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Abstract.  Aim of the paper is the definition of optimal design parameters characterizing the isolation 
system of a bridge, both in the case of elastomeric (VI) and sliding bearings (SI), having viscoelastic or 
rigid-plastic behavior, respectively, installed between the piers and the deck. The problem is treated by 
means of an analytical approach. Using the frequency response analysis, a simple procedure is proposed to 
determine the optimal value of the viscous coefficient or the yield displacement of the isolators. The 
adequacy of the proposed procedure is finally verified through time-history analyses performed on a 
practical case under natural earthquakes. 
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1. Introduction 
 

The seismic protection of bridge decks by using passive isolation systems represents a widely 

studied technique since the Eighties (Bhuiyan and Alam 2013), even though different more 

complex control strategies (e.g., semi-active and active ones) have been investigated and 

implemented in civil structures in the last twenty years (Li and Liu 2011; Li, Liu and Lan 2012). 

The design of a passive isolation system for bridges is often treated as an optimization problem: 

once the objective of the optimization is defined, together with the constraints imposed by the 

problem, the design methodology is developed with the aim to determine the optimal mechanical 

characteristics of the protection devices. In the following, some proposals of different researchers 

will be summarized, first reporting those adopting optimization concepts in formulating the design 

criteria. 

Ciampi and De Angelis (1996) and Ciampi (1998) proposed an energy-based methodology for 

the optimal design of dissipation devices used as base isolation systems of typical bridges. The 

approach consisted in the maximization of an appropriate nondimensional energy index defined as 

the ratio between the energy dissipated by the isolators and the input energy to the controlled 
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bridge. Preliminary numerical results on a single degree of freedom (DOF) system allowed to 

build manageable design graphs of the optimal mechanical characteristics of the dissipative 

devices. Further curves were also provided for a check of the relevant structural response 

quantities and the damage level suffered by the devices. 

Liu (2002) presented a new phase-plane estimation method of periodic elastoplastic solutions 

for the steady-state response of the single DOF bilinear elastoplastic oscillator under sinusoidal 

loadings. Three dimensionless ratios, namely stiffness ratio, force ratio and frequency ratio, as 

well as an elastic-phase duration variable were identified. The new estimate offered closed-form 

formulae for the force ratio and the adimensionalized maximum displacement, with respect to the 

yield displacement, in terms of stiffness ratio, frequency ratio and elastic-phase duration variable. 

The maximization of the dissipation efficiency is also pursued.  

Hwang & Tseng (2005) derived some design formulas for both supplemental linear and non-

linear viscous dampers to bridge structures. The damping coefficients of the added dampers were 

determined based on the concept of “composite damping ratio” in which the bridge components 

such as rubber bearings, piers and abutments may have different stiffnesses, lumped masses and 

damping ratios. In addition to the validation on a two DOFs simplified bridge model, a three-span 

bridge model was also used for the seismic response analysis, showing a good agreement with the 

proposed design formulas. 

Paolacci (2013) proposed a criterion to optimize the characteristics of viscoelastic control 

devices, based on an energy-based index (EDI) as objective function. An optimal design of the 

control system was obtained by maximizing the EDI index. An interesting outcome was that the 

multi-objective nature of the index induced a simultaneous reduction of both kinematic and static 

response quantities. The optimization procedure was applied to a single DOF system, 

representative of a structure equipped with viscoelastic dampers (VED): the behavior of the latter 

was modelled using a Maxwell unit. The comparison of the response to simple excitations, like 

harmonic and white-noise inputs, with the response to synthetic accelerograms, showed that the 

optimal design of the VED was practically independent of the input. This means that it is possible 

to obtain preliminary indications on the optimal characteristics of the dampers, even in closed 

form. 

On the other hand, other authors proposed to single out the optimal control system by the 

results of a wide parametrical investigation on benchmark bridges. 

Madhekar and Jangid (2009) presented the dynamic behavior of benchmark highway bridges 

using variable dampers under six bidirectional earthquake ground motions: a viscous damper was 

used as a passive control device and a variable damper, developed from a magnetorheological 

(MR) damper, was used as a semi-active control device. The study was based on the simplified 

lumped-mass finite element model of a highway bridge in Southern California. The prime aim of 

the study was to investigate the effectiveness of viscous dampers and variable dampers with a 

friction-type damping force scheme and a two-step viscous damping force scheme, with important 

parametric variation. Numerical simulations were conducted by installing the devices between the 

deck and abutments of the bridge: the seismic response of the bridge was compared with the 

corresponding uncontrolled case, and controlled by alternative sample control strategies.  

Ozbulut & Hurlebaus (2010) investigated the seismic response of a multi-span continuous 

bridge isolated with novel superelastic-friction base isolator (S-FBI), under near-field earthquakes. 

The isolation system consisted of a flat steel-Teflon sliding bearing and a superelastic NiTi shape 

memory alloy (SMA) device: while the sliding bearing decouples the superstructure of the bridge 
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from its piers and dissipates energy through friction, the SMA device provides restoring force and 

additional damping. The key design parameters of an S-FBI system were the natural period of the 

isolated bridge, the yielding displacement of the SMA device, and the friction coefficient of the 

sliding bearings. The goal of this study was to obtain optimal values for each design parameter by 

performing sensitivity analysis of a bridge isolated by an S-FBI system. 

In the present paper, the authors adopt the same philosophical approach presented in previous 

works (Di Marzo et al. 2000, Paolacci and Serino 2001), aiming to define the optimal design of an 

isolation system, in case of elastomeric and sliding bearings. In these two cited works, a simple 

operative procedure is delivered for singling out the optimal design parameter of a simple 1-DOF 

system representing an isolated simply supported bridge or a building’s isolated floor. The optimal 

design parameter, in case of both viscoelastic and rigid-plastic isolators, is defined under the action 

of a harmonic excitation, and then verified for a case study subjected to a seismic input.  

