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Abstract.  The uplifting and rocking of slender, free-standing structures when subjected to ground shaking 
may limit appreciably the seismic moments and shears that develop at their base. This high-performance 
seismic behavior is inherent in the design of ancient temples with emblematic peristyles that consist of 
slender, free-standing columns which support freely heavy epistyles together with the even heavier frieze 
atop. While the ample seismic performance of rocking isolation has been documented with the through-the-
centuries survival of several free-standing ancient temples; and careful post-earthquake observations in 
Japan during the 1940’s suggested that the increasing size of slender free-standing tombstones enhances 
their seismic stability; it was George Housner who 50 years ago elucidated a size-frequency scale effect that 
explained the “counter intuitive” seismic stability of tall, slender rocking structures. Housner’s 1963 seminal 
paper marks the beginning of a series of systematic studies on the dynamic response and stability of rocking 
structures which gradually led to the development of rocking isolation—an attractive practical alternative for 
the seismic protection of tall, slender structures. This paper builds upon selected contributions published 
during this last half-century in an effort to bring forward the major advances together with the unique 
advantages of rocking isolation. The paper concludes that the concept of rocking isolation by intentionally 
designing a hinging mechanism that its seismic resistance originates primarily from the mobilization of the 
rotational inertia of its members is a unique seismic protection strategy for large, slender structures not just at 
the limit-state but also at the operational state. 
 

Keywords:  seismic protection; rocking frame; recentering; moment of inertia; earthquake engineering 

 

 
1. Introduction 
 

The design of most structural framing systems is based on three basic concepts which are 

deeply rooted in modern structural engineering. The first concept is that of creating statically 

indeterminate (redundant) framing systems. When an “indeterminate” structure is loaded by strong 

lateral loads and some joints develop plastic hinges, there is enough redundancy in the system so 

that other joints maintain their integrity. In this way, recentering of the structures is achieved to 

some extent and stability is ensured. The second concept, known as ductility, is the ability of the 

structure to maintain sufficient strength at large deformations. In this way, even in the event of 

excessive lateral loads that may convert all joints to plastic hinges, all modern seismic codes 

demand that these hinges shall develop sufficient ductility so that collapse is prevented; however, 

in this case the structure may experience appreciable permanent displacements. The third concept 
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that dominates modern structural engineering is that of positive stiffnesses. When a structure 

behaves elastically, forces and deformations are proportional. When yielding is reached the forces 

are no longer proportional to the deformations; however, in most cases the stiffnesses at any 

instant of the deformation history of the structure remain positive—that is if some force is needed 

to keep the structure away from equilibrium at some displacement; then, a smaller force is needed 

to keep the structure away from equilibrium at a larger displacement. Fig. 1 (left) illustrates the 

deformation pattern of a moment-resisting, fixed-base frame when subjected to a lateral load 

capable to induce yielding at the joints. The force-deformation curve (P-u) is nonlinear; 

nevertheless, the lateral stiffness of the system remains positive at all times. 

Fig. 1 (right) illustrates the deformation pattern of a free-standing rocking frame (two free-

standing rigid columns capped with a freely supported rigid beam) when subjected to a lateral load 

capable to induce uplifting of the columns. The force-displacement relationship (P-u) of the 

rocking frame shown at the bottom of Fig. 1 (right) indicates that the articulated system has 

infinite stiffness until uplift is induced and once the four-hinge frame is set into rocking motion, its 

restoring force decreases monotonically, reaching zero when the rotation of the column 

θ=a=arctan(b/h). Accordingly, the free-standing rocking frame shown in Fig. 1 (right) is a four-

hinge mechanism that exhibits negative lateral stiffness.  

Fig. 1 indicates that while most modern structural engineers are trained to design statically 

indeterminate structures that exhibit positive stiffnesses and hopefully sufficient ductility (Fig. 1 

left); ancient builders were designing entirely different structural systems—that is articulated 

 

 

 
Fig. 1 The fundamental difference in the behavior of a traditional moment-resisting frame (left) and a 

rocking frame with free-standing columns which are allowed to rock (right) 
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Fig. 2 View of the Temple of Aphaia in Aegina, Greece. Its monolithic, free-standing columns support 

massive epistyles and the frieze atop, and the entire rocking frame remains standing for more than 

2500 years in a region with high seismicity 

 

 

mechanisms that exhibit negative stiffnesses and low damping (Fig. 1 right). What is remarkable 

about these “unconventional” articulated structures is that they have endured the test of time by 

surviving several strong seismic motions during their 2.5 millennia life. For instance, Fig. 2 shows 

the entrance view of the late archaic Temple of Aphaia in the island of Aegina nearby Athens, 

Greece. Dates ranging from 510 BC to 470 BC have been proposed for this temple. All but three 

of the 32 outer columns of the temple are monolithic and they have been supporting for 2.5 

millennia the front and back epistyles together with the heavy frieze (triglyph and metope) atop.  

The unparallel seismic performance of the rocking frames shown in Fig. 2 is due to the very 

reason that they are articulated mechanisms. In this way: (a) given their negative stiffnesses they 

are not subject to any resonance, (b) recentering (elimination of any permanent displacement) is 

achieved unconditionally with gravity; and (c) the rocking frames, while slender and emblematic, 

they are large in size to the extent that their rotational inertia, when mobilized, is enough to resist 

the 2500 years seismic hazard.   

Analytical studies on the seismic response of slender, free-standing blocks have been presented 

as early as in 1885 by Milne (1885) in an effort to estimate levels of ground shaking. His 

reasoning is entirely within the context of an equivalent static analysis and by taking moment 

equilibrium about the imminent pivoting point, he concludes that when the ground acceleration, üg, 
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exceeds the value of g·(width/height), the block overturns. Four decades after Milne’s work, 

Kirkpatrick (1927) published a remarkable paper on the seismic stability of rocking columns. His 

work brings forward the two key quantities other than the peak ground acceleration that are 

responsible for the stability of a slender, free-standing column: (a) the size of the column which 

enters the equations via the moment of inertia; and (b) the duration of the period of the excitation. 

