))

k k
k

k k

g r t s t
B

g r t s t g r t b r t s t a s t   


    
 

The iteration will be stopped when the circumstance of Eq. (16) is met. 

( 1) ( )( ) ( )k kt t                                                       (16) 

In summary, the step-by-step procedure for random-interval structural reliability analysis based 

on time response under multiple-time repeated interval loads with structural strength degradation 

is given as follows. 

Step 1. The equivalent maximum interval stress under the interval loads can be determined 

as shown in Section 2.1. 

  Step 2. The interval stress will be converted to random stress which obeys normal distribution 

using Eq. (7). 

  Step 3. The random stress and random strength can be transformed to the equivalent standard 

normal distribution.  

  Step 4. The initial structural reliability index 
(1) ( )t  can be computed using FOSM. 

  Step 5. The subsequent structural reliability index 
( 1) ( )k t 

 can be determined iteratively 

using Eqs. (14-15). 

  Step 6. Stopping criterion for iterative reliability analysis is computed using Eq. (16). 

  Step 7. If the circumstance of the stopping criteria has been met, the iteration will be stopped, 

or else, go to Step 5.  

Finally, structural reliability can be determined using the converged value of 
(*) ( )t  and the 

standard normal distribution function table. 
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Table 1 The comparison of the computed results for Example 1 

Methods No. of Iterations Reliability 

Proposed Method 

SSLM 

MCS 

5 

9 

10
6
 

0.99995 

0.99994 

0.99996 

 

Table 2 The comparison of the computed results for Example 2 

Time (h) No. of Iterations Proposed Method MCS 

0 5 0.99995 0.99996 

500 6 0.99968 0.99970 

1500 5 0.99871 0.99871 

5000 10 0.98886 0.98889 

9000 8 0.92601 0.92621 

 
 
4. Examples 

 

Example 1: Automobile Real Axle without Strength Degradation 

An automobile rear axle is used to validate the proposed method for the case without strength 

degradation. Its initial strength (0)r  obeys normal distribution with mean of 160MPa  and 

variance of 15MPa . The maximum interval stress under the applied multiple-time repeated loads 

has been computed as shown in Section 2.1. The lower and upper bounds of the maximum interval 

stress are ( ) [45, 115]Mpas t  . The reliability of the automobile real axle based on time 

response is calculated using the proposed method, SSLM and Monte-Carlo simulation (MCS). The 

results are compared in Table 1. The estimated reliabilities of the automobile real axle are almost 

identical among the three methods. However, there is a huge difference in the number of iterations. 

MCS is simulated with 10
6
 times of iteration whereas SSLM and the proposed method require only 

9 and 5 iterations, respectively to achieve a suitable accuracy. Therefore, the proposed method is 

the fastest in terms of computational time for convergence.  
 

Example 2: Automobile Base with Strength Degradation 

Next, an automobile base with strength degradation is used as a worked example where its 

strength ( )r t  decreases with service time. Its initial strength (0)r  obeys normal distribution with 

mean of 150MPa  and variance of 15MPa . The service period for the automobile base is given as 

10000 hours and the degradation index of the material is 4.092. The lower and upper bounds of the 

maximum interval stress are ( ) [45, 115]Mpas t   based on Section 2.1. The reliability of the 

automobile base under multiple-time repeated loads is calculated using the proposed method and 

MCS. The estimated reliabilities of the automobile base are shown in Table 2 at the time t = 0, 

500, 1500, 5000 and 9000 hours. Similarly, the results obtained from the two methods are almost 

identical with number of iterations for the MCS is 10
6 
and the proposed method is within 5 to 10 as 

shown in Table 2. As expected, the estimated reliability is decreased with the service time due to 

structural strength degradation. The results can be used not only to examine the structural life in its 

whole service period, but also as a reference basis for structural design. 
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Example 3: Cantilever Tube with Strength Degradation 

Finally, a cantilever tube as shown in Figure 1 is used to further validate the proposed method 

for the case with strength degradation. A more complicated applied force is used in this example 

where the external forces 1( )F t , 2 ( )F t , ( )P t  and torque ( )T t  are applied together on the 

cantilever tube. The service period for the cantilever tube is given as 10000 hours and the 

degradation index of the material is 4.092. As shown in Table 3, there are 11 uncertain parameters 

where the parameter 1 and parameter 2 are represented by the mean and variance, respectively for 

random variables whereas the upper bound and lower bound, respectively for interval variables. If 

the cantilever tube is reliable, the equivalent stress applied on the cantilever tube max ( )s t  should 

be less than its strength ( )r t . Thus, the limit state function is given as follows 

max( ( ), ( )) ( ) ( )g r t s t r t s t   

where 

2 2

max ( ) ( ) 3 ( )x zxs t s t t   

1 1 2 2( ) ( )sin ( )sin ( )
( )x

P t F t F t M t
s t

A I

  
   

( )
( )

4
zx

T t d
t

I
   

A is the cross section of the cantilever tube which can be calculated as follows 

2 2[ ( 2 ) ]
4

A d d


    

M(t) is bending moment which can be calculated as follows 

1 1 1 2 2 2( ) ( ) cos ( ) cosM t F t L F t L    

The reliability of the cantilever tube under multiple-time repeated loads is calculated using the 

proposed method and MCS (10
6
 iterations). As shown in Table 4, at initial time t = 0 when there is 

no degradation in structural strength, both approaches provide an identical result (0.9716).  

 

 

Table 3 Statistical properties of random and interval variables for the cantilever tube 

Variables Parameter 1 Parameter 2 Distribution 

 (mm) 

d(mm) 

F1(t)(N) 

F2(i) 

L1 (mm) 

L2 (mm) 

1 θ1 (°) 

θ2 (°) 

P(t)（N） 

T(t)（Nm） 

r(0)（MPa） 

5 

42 

2450 

2450 

110 

50 

0 

5 

12000 

90 

220 

0.1 

0.5 

3600 

3600 

130 

70 

10 

15 

1200 

9 

20 

Normal  

Normal 

Interval 

Interval 

Interval 

Interval  

Uniform  

Uniform  

Normal 

Normal 

Normal 
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Table 4 The comparison of the computed results for Example 3 

Time (h) No. of Iterations Proposed Method MCS 

0 6 0.9716 0.9716 

500 11 0.9668 0.9667 

1500 9 0.9533 0.9533 

5000 10 0.8802 0.8819 

9000 12 0.8169 0.8188 

 

 
Fig. 1 A cantilever tube 

 

 

In addition, the same result is also obtained from SSLM with 16 iterations [15]. However, the 

proposed method only requires 6 iterations to achieve the accuracy. The computed results from the 

proposed method and MCS are reasonably close during strength degradation at time t = 500, 1500, 

5000, 9000 hours. Similarly, the estimated reliability of the cantilever tube is decreased with 

service time while the number of iterations for the proposed approach is increased.  

 
 
5. Conclusions 
 

An iterative hybrid structural dynamic reliability prediction model has been developed based on 

time response under multiple-time interval loads with and without consideration of stochastic 

structural strength degradation. This study is based on little statistical information on the applied 

loads. The interval loads which are applied on the structure several times are analyzed using the 

random-interval theory. The random-interval problem is reduced to traditional random reliability 

problem and the reliability can be computed using FOSM. The proposed method is the fastest in 

terms of computational time for convergence compared to MSC and SSLM.  
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