The proposed paper presents a more complete design methodology for the isolation system, 

installed between the piers and the bridge deck. This methodology is the result of a detailed 

analytical treatment of simple dynamic systems incorporating the viscoelastic or rigid-plastic 

dissipative behaviors. With respect to the authors’ previous works, the optimization process is 

developed also in terms of top pier displacements, besides the deck displacements. Moreover, the 

proposed procedure include specific seismic numerical analyses able to immediately confirm the 

analytical results or, eventually, state the need of a further iteration.  

The design procedure proposed in the present paper is based on a different approach with 

respect to those adopted by other authors, developing different optimization concepts in 

formulating the design criteria. In Ciampi and De Angelis (1996), Ciampi (1998) and Paolacci 

(2013), an energy-based index, related to the energy dissipated by the devices, is formulated as 

objective function to maximize. Hwang & Tseng (2005) provided design formulas for 

supplemental linear and non-linear viscous devices for bridge structures, as a function of the 

desired dissipation level, assumed as given and not correlated to response parameters of the 

structure. Yang et al. (2002) defined two optimal design methodologies for passive energy 

dissipating devices based on active control theories, including H∞ and H2 performances, 

respectively, capable of determining the optimal locations and the corresponding capacities of the 

devices.   

 

 
2. Steady-state response of an isolated bridge subjected to a harmonic base 
motion 
 

The behavior of a simply supported bridge isolated by means of viscoelastic (i.e. laminated 

rubber bearing LRB) or rigid-plastic devices (i.e. friction pendulum system FPS), is analyzed (Fig. 

1 (a)). 

The dynamic model simulating such a simple structure is also illustrated in the same figure: it is 

a 2 DOFs model (x, xc), where the parameters kc and ki are the total lateral stiffness of the columns 

and the bearings, respectively. The procedure is valid in the case of i columns having the same 

stiffness kc1, being kc =i kc1, and j isolators of equal stiffness ki1, being ki =j ki1. The damping 

behavior is completely defined by the damping coefficient c (in the case of viscoelastic isolators – 

VI) or by the yield strength Fy (in the case of rigid-plastic or sliding isolators – SI) of the whole 

isolation system, thus neglecting damping in the columns. Moreover, m and mc are the mass of the 
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deck and the participating mass of all piers, respectively. It is worth to note that, in most cases, mc 

is small compared to m and therefore can be neglected, so that the model reduces to a single 

dynamic DOF with two kinematic DOFs (Fig. 1 (b)). 

The dynamic problem of the bridge subjected to a harmonic base excitation can be formulated 

and solved as shown in the following. The equations of motion are derived together with the 

definition of the relevant design parameters and response quantities, and the optimal damping 

characteristics are obtained under the hypothesis that the ratio k = ic kk /  and the deck mass m  are 

known. For both VI and SI cases, a closed-form solution of the response is obtained. 

Even if earthquake motion is usually random, by means of the Discrete Fourier Trasform 

Function (DFT), properly working on non-periodic data, it can be decomposed into a linear 

combination of harmonic functions. Typical ground motions contain a wide range of frequencies 

and system displacement response shows a dominant period very close to the its natural period. A 

sweeping frequency of the excitation (i.e., harmonic function with 0 ) at the base is 

assumed, since due to extremely different values of the damping parameter, the effective 

frequency of the system vary significantly. In addition to this, for a damped system, the higher is 

the damping the shorter will be the transitory condition so that structural response will tend to a 

single period harmonic function.  

The problem is first solved by making reference to the deck displacement x : the optimization 

procedure is developed with the aim to determine the value of the normalized device’s damping 

parameter ( opti,  or opt ) corresponding to the minimum deck displacement over the whole range 

of frequency excitation.  

On the other hand, different parameters can be also assumed as reference: the displacement of 

columns cx  in order to control the column base shear, or the relative displacement cxx   in the 

isolators in order to check the maximum allowable movement between the deck and the top of 

columns.  

 

 

 
(a) 

 
(b) 

Fig. 1 (a) Bridge structure and (b) rheological model 
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2.1 Formulation of the equation of motion 
 

Neglecting the participating mass of the piers (mc  = 0), the general expression of the equation 

of motion for the model illustrated in Fig.1 (b), subjected to a harmonic base displacement xg(t) = 

xg,max · cos t , is simply the following: 

txmxxxxFxm gcc  cos,...),,,( max,

2                                    (1) 

where x  is the relative deck displacement, ,...),,,( cc xxxxF   is the linear or non-linear restoring 

force in the whole system and dot notation represents derivation with respect to time. 

In order to single out the relevant design parameters of the control devices and the structural 

response parameters, it is needed to write Eq. (1) in an adimensionalized form. Afterwards, 

introducing the non-dimensional time t , a different normalized form of the equation of 

motion can be found, being  a normalization frequency corresponding to the natural frequency of 

the system in one of the three following cases: 

i) infinitely stiff piers ( ck ): mkii   

ii) undamped system ( 0c  or 0yF ): mkkkk bcicb  )(  

iii) not isolated bridge ( ik ): mkcc   

Considering the non-dimensional time parameter ti , Eq. (1) can be expressed as: 

 cos
,...),,,(

)('' max,
22

g
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i x
m

xxxxF
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
                                    (2) 

where (
'
) represents derivation with respect to  . After simple manipulations: 
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 cos)()()('' 2 f                                            (5) 

where max,gxx  is the normalized deck displacement, max,,...),,,()( gccc xkxxxxFf   is the 

normalized restoring force, i is the normalized frequency. Eq. (5) represents the final 

form of the normalized equation of motion and it is developed in the following paragraphs for the 

two defined cases. 