Kirkpatrick (1927) after correctly deriving the minimum acceleration amplitude of a harmonic 

excitation that is needed to overturn a free-standing column with a given size and slenderness, 

proceeds by presenting the first minimum-acceleration overturning spectrum (Fig. 6 of Kirkpatrick 

1927 paper) and shows that as the period of the excitation decreases, a larger acceleration is 

needed to overturn a free-standing column. While P. Kirkpatrick worked in Hawaii, it appears that 

his contributions were not known in Japan. Nevertheless, in the late 1940’s Ikegami and 

Kishinouye published two important papers, one following the December 21, 1946 Nankai 

Earthquake (Ikegami and Kishinouye 1947) and the other following the December 26, 1949 

Imaichi Earthquake (Ikegami and Kishinouye 1950). These two papers come to confirm 

Kirkpatrick’s theoretical findings on the rocking response of free-standing columns; since they 

indicate that the static threshold, g·(width/height), is too low and is not able to explain the 

observed stable response of more slender; yet, larger tombstones. In their own words Ikegami and 

Kishinouye (1950) write “In our field investigations, we often met with cases where gravestones 

had not overturned because of their large dimensions in spite of the small value of the ratio 

between width and height”. 

About a decade later Muto et al. (1960) build upon the work of Ikegami and Kishinouye (1947, 

1950) and show explicitly that the dynamic response of a rocking column is governed by a 

negative stiffness; therefore, its free-vibration response is not harmonic; rather it is described by 

hyperbolic sines and cosines. 

The pioneering work of Kirkpatrick (1927) in association with the systematic work conducted 

in Japan on rocking and overturning during the first-half of the 20th century matured the 

knowledge on this subject to the extent that Housner (1963) after introducing the concept of pulse-

excitations elucidated a size-frequency scale effect that explained why (a) the larger of two 

geometrically similar blocks can survive the excitation that will topple the smaller block and (b) 

out of two same acceleration amplitude pulses, the one with longer duration is more capable to 

induce overturning. While the exact dynamic rocking response of the free-standing slender column 

turns out to be rather complex, the following section offers a qualitative explanation of the size-

frequency scale effect initially identified by Kirkpatrick (1927) and made popular to the 

earthquake engineering community by Housner (1963). 

 
 
2. A Notable Limitation of the Equivalent Static Lateral Force Analysis 
 

2.1 Seismic Resistance of Free-Standing Columns under “Equivalent Static” Lateral Loads 
 

Consider a free-standing rigid column with size 
22 hbR   and slenderness b/h=tanα as 

shown in Fig. 3 (left). Let us first assume that the base of the column is moving (say to the left) 

with a “slowly” increasing acceleration, üg (say a very long-duration acceleration pulse which 

allows for an equivalent static analysis). Uplift of the block (hinge formation) happens when the 

seismic demand (overturning moment) = mügh reaches the seismic resistance (recentering moment) 
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= mgb. When uplifting is imminent, “static” moment equilibrium of the block about the pivoting 

point O gives 


resistancedemand

mgbhum g 

    or   

 


resistance

tan

demand

g
h

b
gug                                 (1) 

Eq. (1), also known as West’s formula (Milne 1885, Kirkpatrick 1927), shows that the block <b, 

h> will uplift when üg≥gtanα. Now, given that this is a “quasistatic” lateral inertial loading, the 

inertia moment due to the nearly zero rotational accelerations of the blocks is negligible ( 0)( t ). 

Upon uplift has occurred, the rocking block experiences a positive rotation, θ(t); therefore, the 

seismic demand is mügRcos(α-θ(t)); while the seismic resistance is merely mgRsin(α-θ(t)) since 

0)( t . For θ>0, the resistance of the rocking block upon uplifting under quasistatic lateral 

loading is tan(α-θ(t)) which is smaller than tanα. Accordingly; once the block uplifts, it will also 

overturn. From this analysis one concludes that under quasistatic lateral loading the stability of a 

free-standing column depends solely on its slenderness (gtanα) and is independent to the size 

(
22 hbR  ). 

 

 

 

 
Fig. 3 Left: Geometric characteristics of a free-standing rocking column together with its moment 

rotation diagram. Right: During earthquake shaking which sets the column in rocking motion (

0)( t ) the seismic resistance is proportional to R
2
; while, the seismic demand is proportional to R. 

Consequently, when a free-standing column is sufficiently large it can survive large horizontal 

accelerations even if it is very slender 
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2.2 Seismic Resistance of Free-Standing Columns Subjected to Dynamic Loads 
 
In reality, earthquake shaking, üg, is not a quasistatic loading and upon uplifting has occurred 

the block will experience a finite rotational acceleration ( 0)( t ). In this case, dynamic moment 

equilibrium gives  

  


  


resistance seismic

)](sin[)(

demand seismic

)](cos[)( tmgRtItRtum og      0            (2) 

where Io is the rotational moment of inertia of the column about the pivot point at the base—a 

quantity that is proportional to the square of the size of the column R. As an example for 

rectangular columns, 2

3

4
mRIo  , and Eq. (2) simplifies to 

  


  



resistance seismic

)](sin[)(
3

4

demand seismic

)](cos[)( 2 tgRtRtRtug      0            (3) 

Eq. (3) indicates that when a slender free-standing column is set into rocking motion the 

seismic demand (overturning seismic moment) is proportional to R (first power of the size); 

whereas, the seismic resistance (opposition to rocking) is proportional to R
2
 (second power of the 

size). Consequently, Eq. (3) dictates that regardless how slender a column is (small α) and how 

intense the ground shaking, üg, is (seismic demand), when a rotating column ( )(t =finite) is large 

enough, the second power of R in the right-hand-side (seismic resistance) can always ensures 

stability. Simply stated, Housner’s (1963) size effect is merely a reminder that a quadratic term 

eventually dominates over a linear term regardless the values of their individual coefficients.  