 

2.2 Solution of the equation of motion for the VI case 
 

In the case of viscoelastic isolators (VI) having damping coefficient c , the equivalent damping 

ratio is defined as: 

i

i
m

c




2
                                                                  (6) 
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The force in the passive control system, i.e. the base shear of the pier, can be expressed in the 

frequency domain trough the complex response method: 

))()(()()(  ci xxcikF                                             (7) 

Since the top column displacement is given by cc kFx /)()(  , Eq. (7) can be rewritten as: 

)()()
)(

)(()()( 


 xK
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F
xcikF d

c

i                                (8) 
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represents the complex stiffness of the controlled bridge. 

Dividing Eq. (9) by ck , the dimensionless system stiffness is: 

c
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Substituting Eq. (6) in Eq. (10), the normalized stiffness becomes: 


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)()(  dd KiK   

where )(dK   and )(dK   are, respectively, the overall normalized storage and loss modulus of 

the controlled bridge. 

The normalized restoring force of Eq. (5) thus specifies as: 

  )()( dKf                                                        (12) 

and is illustrated in Fig. 2. 

The global dynamic behavior of a rubber isolated bridge is completely defined by three 

parameters:  , i  and  . 

In this case, the system is linear and an exact solution for the steady-state response can be 

evaluated. The solution of Eq. (5) is extremely straightforward using the frequency domain 

approach.  
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Fig. 2 Normalized restoring force - displacement relationship for the VI case 

 

 

Assuming that a solution of Eq. (5) can be expressed in the form ))((
max )()(   ie , the 

Fourier transform applied to Eq. (5) gets: 

2
maxmax

2 )())()(()(   dd KiK                                 (13) 

where the storage modulus )(dK  and loss modulus )(dK  are those defined in Eq. (11). From 

Eq. (13) it is possible to express the complex response of the bridge in terms of maximum deck 

displacement: 

 
  )()( 2

2

max






dd KiK 
                                          (14) 

The amplitude of the response and its phase angle can be evaluated respectively as the modulus 

and the argument of the above complex relationship: 

 
  2222

2
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)()( 
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
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                                     (15) 
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d

d

K

K
                                                 (16) 

The relations (15) and (16) are simply an extension of the classical amplitude – frequency and 

phase angle – frequency relationships for a standard linear elastic oscillator subjected to a 

harmonic base motion. 

Introducing the definitions of storage and loss moduli in (15) and (16), they become: 
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Eq. (17) is plotted in Fig. 3 for different values of   and damping ratio i . 

The two limit cases, for which the behavior reduces to an elastic undamped system, are the 

following: 

 00  ci  (no damping) 

 
2

2

max

1












                                                     (19) 

         
 






1

resonance                                                    

  ci  (infinite damping) 

 
2

2

max






                                                           (20) 

 resonance                 

The two limit curves intersect in the point of coordinates       122 2
 and 

   /)2(max  . A very low value of i  produces a peak of the curve near to the one of the 

no damping limit case. This peak decreases as far as i  increases but a large increase of the 

damping coefficient induces a shift of the resonance frequency toward the infinite damping limit 

case, with an increment, at the same time, of the peak amplitude. For   , Eq. 17 gives 

   /)2(max   for any other value of i , thus demonstrating that the point of coordinates 

( )(, max  ) is a common point for all curves.  
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Fig. 3 Maximum deck displacement versus frequency ratio   ( = 5, 20) 

 

 

The value of opti,  can be computed by imposing the condition that the above common point 

( )(, max  ) corresponds to the maximum of the generic curve, i.e., by imposing that 

  0max
'  . In this way, we get the following 3

rd
 degree equation in the unknown 

2

i : 

             ...)1()2)(132(4)2(8
4222632  ii kkkkkkk                       

0)1()1()1)(2(2.... 8252  kkkkk i                                 (21) 

whose only real solution (all the other solutions are complex) is: 

)2(2

)1( 2

,








opti                                                           (22) 

Therefore, the minimum resonance peak within the range   ,0i  corresponds to the 

optimal resonance frequency  opt . 

The complex expression of the maximum force in the pier (equal to its normalized 

displacement), as well as in the control system, is given by: 

   
  )()(

)(
2

2

max,






dd

dcc

KiK
Kf


                        (23) 

Fig. 4 shows the modulus of expression (23) as function of the frequency ratio  . It can be 

noted again that all curves have a common point corresponding to the intersection between the 

limit curves. The intersection point has now coordinates 








2

2
c  and 




2
max, c  but this 

point does not represent a maximum for all the curves. For i  the column displacement is 
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practically the same as the deck displacement. For all finite values of 0i ,   max,c  is always 

lower than   max  even if for   both   max  and   max,c  tend to 1.  

On the other hand, the quantity max,max c   (see Fig. 5) is always decreasing with 

increasing i . 

An optimization criterion for the design of the control system is the minimization of the 

maximum displacement   max  in the whole range of  , and the check a posteriori of the 

response in terms of base-shear. This means to select as design parameter the value opti,  given in 

Eq. 22: a design spectrum is showed in Fig. 6 (a), for several values of  . High values of damping 

ratio are required for small values of  , whereas, for 10  opti,  remains practically constant 

around the value 7.0 . It is interesting to note in Fig. 6 (b) that the optimum deck displacement, i.e. 

the minimum resonance peak for any value of   given by opti, , decreases with   and tends to 1. 

For values of   greater than 3020 , a small decrease in the optimum response is produced. 

 

 

  
Fig. 4 Top column displacement versus frequency ratio   ( = 5, 20) 

 

  
Fig. 5 Relative deck to pier displacement versus frequency ratio   ( = 5, 20) 
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(a) 

 
(b) 

Fig. 6 (a) VI optimal parameters for different normalizations and (b) deck optimal 

displacement and corresponding frequency ratio versus   

 

 

If the other two expressions of the normalized frequency  are used, the expression of the 

optimal parameter can be easily evaluated as follows, and is also shown in Fig. 6 (a): 
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2.3 Solution of the equation of motion for the SI case 

 

In the case of sliding isolators (SI), the restoring force ...),,,( cc xxxxF   is a bilinear 

relationship characterized by an initial stiffness ck  and a post-yielding stiffness  icic kkkk  . 

The supplemental device has a rigid-plastic behavior (Fig. 7 (a)) modeled by a spring ( ik ) acting 

in parallel with a friction element (sliding force yF ).  

The normalized restoring force is shown in Fig. 7 (b). It depends on two dimensionless 

parameters ic kk  and  . The normalized initial stiffness is equal to unity while the post-

elastic stiffness becomes )1/(1  ;   is the normalized deck displacement max,/ gy xx  

corresponding to the achievement of yielding in the device, and it is equal to the normalized yield 

strength yf .  

On the basis of the observations above, it is possible to state that the dynamic behavior of the SI 

bridge case is completely defined by the following three dimensionless parameters:  ,   and  . 
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(b) 

Fig. 7 Normalized restoring force-displacement relationships (a) in the sliding isolators and (b) in the 

controlled bridge 

 

 

The equation of motion is non-linear and a closed form solution cannot be easily derived. In the 

following, the slowly varying parameters method (Caughey 1960) is adopted. It can be reasonably 

assumed that, under a harmonic base motion, the steady-state response is periodic with frequency 

 : 

      coscos)( maxmax                                     (26) 

where max  and   are slowly varying functions of  , and   . Differentiating Eq. (26) 

with respect to  , one obtains: 

   cossinsin maxmaxmax
                              (27) 

For the hypotheses of the slowly varying parameters method, it is possible to approximate the 

values of max  and   by their mean values and to assume that the velocity     is harmonic, i.e:  

0sincos maxmax                                             (28) 

Differentiating again Eq. (27) with respect to  : 

   sincoscos maxmaxmax
2                     (29) 

and substituting it in Eq. (5), leads to: 

     cossincoscos max
2

maxmaxmax
2 f         (30) 

We can multiply Eq. (30) by sin  and Eq. (28) by  cos  and subtract them, thus obtaining: 

       sincossincossincossin 222
maxmax

2  f  (31) 

The average made over one cycle of   leads to: 

  








sin
2

sin
2

1 2
2

0max  df                                            (32) 

Now, multiplying Eq. (28) by  sin , Eq. (30) by cos  and adding them: 
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     coscoscoscos 2
max

2
max

2  f                         (33) 

and averaging over one cycle of  , one obtains: 

  











cos
2

cos
2

1

2

2
2

0max

2

max  df                         (34) 

If  maxS  and  maxC  are the two quantities: 

 

   

   

















2

0max

2

0max

cos
1

sin
1

dfC

dfS

                                             (35) 

hence Eqs. (32) and (34) become: 

 

  



cos2

sin2

2
maxmax

2
max

2
maxmax





C

S
                                 (36) 

Using Fig. 7 (b), if 









 

max

1 2
1cos*




  the quantities  maxS  and  maxC  are readily 

evaluated: 

 

 


























maxmax

max
2max

max

if0

if*sin
1

S

S
                              (37) 

 

 
















































maxmaxmax

max
max

max

if

if*2sin
)1(21

*
1

C

C
 (38) 

The steady state response is obtained by setting  max
  and    equal to zero in Eq. (36), 

which becomes: 

 

  



cos

sin

2
max

2
max

2
max





C

S
                                              (39) 

Eliminating   and 2  from Eq. (39), we get the following displacement – frequency and 

phase angle – frequency relationships in the unknowns max  and  : 

 
2

4
2

max

2

max

2

max )()(








 








 SC                                     (40) 
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max

2

max

max

)(

)(
tan














C

S
                                               (41) 

Differently from the VI case, now it is convenient to express the quantity max  implicitly as a 

function of   from Eq. (40): 

            11 2
maxmax

2
max

22
maxmax

22
maxmaxmax

2






  




SCCC  (42) 

The maximum deck displacement max  is attained at the point where 2  has a double root, i.e. 

for the value max

~
  which makes void the radical quantity in Eq. (42), i.e. satisfies the equation: 

   