Fig. 3 (right) shows schematically the relations with the size R of the seismic demand (linear 

relation) and the seismic resistance (quadratic relation). From its very conception the “equivalent 

static lateral force analysis” is not meant to deal with any rotational acceleration term; therefore, 

its notable failure to capture the seismic stability (resistance) of tall free-standing structures. 

Simply stated, ancient builders were designing structures that ther seismic resistance originates 

primarily from the mobilization of their rotational inertia—a truly dynamic design. It is worth 

emphasizing that slender rocking structures have low-to-moderate strength (uplifting initiates 

when üg> g(b/h)=gtanα), negative stiffness; whereas, damping during rocking happens only at the 

instant of impact; therefore, the ductility of these systems is zero. Table 1 compares the basic 

design concepts together with the main response-controlling quantities that are associated with: (a) 

the traditional earthquake resistant (capacity) design; (b) seismic isolation; and (c) rocking 

isolation. It is worth noting that the ancient temples as the one shown in Fig. 2 were designed by 

following a truly dynamic design which merely takes full advantage of the large rotational inertia 

of the structural members; whereas, in modern times the prevailing design philosophy is deeply 

rooted to static concepts such as strength and ductility; while it neglects entirely the ample seismic 

resistance that may originate from the mobilization of the rotational inertia of the structure (or its 

individual members). Perhaps, the only exception to this static design philosophy is the 

implementation of concave sliding bearings in seismic isolated structures where the restoring force 

is a component of the weight of the structure.  
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It is worth noting that during the last decade there has been a series of publications which aim 

to direct the attention of engineers to the unique advantages associated with allowing structures to 

uplift. The underlying concept in this class of publications is the intentional generation of uplifting 

mechanisms in traditional moment resisting frames (Ajrab et al. 2004, Harden et al. 2006, 

Kawashima et al. 2007, Gajan and Kutter 2008, Anastasopoulos et al. 2010, Hung et al. 2011, 

Deng et al. 2012, Gelagoti et al. 2012, among others) either at the bottom of shear walls or even at 

the foundation level by allowing appreciable rotations of the footings due to eccentric loading. In 

this way, the seismic resistance of these “hybrid” structural systems originates primarily from the 

intentional creation of a lower failure mechanism which once mobilized it reduces the seismic 

demand on other critical locations of the structure; while, rocking motion in the way that is 

illustrated in Fig. 3 happens only to some individual members of the overall moment-resisting 

yielding frame. Consequently, in this class of hybrid systems the development of rotational 

accelerations of the individual rocking members is somehow suppressed since their motion needs 

to be compatible with the lateral motion of the overall yielding frame. Accordingly, the seismic 

resistance of these yielding frames is “in-between” that of a traditional moment-resisting yielding 

frame and that of a rocking frame. In most cases the ductile behavior of the overall moment-

resisting yielding frame dominates the system behavior and in this case a “capacity” design 

approach may be applicable (Gajan et al. 2008). 

 
 

3. Aim of this Work 
 

Despite the ample dynamic stability (seismic resistance) of large, free-standing structures as 

shown qualitatively in Fig. 3 (right) and quantitatively later in this paper with the overturning 

spectra, most modern tall bridges (with tall slender piers which if they were free-standing they 

could engage into stable rocking motion and mobilize their high rotational inertia) are protected 

from the seismic action via base-shear isolation, after designing massive pile foundations to 

prevent uplifting, rather than from (the most natural) rocking isolation. Part of the motivation of 

this paper is to bring forward the three unique advantages of rocking isolation: (a) that regardless 

its slenderness (aspect ratio) and the intensity of the ground acceleration, a free-standing rocking 

frame remains stable when is sufficiently large; (b) that given the inherent negative stiffness, a 

rocking frame neither amplifies nor resonates from any frequency content of the input ground 

motion; and (c) that recentering (elimination of any permanent displacement) is achieved 

unconditionally through gravity—a major asset that is always available for free. Accordingly, the 

aim of this work is not to present an exhaustive review on past studies that investigated various 

aspects of the rocking response and stability of free-standing blocks and rigid body assemblies (e.g. 

Allen et al. 1986, Psycharis 1990, Spanos et al. 2001, Konstantinidis and Makris 2005, 2010, 

Palmeri and Makris 2008, Kounadis et al. 2012, among others and references reported therein). Its 

aim is rather to offer the necessary theoretical background in an effort to accept and establish 

rocking isolation and the associated hinging mechanism which allows the mobilization of the 

rotational inertia of major structural members not just as limit-state mechanism; but as an 

operational state (seismic protection) mechanism for large slender structures. 
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Table 1 Basic design concepts and response-controlling quantities associated with: (a) the traditional 

earthquake resistant (capacity) design; (b) seismic isolation; and (c) rocking isolation 

 TRADITIONAL 

EARTHQUAKE 

RESISTANCE DESIGN 

 Moment Resisting 

Frames 

 Braced Frames 

SEISMIC ISOLATION 
ROCKING 

ISOLATION 

Strength 

Moderate to Appreciable 


m

Q
u y

g
 0.10g-0.25g 

Low 


m

Q
u y

g
 0.03g-0.09g 

Moderate 

ag
h

b
gu up

g tan  

Stiffness 
Positive and Variable due to 

Yielding 

Positive, Low  

and Constant 
Negative, Constant 

Ductility 
Appreciable 

μ=3-6 

Very Large/Immaterial
* 

LRB
†
:  μ=10-30 

CSB
‡
:  μ=1000-3000 

Zero 

Damping Moderate Moderate to High 
Low (only during 

impact) 

Seismic 

Resistance 

Originates from: 

Appreciable Strength and 

Ductility 

Low Strength and Low 

Stiffness in association 

with the capability to 

accommodate Large 

Displacements 

Low to Moderate 

Strength and 

Appreciable Rotational 

Inertia 

Equivalent Static 

Lateral Force 

Analysis is 

Applicable? 

YES YES NO 

Design 

Philosophy 
Equivalent Static Equivalent Static Dynamic 

*
Makris and Vassiliou (2011) 

†
LRB=Lead Rubber Bearings 

‡
CSB=Concave Sliding Bearings 

 
 

4. Equation of Motion of the Free-Standing Rocking Block 
 

For negative rotations (θ(t)<0), the equation of motion of a rocking block is 

)](sin[)()](cos[)( tmgRtItRtum og       0             (4) 

Eqs. (2) and (4) are well known in the literature (Yim et al. 1980, Makris and Roussos 2000, 

Zhang and Makris 2001 and references reported therein) and are valid for arbitrary values of the 

slenderness angle α=arctan(b/h). Eqs. (2) and (4) can be expressed in the compact form 









 )]()](sgn[cos[)]()](sgn[sin[)( 2 tt
g

u
ttpt

g


             (5) 
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In Eq. (5), the quantity 
oImRgp /  is the frequency parameter of the block and is an expression 

of its size. For rectangular blocks )4/(3 Rgp  . 

Fig. 3 (left) shows the moment–rotation relationship during the rocking motion of a free-

standing block. The system has infinite stiffness until the magnitude of the applied moment 

reaches the value mgRsinα, and once the block is rocking, its restoring force decreases 

monotonically, reaching zero when θ = α. This negative stiffness, which is inherent in rocking 

systems, is most attractive in earthquake engineering in terms of keeping base shears and moments 

low (Makris and Konstantinidis 2003), provided that the rocking block remains stable, thus the 

need for a formulae that will offer a safe design value for its slenderness. 

During the oscillatory rocking motion, the moment–rotation curve follows the curve shown in 

Fig. 3 without enclosing any area. Energy is lost only during impact, when the angle of rotation 

reverses. The ratio of kinetic energy after and before the impact is 

2
1

2
2







r                                                                    (6) 

which means that the angular velocity after the impact is only r  times the velocity before the 

impact. 

Conservation of angular momentum just before and right after the impact gives (Housner 1963): 

2sin
2

3
1r                                                          (7) 

The value of the coefficient of restitution given by (7) is the maximum value of r , under 

which a block with slenderness α will undergo rocking motion. Consequently, in order to observe 

rocking motion, the impact has to be inelastic. The less slender a block is (larger α), the more 

plastic the impact is, and for the value of   3/2sin 1 54.73
o
, the impact is perfectly plastic. 

During the rocking motion of slender blocks, if additional energy is lost due to the inelastic 

behavior at the instant of impact, the value of the true coefficient of restitution r will be less than 

the one computed from Eq. (7). 

Following Housner’s seminal paper, a number of studies have been presented to address the 

complex dynamics of one of the simplest man-made structures—the free-standing rigid column. 

Yim et al. (1980) conducted numerical studies by adopting a probabilistic approach; Aslam et al. 

(1980) confirmed with experimental studies that the rocking response of rigid blocks is sensitive to 

system parameters, whereas Psycharis and Jennings (1983) examined the uplift of rigid bodies 

supported on viscoelastic foundation. Subsequent studies by Spanos and Koh (1984) investigated 

the rocking response due to harmonic steady-state loading and identified ‘safe’ and ‘unsafe’ 

regions together with the fundamental and subharmonic modes of the system. Their study was 

extended by Hogan (1989, 1990) who further elucidated the mathematical structure of the problem 

by introducing the concepts of orbital stability and Poincare sections. The steady-state rocking 

response of rigid blocks was also studied analytically and experimentally by Tso and Wong 

(1989a,b). Their experimental work provided valuable support to theoretical findings. 

Depending on the level and form of the ground acceleration, in association with the interface 

conditions at the base, a free-standing rigid block may translate with the ground, slide, rock, or 

slide-rock. Analytical and numerical studies on the possible motions of a rigid body were 
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presented by Ishiyama (1982) and Sinopoli (1989). These studies were followed by Scalia and 

Sumbatyan (1996) and Shenton (1996), who independently indicated that, in addition to pure 

sliding and pure rocking, there is a slide-rock mode and its manifestation depends not only on the 

width-to-height ratio and the static friction coefficient but also on the magnitude of the base 

acceleration. 

 

 
5. Time Scale and Length Scale of Pulse-Like Ground Motions 
 

The relative simple form, yet destructive potential of near-source ground motions has 

motivated the development of various closed-form expressions that approximate their leading 

kinematic characteristics. The early work of Veletsos et al. (1965) and Bertero et al. (1978) was 

followed by the papers of Hall et al. (1995), Makris (1997), Makris and Chang (2000), Alavi and 

Krawinkler (2001), and more recently by Mavroeidis and Papageorgiou (2003), Baker (2007) and 

Vassiliou and Makris (2011). Some of the proposed pulses are physically realizable motions with 

zero final ground velocity and finite accelerations, whereas some other idealizations violate one or 

both of the above requirements. Physically realizable pulses can adequately describe the impulsive 

character of near-fault ground motions both qualitatively and quantitatively. The input parameters 

of the model have an unambiguous physical meaning. The minimum number of parameters is two, 

which are either the acceleration amplitude, ap, and duration, Tp, or the velocity amplitude, vp, and 

duration, Tp (Makris (1997), Makris and Chang (2000)). The more sophisticated model of 

Mavroeidis and Papageorgiou (2003) involves four parameters, which are the pulse period, the 

pulse amplitude, together with the number and phase of half cycles, and was found to describe a 

large set of velocity pulses generated due to forward directivity or permanent translation effect. 