01

~
2

1arccos

~
2

1arccos2
2

~
2

1arccos
~

1
~~~
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42
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maxmax2
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2
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
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
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


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
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





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







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











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
































sen

sen

SC

       (43) 

and the corresponding frequency is: 

  )
~

()
~

(
~

)
~

(
~

maxmax
2

max
2

max  CCSS                             (44) 

The limit cases ( 0  and  ) again correspond, respectively, to the case of two springs 

( ck and ik ) connected in series or a single spring ( ck ), and are expressed as  max : 

 00  dyF   

  max

max2

11 





                                                         (45) 

  dyF  

 max

max2

1 







k
                                                            (46) 

 resonance                     

The function )( max
2   in Eq. (42) is a continuous function whose derivative is discontinuous 

when  max . This is because the response is linear for any value of  max , being the 

flexibility of the system due to the only spring ck . 

By analyzing the frequency response function )(max  , it is possible to figure out the role of 
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the parameter   and propose a design methodology for determining its optimal value. 

The quantity max  as a function of   is plotted in Fig. 8 for 20,5  and for several values 

of  . The point of coordinates       122 2
 and    /)2(max   still represents 

the intersection of the two limit cases (Eqs. (45) and (46)) but does not belong to all other curves. 

One notes that a very low value of   produces a peak of the curve near to the one relative to 

0 , and its value decreases as far as the previous parameter increases; however, a further 

increase of the yield displacement induces a shift of the resonance frequency toward the value 

   with an increment of the peak amplitude. Therefore, the resonance peak within the range 

  ,0  has a minimum value in correspondence of the frequency opt , quite close to the one 

(  ) of the intersection point between the limit curves. Therefore, settled a certain  , the value 

opt  is defined as the one which satisfies the condition that its corresponding curve )(max   has 

the minimum resonance peak. 

In order to get the derived response quantities, simple expressions, involving the normalized 

displacement max  and stiffness  , are introduced. When  max , the top column displacement 

max,c  (equal to the base shear) and the relative displacement max,c   assume the 

expressions (Fig. 9 and Fig. 10): 











1

max
max,c

                                                       (47) 






1

)( max                                                         (48) 

while, maxmax,  c  and 0  when  max . 

One notes that once the device yields, the top column displacement max,c  is always lower than 

max  and that the relative displacement   is always decreasing for increasing values of  . In 

addition to this, max,c  has a maximum value after the yielding of the control device, which is 

approximately equal to   for high values of  , because of the limited force transmitted by the 

isolator after yielding. This behavior indicates a great advantage of the SI system with respect to 

the VI case: rigid-plastic devices apply a strong control on the maximum base-shear force, 

practically a known value ( yF ) for high values of  . Differently from the VI case, it is now 

possible to derive a different optimal value optc,  giving the minimum resonance peak max,c in the 

columns.  

A design spectrum has been numerically derived and is plotted in Fig. 11 (a), where both the 

optimal values opt  and optc,  are shown as a function of the relative stiffness  . In Fig. 11 (b) are 

also plotted both the quantity )(max opt  and )( ,max, optcc   , and also the values opt  and  , all 

versus  .  

From Fig. 11 it is clear that, as far as   increases, both the optimal parameters and the 

maximum displacements decrease. Besides, the value of opt  is close to   and both parameters 

show a growing trend with  . 
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Fig. 8 Maximum deck displacement versus frequency ratio   ( = 5, 20) 

 

  
Fig. 9 Top column displacement versus frequency ratio   ( = 5, 20) 

 

  
Fig. 10 Relative deck to pier displacement versus frequency ratio   ( = 5, 20) 
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(a) 

 
(b) 

Fig. 11 (a) SI optimal parameters for both deck and pier displacement and (b) deck optimal 

displacement, column optimal displacement, optimal frequency ratio and limit curves intersection 

point versus   

 

 

3. Numerical validation of proposed design procedure 
 

The design procedure proposed in the previous paragraphs has been verified through a 

numerical investigation performed on a typical isolated bridge having a target period Ti = 2= 

2.5 s. The equation of motion has been solved by implementing the Newton-Raphson integration 

method (Chopra 2011) in Matlab
®
 environment (The MathWorks inc. 2010).  

According to the Italian building code (NTC 2008), the design spectra (Fig. 12) with 5% of 

critical damping have been defined for the near collapse limit state of a bridge (functional class III) 

located in Grottaminarda, Italy (15.03° longitude, 41.06° latitude) on soil type B (360Vs,30800 

m/s) with a nominal life of 50 years, corresponding to a return period of 1462 years. A set of seven 

unscaled spectrum matching accelerograms (Fig. 12, Table 2) was found in the European ground 

motion database using Rexel v3.4 beta (Iervolino et al 2010). The average spectrum has 10% 

lower and 30% upper tolerance in the period range 0.15-2 s. 

In order to estimate the maximum expected ground displacement xg,max corresponding to the 

aforementioned spectra, it is necessary to compute the spectral displacement Sd in the long-period 

range up to 10 s. Several authors (Faccioli et al. 2004, Smerzini et al. 2013) and also the NTC 

suggest to assume the following relationship: 

DCgg TTSax  025.0max,                                             (49) 

where ag = 0.428 g is the peak ground acceleration on bedrock, S = 1.003 is the soil amplification 

factor and TC = 0.547 s is the control period corresponding to the beginning of the constant 

velocity branch of the design spectrum and TD = 3.310 s is the corner period denoting the 

beginning of the maximum displacement plateau. Eq. 49 provides xg,max = 0.19 m and this has been 

taken as reference for the SI case.  
The response of the VI and SI bridge has been evaluated under seven ground motions 

characterized by different frequency content, to numerically determine the optimal values of the 

parameters i and , and to compare them with those obtained from the analytical approach 

presented in the previous paragraph. 
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(a) 

 
(b) 

Fig. 12 (a) Acceleration and (b) displacement design spectra ( =5%) and selected ground 

motion spectra 

 

Table 1 Selected spectrum-compatible accelerograms for site class B  

Waveform 

ID 

Earthquake 

ID 

Station 

ID 
Earthquake Name Mw 

Epicentral 

Distance [km] 

PGA 

[m/s
2
] 

PGV 

[m/s] 

4673 1635 ST2482 South Iceland 6.5 15 4.68 0.48 

535 250 ST205 Erzincan 6.6 13 5.03 1.02 

6263 1635 ST2484 South Iceland 6.5 7 6.14 0.50 

199 93 ST67 Montenegro 6.9 16 3.68 0.52 

197 93 ST63 Montenegro 6.9 24 2.88 0.47 

6334 2142 ST2488 South Iceland (as) 6.4 11 7.07 0.97 

594 286 ST60 Umbria Marche 6 11 5.14 0.32 

mean:       6.54 13.86 4.94 0.61 

 

Table 2 Bridge dynamic properties for rigid deck-to-pier connection 

 [-] Tfb [s] ωfb [rad/s] ffb [hz] 

5 1.12 5.59 0.89 

20 0.56 11.17 1.78 

 

 

Structural response is showed in the following both in terms of deck and top pier absolute 

displacement, and also of deck-pier relative displacement. The numerical investigation has been 

repeated for 2 different values of  (5 and 20), which correspond to the following dynamic 

structural properties in case of rigid deck-to-pier connection (limit case i  or   - 

Table 2): 
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Table 3 Bridge dynamic properties with 0i  or 0  

 [-] T0 [s] ω0[rad/s] f0 [hz] 

5 2.75 2.28 0.36 

20 2.58 2.44 0.39 

 

 

where  ifb   and the corresponding normalized frequency   at resonance is  .  

If no supplemental damping is provided (limit case 0i  or 0 ), the dynamic properties of 

the system reduce to those in Table 3: 

where the frequency 








1
0 i  of the undamped structure corresponds to the normalized 

frequency ratio 








1
 at resonance.  

A parametric investigation has been performed for each ground motion and for each value of , 

by assigning extremely different values to both i (100 logarithmically spaced value between 10
-3

 

and 10
5
) and  (100 logarithmically spaced value between 10

-4
 and 10): the pier and deck 

maximum displacements have been considered as result for each time history case and are plotted 

in what follows. The optimal parameter is the value corresponding to the minimum structural 

response in terms of pier or deck displacement, under each seismic excitation for a given .  

The following figures summarize some relevant results of the numerical analyses performed on 

the case study for both control systems. In particular, the maximum normalized displacement is 

plotted versus the value of the parameter in a semi-logarithmic scale, so to make clear how 

different the response could be, ranging from one extreme to the other.  

 

3.1 VI case 
 

In the VI case, the structural model is defined as a two DOFs system (deck displacement x and 

pier displacement xc - see § 2.2), where the only dynamic DOF is associated to the deck 

displacement. The equation of motion has been formulated as follows: 

lMxKxM  gx xC  

where  c
T xxx ,  c

T xx  x ,  c
T xx  x , 










00

0m
M , 














ici

ii

kkk

kk
K , 















ii

ii

cc

cc
C , 










1

1
I  and gx  is the base acceleration.  

In this case, the time step has been assumed equal to 0.01s while the parameters  and  have 

been set to 1/2 and 1/4, respectively. Figs. 13 to 19 show the peak value of x, xc and x-xc under 

different applied earthquake records for the different values of i. In the same figures, the vertical 

straight line indicates the optimal  value determined from the proposed design procedure (i,opt = 

0.7171 for i,opt = 0.7079 for 
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As expected, in all the analyzed cases, the response in terms of deck displacement shows a 

minimum value but this occurs for a value of i almost always larger than the theoretically 

proposed one. With respect to the undamped case (i=0), the deck response is strongly reduced. 

Main results are reported in Table 4: 

Regarding top pier displacement, it is worth to note that an increase in the value i is almost 

always responsible for a larger response of the column, due to the additional force transmitted by 

damping. However, it is clear from the above figures that top pier peak response slightly reduces 

for i increasing between 0 and a value very close or slightly lower than i,opt. In other words, i,opt 

represents a good compromise value which allows to optimize at the same time both the deck and 

top pier maximum displacement. Table 5 summarizes the numerical optimal values i, always 

lower than i,opt: 
 

 

  
Fig. 13 VI case: numerical results for ground motion #197  

 

  
Fig. 14 VI case: numerical results for ground motion #199 
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Fig. 15 VI case: numerical results for ground motion #535 

 

  
Fig. 16 VI case: numerical results for ground motion #594 

 

  
Fig. 17 VI case: numerical results for ground motion #4673 
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Fig. 18 VI case: numerical results for ground motion #6263 

 

  

Fig. 19 VI case: numerical results for ground motion #6334 

 

Table 4 Numerical optimum values of i for the deck displacement 

 #197 #199 #535 #594 #4673 #6263 #6334 i,opt 

5 1.18 1.71 4.33 0.26 7.56 1.87 1.23 0.7171 

20 4.33 3.59 5.21 4.32 2.98 3.51 4.32 0.7079 

 

Table 5 Numerical optimum values of i for the pier displacement 

 #197 #199 #535 #594 #4673 #6263 #6334 i,opt 

5 0.27 0.1 0.27 0.15 0.13 0.53 0.12 0.7171 

20 0.32 0.22 0.22 0.09 0.15 0.35 0.15 0.7079 

 

3.2 SI case 
 

In the SI case, the structural model is defined as a bilinear single DOF system (see § 2.3). A 

time step of 0.0001s has been adopted to improve the accuracy of the integration with =1/2 and 

=1/6. The damping ratio  has been set equal to zero, due to the lack of supplemental viscous 
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damping. 

Figs. 20 to 26 show the peak value of x, xc and x-xc under different applied earthquake records 
for the different values of . In the same figures, the vertical straight lines indicates the 
theoretically determined optimal  for the deck (opt = 0.47 for opt = 0.17 for and for 
the column (c,opt = 0.28 for c,opt = 0.06 for 

Differently from the VI case, the minimum of the deck response is not always between the two 
limit cases but sometimes reduces to the rigid deck-to-pier connection case, so implying the worst 