Recently, Vassiliou and Makris (2011) used the Mavroeidis and Papageorgiou (2003) model in 

association with wavelet analysis to develop a mathematically formal and objective procedure to 

extract the time scale and length scale of strong ground motions.  

The current established methodologies for estimating the pulse characteristics of a wide class of 

records are of unique value since the product, ppp LTa 2
, is a characteristic length scale of the 

ground excitation and is a measure of the persistence of the most energetic pulse to generate 

inelastic deformations (Makris and Black 2004a). It is emphasized that the persistence of the pulse 

is a different characteristic than the strength of the pulse, which is measured with the peak pulse 

acceleration. The reader may recall that among two pulses with different acceleration amplitude 

(say ap1 > ap2) and different pulse duration (say Tp1 < Tp2), the inelastic deformation does not scale 

with the peak pulse acceleration (most intense pulse) but with the stronger length scale (larger 
2
ppTa =most persistent pulse), Makris and Black (2004a,b), Karavassilis et al. (2010). 

The heavy line in Fig. 4 (top) that approximates the long-period acceleration pulse of the NS 

component of the 1992 Erzincan, Turkey, record is a scaled expression of the second derivative of 

the Gaussian distribution, 22te , known in the seismology literature as the symmetric Ricker 

wavelet (Ricker 1943, 1944) and widely referred to as the “Mexican Hat” wavelet (Addison 2002) 
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The value of ppT 2  is the period that maximizes the Fourier spectrum of the Symmetric 

Ricker Wavelet. Similarly, the heavy line in Fig. 4 (center) which approximates the long-period 

acceleration pulse of the Pacoima Dam motion recorded during the February 9, 1971, San 

Fernando, California, earthquake is a scaled expression of the third derivative of the Gaussian 

distribution 22te  
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Fig. 4 Acceleration time histories recorded during the (top) 1992 Erzincan, Turkey, earthquake 

together with a symmetric Ricker wavelet; (center) 1971 San Fernando earthquake—fault normal 

component of the Pacoima Dam record together with an antisymmetric Ricker wavelet; and (bottom) 

1994 Northridge earthquake—228 Rinaldi station together with a one-cycle sine pulse 
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in which β is a factor equal to 1.38 that enforces the above function to have a maximum=ap. The 

choice of the specific functional expression to approximate the main pulse of pulse–type ground 

motions has limited significance in this work. In the past, simple trigonometric pulses have been 

proposed by the author and his coworkers (Makris 1997, Makris and Chang 2000, Makris and 

Black 2004a,b) to extract the time scale and length scale of pulse-type ground motions. For 

instance, the heavy line in Fig. 4 (bottom) which approximates the strong coherent acceleration 

pulse of the 228 component at the Rinaldi receiving station of the 1994 Northridge earthquake is a 

one-sine acceleration pulse 

)sin()( tatu ppg  ,  pTt 0                                              (10) 

A mathematically rigorous and easily reproducible methodology based on wavelet analysis to 

construct the best matching wavelet on a given record (signal) has been recently proposed by 

Vassiliou and Makris (2011). 

 

 
 
6. Conditions for Initiating and Sustaining Rocking Motion 
 

Consider the free-standing rigid block shown in Fig. 3 with slenderness α, which can rock 

about the centers of rotation O and O΄ when it is set to rocking. Depending on the level and form 

of the ground acceleration, a free-standing block may translate with the ground, slide, rock, or  

 

 

 
Fig. 5 Acceleration, velocity, and displacement histories of one-sine pulse (left) and one-cosine 

pulse (right) 

1198
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slide rock. Prior to 1996, the mode of rigid-body motion that prevailed has been determined by 

comparing the available static friction to the width-to-height ratio of the block, irrespective of the 

magnitude of the horizontal ground acceleration. At about the same time, Scalia and Sumbatyan 

(1996) and, independently, Shenton (1996) indicated that, in addition to pure sliding and pure 

rocking, there is a slide-rock mode and its manifestation depends not only on the width-to-height 

ratio and the static friction coefficient but also on the magnitude of the base acceleration. 

Physically realizable cycloidal pulses like those introduced in the previous section have 

displacement histories that are continuous and differentiable signals that build up gradually from 

zero. Their corresponding acceleration histories might be zero at the time origin or exhibit a finite 

value that can be as large as their maximum amplitude. Fig. 5 plots the acceleration, velocity, and 

displacement histories of a one-sine pulse (left) and one-cosine pulse (right). In the case of the 

one-sine pulse, the ground acceleration is zero at the initiation of motion and builds up gradually. 

In contrast, in the case of a one-cosine pulse, the ground acceleration assumes its maximum value 

at the initiation of motion. Under other cycloidal pulses such as Type-Cn pulses (Makris and 

Roussos 1998, 2000), the ground acceleration is finite at the initiation of motion; nevertheless, it 

assumes a value that is smaller than its maximum amplitude ap. With reference to Fig. 3 and 

assuming that the coefficient of friction μ>(b/h)=tanα, static equilibrium yields that the minimum 

horizontal acceleration that is needed to initiate rocking is üg,min= gtanα (see Eq. (1)).  

 
 
6.1 Condition for Initiating Rocking Motion 
 

Consider a cycloidal pulse with acceleration amplitude ap > gtanα and let λap be the value of 

the ground acceleration when a block with slenderness α is about to enter rocking motion. 

Depending on the type of pulse, λ assumes different values; however, it is bounded by 

 

1
tan

 


pa

g
                                                        (11) 

 

Fig. 6 shows the free-body diagram of a free-standing block that is about to enter rocking 

motion due to a positive ground acceleration. With the system of axis shown, a positive 

acceleration will induce an initial negative rotation (θ < 0). Adopting the notation introduced by 

Shenton (1996), let fx > 0 and fz > 0 be the horizontal and vertical reactions at the tip O΄ of the 

block. Dynamic equilibrium at this instant (θ = 0) gives 

))0(()0(  hamf px                                                    (12) 

))0(()0( bgmfz                                                      (13) 

bfhfI zxcg )0()0()0(                                                 (14) 

where Icg = moment of inertia of the block about its center of gravity (for rectangular blocks Icg = 

mR
2
/3). Substitution of Eqs. (12) and (13) into Eq. (14) gives the value of the angular acceleration 

o
  at the instant when rocking initiates 
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Fig. 6 Free-body diagram of rigid block at the instant that it enters rocking motion 
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in which )4/(3 Rgp  = frequency parameter of the block (rad/s); whereas 22 hbR  = half-

diameter of the block—a measure of its size. To avoid sliding at this instant (t = 0) 


)0(

)0(

z

x

f

f
                                                            (16) 

and substitution of the value computed by Eq. (15) into Eqs. (12) and (13) gives the condition for a 

block to enter the rocking motion without sliding 































1
tan

sin
4

3

1
tan

sincos
4

3

2

g

a
gg

g

a
ga

p

p

p

                                         (17) 

Eq. (17), initially presented by Shenton (1996) and subsequently by Pompei et al. (1998), 

indicates that, under some excitation pulses with amplitude ap, the condition for a block to enter 

rocking motion without sliding depends on the value of ap. However, this is true only for pulses 

that have a finite acceleration at the initiation of motion. For pulses in which acceleration history 

builds up gradually (such as a one-sine pulse), the value of λap at the initiation of rocking is equal 

to gtanα and Eq. (17) reduces to 
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 
h

b
tan                                                               (18) 

which is the traditional expression that one derives from static analysis.  

 

6.2 Condition for Sustaining Rocking Motion 
 

Once the block enters rocking motion, the horizontal reaction fx(t) and vertical reaction fz(t) 

fluctuates with time. Consequently, to avoid sliding during the entire duration of the rocking 

motion 


)(

)(

tf

tf

z

x    at all times                                                        (19) 

Dynamic equilibrium in the horizontal and vertical directions gives 

))()(()( txtumtf gx
                                                          (20) 

))(()( tzgmtfz
                                                            (21) 

where x(t) and z(t) = horizontal and vertical displacements of the center of mass of the block. The 

kinematics of the rocking motion yields that (Pompei et al. 1998, Zhang and Makris 2001) 

)]()](sgn[sin[)()]()](sgn[cos[)()( 2 tttRtttRtx                         (22) 

)]()](sgn[cos[)()]()](sgn[sin[)()( 2 tttRtttRtz                         (23) 

where )(t = angular velocity of the block; and )(t = angular acceleration of the block that is 

given by Eq. (5). The substitution of Eqs. (20) and (21) into Eq. (19) in association with Eqs. (5), 

(22), and (23) gives that the condition needed to avoid sliding during the entire rocking motion is 

(Zhang and Makris 2001) 
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  (24) 

Eq. (24) is central in accepting and establishing the concept of rocking isolation since the 

designer can easily verify whether a free-standing structure will only rock without sliding during 

the entire duration of the ground shaking. An enhanced form of Eq. (24) which also includes the 

effect of vertical acceleration has been presented by Taniguchi (2002) who concludes that there are 

cases where the contribution of the vertical acceleration needs to be considered to ensure that 

rocking motion is sustained. 
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7. Minimum Overturning Acceleration Spectra: Self-Similar Response 
 

In his effort to address the dynamics of the rocking block a half a century ago, Housner (1963) 

uses as ground excitations simple mathematical pulses. In that study, the base acceleration was 

represented with a rectangular or a half-sine pulse üg(t)=apsin(ωpt+ψ), -ψ/ωp<t<(π-ψ)/ωp and 

expressions were derived for the minimum acceleration of a pulse with a given duration that is 

needed to overturn a free-standing block with a given size and slenderness. Thus, the first 

minimum overturning spectra for pulse excitation were published. 

 

7.1 Conditions to Reach the Verge of Overturning 
 

When calculated his overturning spectra, George Housner postulated that the condition for 

overturning is that the angle of rotation, θ, is equal to the block slenderness α at time t=(π-ψ)/ωp 

which is the time at which the half-sine expires. Based on this forced and therefore flawed 

postulate, he derived a simple expression that provides the minimum acceleration amplitude 

required to overturn the block. 

In reality, when the excitation pulse assumes its minimum overturning acceleration amplitude 

the free-standing block will reach “asymptotically” the verge of overturning (  )( ovt , 

0)( ovt ) during its free vibration regime. 

The correct condition for a rocking block to reach the verge of overturning was presented for 

the first time by Shi et al. (1996) who stated correctly that for the minimum overturning amplitude 

needed to overturn the block, the kinetic energy of the block at the verge of overturning shall be 

zero. Accordingly, for a half-sine pulse, Shi et al. (1996) showed that the minimum overturning 

acceleration amplitude ap=gtanα/sinψ is determined from the solution of the transcendental 

equation 

)](exp[cossin 
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p p

p
                                         (25) 

Eq. (25) was derived independently by Makris and Roussos (1998, 2000) who stated that when 

the free-standing block is excited by the minimum overturning acceleration pulse the time needed 

to reach the verge of overturning (θ(tov)=α) is theoretically infinite; and therefore tan(ptov)=1. With 

these two overturning conditions (θ(tov)=α, tan(ptov)=1) Makris and Roussos (1998, 2000) 

concluded that the minimum overturning acceleration amplitude ap=gtanα/sinψ is determined from 

the solution of the transcendental equation 
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Using the definition of the hyperbolic functions, Eq. (26) simplifies to Eq. (25) initially derived by 

Shi et al. (1996). 