condition for the pier. For the value opt the deck response is always reduced with respect to the 
undamped case ( = 0). It must be noted that that the average of the actual numerical values in 
Table 6 is very close to the theoretically derived opt :  

Similarly to the VI case, due to the coupling effect with the deck, the pier displacement 
significantly increases with except for a very low value of the ratio varying from 0 to a value 
lower than c,opt (Table 7). 

 The outcome is that c,opt, instead of opt, may be taken as design value able to strongly reduce 
the deck response while lightly affecting the pier response. 

In a SI system, it has also been verified what is the effect of damping in the piers on the 
structural response: a value of =2% strongly reduces the response in case of elastic behaviour 
(= 0 or →) while, in case of significant sliding in the isolation system, maximum 
displacements are mainly dependent on hysteretic dissipation (Fig. 27). 

 

 
Table 6 Numerical optimum values of  for the deck displacement 

 #197 #199 #535 #594 #4673 #6263 #6334 opt 

5 0.13 0.67 0.46 0.17 0.32 0.36 1.24 0.47 

20 0.12 0.22 0.22 0.03 0.15 0.32 0.46 0.17 

 

Table 7 Numerical optimum values of  for the pier displacement 

 #197 #199 #535 #594 #4673 #6263 #6334 c,opt 

5 0.032 0.006 0.13 0.011 0.02 0.057 0.05 0.28 

20 0.005 0.057 0.027 0.002 0.013 0.013 0.017 0.06 

 

  
Fig. 20 SI case: numerical results for ground motion #197 
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Fig. 21 SI case: numerical results for ground motion #199 
 

 
 

  
Fig. 22 SI case: numerical results for ground motion #535 

 

  
Fig. 23 SI case: numerical results for ground motion #594 
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Fig. 24 SI case: numerical results for ground motion #4673 

 

  
Fig. 25 SI case: numerical results for ground motion #6263 

 

  
Fig. 26 SI case: numerical results for ground motion #6334 
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Fig. 27 Numerical results with additional viscous damping =2% for ground motion #6263 

 
 
 
4. Design procedure 

 

This paragraph summarizes the useful design method proposed by the authors. It has been 

developed taking into account the results of both theoretical treatment and numerical validation 

and is explained in the flowchart of Fig. 28. Given the fixed-base bridge properties, the stiffness of 

the isolation system ki is defined to get a target period Ti. A starting value of the damping 

parameter is assumed equal to opti,  or optc, , from Fig. 6(a) or 11(a) respectively, since they were 

proved to be very close to the effective numerical optimum. Time history analysis are then 

performed under the code provided seismic action and the performance is checked a posteriori (i.e., 

average or maxima of results depending on the number of assumed accelerograms). If not 

satisfactory, a modification of the damping parameter can be made in order to get an improvement 

in the achievement of the desired target performance level (e.g. in terms of absolute minimum 

deck displacement). Some iterations could be needed to define the effective optimal values ( opt  

or opt ). 

Near fault ground motion was not properly addressed in this work even if it is of great concern for 

structures with long natural periods (Jònsson et al. 2010). Near fault effects are mainly 

characterized by low frequency pulses, short duration and higher horizontal accelerations with a 

significant component in the vertical direction too. Due to their natural period, base isolated 

structures are more vulnerable when subjected to near fault motion: for single pulse excitation, the 

maximum response mainly depends on the ratio of the impulse duration to the natural period of the 

structure while the influence of damping is expected to be negligible (Chopra 2011), so isoltators’ 

displacement may significantly increase. In this case, at the stage of numerical validation, some 

accelerograms were selected with low epicentral distance (R<15 km) and no significant difference 

emerged from response. 

Effects of different soil conditions and non-synchronous motion were neglected. The isolated 

bridge was designed as if subjected to a standard input motion, i.e., synchronous excitation and 

uniform soil condition. Its response under spatially varying ground motion can be evaluated by 
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Fig. 28 Flowchart of the suggested design procedure 

 

 

numerical simulations at the design stage. Design codes normally require consideration of ground 

motion spatial variability only for bridges several hundreds meters long, or in case of drastic 

variations of soil profiles. Eurocode 8 (CEN 2004) requires spatial variability to be considered in 

case of more than one ground type at the supports in case of continuous deck’s length exceeding 

200 m over soil type D (higher values are suggested in case of better soil conditions). In the 

formulation of the equation of motion with input spatial variability, the model must include the 

degrees of freedom at the supports so that kinematic vectors are splitted in n- unconstrained and m-

support degrees of freedom. The n-vector x of the total displacements is the combination of a 

pseudo-static component x
s
 and a dynamic component x

d
 . The component x

s
 is computed from an 

m- vector u of prescribed support displacements while the term x
d
 is the effect of base 

accelerations. The spatial variation of the seismic action could be estimated using a simple 

approximative model based on pseudo-static effects of appropriate displacement sets imposed at 

the foundation of the supports, and then combined with the main inertial response. When a time-

history analysis is performed, a sample acceleration motion, obtained by means of a vector of 

zero-mean random process having a power spectrum consistent with the elastic response spectrum, 

can be applied at each support, thus reflecting the probable spatial variability of the seismic action. 

Irrespective of bridge configuration, the displacement demand of most of the isolators increases 

inthe presence of spatial variability (Lupoi 2009). Especially in the case of non uniform soil 
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conditions underneath the bridge foundations (the source of the greater negative influence on the 

bridge response), specific studies are necessary and a safety factor approach cannot be pursued.    

Pounding effects must be properly considered in a seismically isolated bridge, since lateral 

displacements are expected to increase significantly. Available clearances at deck movement joints 

and abutment back-walls must be checked in order to avoid collision, according to code 

requirements. A design criterion for the optimal isolation system was defined to obtain the 