Today, the solution given by Eq. (25) or (26) has a limited design value, since a half-cycle 
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acceleration pulse is not a physically realizable pulse because it results to infinite ground 

displacements. Nevertheless, the efforts of Shi et al. (1996) and Makris and Roussos (1998, 2000) 

are important contributions in the development of the theory of rocking isolation since they 

established the correct conditions at the verge of overturning (  )( ovt , 0)( ovt  or alternatively 

1)tan( ovpt ), which are central in establishing the minimum design slenderness of a free-standing 

structure with a given height (see Makris and Vassiliou 2012). 

 

7.2 Overturning Spectra from Physically Realizable Pulses 
 

Following the spectacular damage of the Olive View Hospital during the 1971 San Fernando, 

California earthquake, Bertero et al. 1978 directed the attention of engineers to long-duration 

acceleration pulses which result in unusually large monotonic velocity increments. During the 

subsequent 15 years, there have been a handful of publications that stressed the significance of 

long-duration pulses (Bertero et al. 1991, Somerville and Graves 1993); however, it was only after 

the 1994 Northridge, California and the 1995 Kobe Japan earthquake that researchers recognized 

that the use of simple mathematical pulses as ground excitations may reveal significant 

information on peak response quantities of various structural systems. 

Given that the half sine and rectangular pulses used by Housner (1963) are not physically 

realizable ground motions (they result to infinite ground displacements), Makris and Roussos 

(1998) examined the rocking response and stability of slender blocks to physically realizable 

pulses such as the one-sine acceleration pulse (type-A=forward pulse) and the one-cosine pulse 

(type-B=forward-and-back pulse) shown in Fig. 5, together with more complex pulses where the 

displacement history exhibits one or more long duration cycles (type-C pulses). Using these pulses, 

Makris and Roussos (1998) presented for the first time minimum overturning acceleration spectra 

for rocking blocks by solving numerically the nonlinear equation of motion given by Eq. (5). 

The 1998 Makris and Roussos report summarized seismic response and stability studies on 

electrical equipment with a frequency parameter p≈2rad/sec. In view of the relatively long 

duration of the coherent pulses that is needed to induce overturning (say Tp>1sec), the range of 

interest in the frequency ratio, ωp/p, for rocking stability of electrical equipment (p≈2rad/sec) is 

0≤ωp/p≤π. Within this range of dimensionless frequency (0≤ωp/p≤π), the minimum overturning 

acceleration spectra due to cycloidal pulses is nearly linear and Makris and Roussos (1998, 2000) 

proposed the approximate expression for the minimum overturning acceleration amplitude 

pg

a ppo 



1

tan
                                                      (27) 

In Eq. (27), apo is the minimum overturning acceleration amplitude of the pulse and α is the 

slenderness angle of the block. The coefficient β=1/6 for Type-A or Type-Cn pulses and β=1/4 for 

Type-B pulses. For values of ωp/p≥π, the minimum overturning acceleration spectra becomes 

increasingly nonlinear. Although the range of ωp/p≥π is not of interest in evaluation the rocking 

stability of relative small free-standing blocks (electrical transformers with p=2) it is of prime 

interest when assessing the rocking stability of larger structures (ancient free-standing columns or 

prefabricated bridge frames, p<1) excited by shorter duration pulses. 

Shortly after the publication of the Makris and Roussos (1998) report, Anooshehpoor et al. 

(1999) presented minimum overturning acceleration spectra due to one-sine acceleration pulse by 
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solving the linearized expressions of Eqs. (2) and (4). Their study was motivated from the 

temptation to estimate peak ground accelerations at Point Reyes, California, during the 1906 San 

Francisco earthquake. Their semi-analytical solution focused on the one-impact mode of 

overturning; without recognizing the presence of the second mode of overturning that happens 

without impact. This second mode of overturning (without impact) further complicates the 

dynamics of the response, while the transition from the first mode (with impact) to the second 

mode (without impact), which happens in the neighborhood of ωp/p≈6-10 is sensitive to the 

nonlinear nature of the problem (Zhang and Makris 2001). 

Before examining the minimum overturning acceleration spectra with a full nonlinear analysis 

for values of ωp/p>π—that is for large blocks or high frequency pulses, we return to Eq. (27) that 

was initially presented by Makris and Roussos (1998) within the context of a demand assessment 

(find the acceleration level capable to overturn a free-standing block with a given slenderness α 

and a given size p). As rocking isolation gradually emerged as an attractive seismic design concept, 

there was a need of sizing the width of tall free-standing columns with a given size. This need can 

be addressed by expressing Eq. (27) within the context of a capacity design (find the geometry of 

the structure that can sustain a given loading). Accordingly, Eq. (27) gives 

)(tan
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g
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



                                                   (28) 

where Tp=2π/ωp and γ=2πβ—that is γ=π/3 for Type-A and Type-Cn pulses and γ=π/2 for a Type-B 

pulse. Eq. (28), which is extracted by fitting the minimum overturning acceleration spectra 

computed numerically by Makris and Roussos (1998) was re-discovered some 15 years later after 

employing basic principles of dynamics (Makris and Vassiliou 2012). 

The various mathematical idealizations of coherent pulse-type ground motions as described by 

Eqs. (8) to (10) and shown in Figs. 4 and 5 are invariably characterized by a pulse period Tp and a 

pulse acceleration amplitude ap. From Eq. (5), it results that the response of a rocking free-

standing block subjected to ground acceleration pulse is a function of five variables 

 

),,,,()( ppagpft                                                 (29) 

 

The six variables appearing in Eq. (29), [] , 
2]T][L[ pa , 

1]T[ p , 
1]T[ p , [] , 

2]T][L[ g  involve only two reference dimensions: those of length [L] and time [T]. According 

to Vashy-Buckingham’s Π-theorem (Barenblatt 1996), the number of dimensionless products with 

which the problem can be completely described is equal to [number of variables in Eq. (29)=6]—

[number of reference dimensions=2]. Herein, we select as repeating variables the characteristics of 

the pulse excitation, ap and ωp, and in this case the four independent Π-terms are 

                                                                 (30) 

p

p
                                                                (31) 
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 tan                                                               (32) 

g

ap

g                                                                  (33) 

With the four dimensionless Π-terms established, Eq. (29) reduces to 
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The rocking response of a rigid block when subjected to a horizontal base acceleration, üg(t) is 

computed by solving Eq. (5) in association with the minimum energy loss expression given by Eq. 