minimum deck displacement, so implying minimum required clearances. It was proved that deck 

displacement is strongly reduced thanks to a value of damping very close to the optimal one, thus 

giving an optimal deck displacement not so different or sometimes lower than the fixed-base one. 

Taking benefits from damping, the question of pounding can be properly mitigated in seismically 

isolated bridges.  

The procedure proposed by the authors was explained with reference to the Italian Code, where 

the collapse prevention limit state (SLC) has to be taken into account for the design of the isolation 

system: seismic action is defined for a 5% over 50 years probability of occurrence during the 

reference life VR, whose value strongly affects the definition of the return period TR (in this case 

about 1500 years). In the Eurocode 8 code non-collapse requirement must be fullfilled for bridge 

design at Ultimate limit state (ULS): an importance factor γl depending on the importance class of 

the bridge is provided to scale seismic action (for class II-average importance, TR=475 years). In 

the US code, the maximum considered earthquake (MCE) must be taken into account in designing 

the isolation unit (ICC 2000), with a 2% probability of exceedance in 50 years. 

In conclusion, the following recommendations are given: at the first-step of the design 

procedure, the suggested values of the reference parameters ( opti,  or optc, ) have to be assumed; 

then, after acceleration input motion has been defined according to code provisions, time history 

analysis need to be performed. Seismic input has to take into account, if necessary, near fault 

effects and ground motion spatial variability. Numerical results are then compared with the design 

performance level, that may concern minimum deck displacement or pier base shear. Even if 

initial suggested values were numerically validated for real ground motions, optimum definition is 

case-dependent and the achievement of the desired performance level may require some iterations 

due to randomness of earthquake. Actually, real strong motion properties (magnitude, duration, 

frequency content, etc.) may play an important role in the determination of the effective design 

optimal value. 

 

 
5. Conclusions 
 

In an isolated bridge deck, the increase in the horizontal period of vibration implies the need for 
supplemental damping in order to reduce the deck displacement. In this paper, a theoretical 
approach was suggested for determining the optimal value of the inherent viscous damping in case 
of viscoelastic isolators (VI) or the yielding force in case of sliding isolators (SI). The proposed 
method is based on the analytical determination of the response to a harmonic base motion, with 
the aim of obtaining the optimal values of the adimensionalized viscous damping parameter (i) or 
yielding displacement () able to minimize the structural response, for each value of the piers to 
isolators relative stiffness . The method can be applied to a single or multispan bridge, supported 
by two or more columns all having the same stiffness, isolated by means of elastomeric or sliding 
bearings. 
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The authors demonstrated that, given a certain target period of isolation Ti, for different values 
of the design parameters (i or ), the behavior would span between two extreme cases both 
corresponding to an undamped response with an unbounded resonance. The process of adding 
damping is not beneficial to any extent but just up to a certain level, depending on the objective of 
the optimization process. Within this field, the optimal values of i and  have been assumed as the 
ones corresponding to a minimum of the response curve in the overall frequency range, for the 
deck or the pier displacement. Design spectra are provided where theoretical optimal values are 
given as a function of . 

In the second part of the paper, numerical analysis have been carried out to validate the 
proposed design method in case of two typical isolated bridges subjected to seven spectrum-
compatible earthquake records for a near collapse limit state, according to the NTC. This was 
devoted to determine the change in the structural response produced by varying the parameters i 
and .  

The numerical analysis demonstrated that the value i,opt minimizing the peak amplitude of the 
deck frequency response curve is usually of the same order of magnitude but slightly lower than 
that corresponding to the actual numerical optimum for the deck. This can be explained taking into 
account that the frequency content of a ground motion can vary significantly and does not 
correspond to a white noise exciting the overall range of frequencies of the system. Despite that, 
the theoretical value i,opt is very close to the numerical optimum for the pier, being also able at the 
same time to significantly reduce the deck response. 

As regard the SI case, it has been proved that opt is in the average in good agreement with the 
numerical optimum values minimizing the deck response, the latter sometimes related to the rigid 
deck-pier connection behavior. On the other hand, the pier displacement increases with , a part 
for a small range of from 0 to a value lower than c,opt. In the SI case, numerical results are not 
only depending on the frequency content of the ground motion but also on the assumption 
regarding the definition of the maximum ground displacement xg,max that in the suggested 
analytical procedure represents the amplitude of the harmonic base motion and has been estimated 
by means of seismic hazard parameters. A part from the approximations and hypothesis of the 
method, c,opt seems to be an acceptable value capable to strongly reduce the deck response without 
significantly affecting the pier displacement.  

When designing an isolated bridge with elastomeric or sliding bearings, the optimal inherent 
viscous damping coefficient or the optimal sliding force, respectively, can be first adopted as i,opt 
or c,opt. In this case the expected structural response is characterized by significantly reduced deck 
displacements with not affected or just lightly worsened pier response respect to the case i = 0 or 
 = 0. Both parameters can be assumed as a starting point in a case-dependent optimization 
process, therefore being necessary to perform iterative analysis for the code provided seismic 
action in order to check and find out the effective optimum value for the minimization of the 
desired response.  

From numerical results it has also been observed that, for a given  and ground motion, the 
absolute minimum deck displacement is obtained by means of viscous damping rather than 
hysteretic damping while for the minimum pier displacement there is no significant difference.   
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