(7), which takes place at every impact. The solution of the nonlinear differential equation given by 

(5) is computed numerically by means of a state-space formulation. The state vector of the system 

shown in Fig. 3 (left) is merely 











)(

)(

t

t




y(t)                                                               (35) 

and the time-derivative vector (t)yf(t)   is 
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The numerical integration of Eq. (36) is performed with standard ordinary differential 

equations (ODE) solvers available in MATLAB, The Mathworks (2002). 

Fig. 7 shows the overturning acceleration spectrum of a rigid block with slenderness α = 10
o
 

(b/h=1/5.67, tanα = 0.176) due to a one-sine acceleration pulse (left), a symmetric Ricker wavelet 

(center), and an antisymmetric Ricker wavelet (right). Fig. 7 indicates that as Πω = ωp/p increases, 

the acceleration needed to overturn the object becomes appreciably larger than the one needed to 

uplift it. When producing the results of Figure 7, the maximum coefficient of restitution given by 

Eq. (7) was used. 

The light gray area in all three bottom plots corresponds to stability (no overturning). The areas 

in black in all three plots correspond to overturning without impact. The gray areas below the 

black areas correspond to overturning with one impact. The gray areas above the black areas 

correspond to overturning with multiple impacts which do not exist in the case of one-sine 

acceleration pulse (left plot). Note that all three plots show that there are safe areas above the 

minimum overturning acceleration—a behavior that results from the strong nonlinear nature of the 

problem. Most important is that as the ratio Πω = ωp/p increases (shorter duration pulses or larger 

blocks), the minimum overturning acceleration needed to overturn the block increases appreciably. 

This size-frequency effect illustrated in Fig. 7 shows that a block with a given slenderness can 

survive strong shaking, provided that it is large enough. 
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Fig. 7 Overturning acceleration spectra of a free-standing block with slenderness α = 10

o
, subjected to 

a one-sine acceleration pulse (left), a symmetric Ricker wavelet (center), and an antisymmetric Ricker 

wavelet (right). The light gray areas (safe areas) in all three plots correspond to stability (no 

overturning). The areas shaded in black in all three plots correspond to overturning without impact. 

The gray areas below the black areas correspond to overturning with one impact. The gray areas above 

the black areas correspond to overturning with multiple impacts which do not exist in the case of one-

sine acceleration pulse (left plot). 

 
 

 

 
8. Sizing the Slenderness (aspect ratio) of a Free-Standing Column with a 
Given Height to Withstand Earthquake Shaking 
 

The main challenge in designing rocking structures in order to limit overturning moments and 

base shears is that the restoring moment of a rocking structure decreases as rotation increases (see 

Fig. 3) and eventually becomes unstable when the rotation exceeds the slenderness, α, of the free-

standing structure. Accordingly, when sizing a rocking structure, it has to be slender enough to 

undergo rocking; while, it has to be wide enough in order to remain stable, given the seismic 

hazard of the area that it belongs to. Accordingly, this section summarizes the derivation of a 

closed-form expression presented recently by Makris and Vassiliou (2012) that offers the 

minimum design slenderness that is sufficient for a free-standing column with a given height to 

survive a pulse-like motion with known acceleration amplitude and duration. 

 

8.1 Approach with dimensional and physical arguments 
 

The solution to the problem addressed above can be approached with the use of the 

dimensionless products given by Eqs. (30)–(33) in association with the information from static 
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analysis—that for a long-duration (constant) acceleration pulse with amplitude ap, the overturning 

acceleration is ap=gtanα (see Eq. (1)). Accordingly, after replacing the dimensionless term 

Πω=ωp/p with pTp, the minimum slenderness α that ensures stability of a free-standing block with 

size R subjected to a pulse with amplitude ap and duration Tp is 

)(tan p

p
pT

g

a
  , or )(    g                                        (37) 

Now, while the expression of the function φ(pTp) is unknown, physical arguments discussed in 

the introduction of this paper indicate its limits as pTp is very small or very large. 

pulsesfrequency -highor  blocks large
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p
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p
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pT
       (38) 

With the two limiting values of φ(pTp) established, one can propose approximate expressions 

for the function φ(pTp). For instance, Eq. (28) that is back-calculated after fitting the minimum 

overturning acceleration spectra due to simple cycloidal pulses satisfies the limiting values offered 

by Eq. (38). The challenging question however is whether the mathematical form of Eq. (37) can 

be derived from basic principles of dynamics. 

 

8.2 Analytical approach 
 

In order to address this problem analytically, Makris and Vassiliou (2012) first examined what 

is the minimum initial angular velocity, )0( , that is needed to bring a free-standing block at the 

verge of overturning—a limit state that is defined when the diagonal of the block is vertical 

 )( ovt  and the angular velocity at this position is zero ( 0)( ovt ). At this limit state, for the 

angular velocity )(t  to reach asymptotically the zero-value as θ(t) tends to α, it takes theoretically 

an infinite amount of time; therefore, tov is in any event sufficiently larger than any finite time 

interval which appears in the problem at hand. In theory, the acceleration amplitude can be tuned 

to the extent that the block will take an infinite long time to decide whether it will re-center or 

overturn. 

For rectangular blocks, Io=(4/3)mR
2
, the minimum initial angular velocity needed to bring a 

rocking block <α, p> at the verge of overturning is (Palmeri and Makris 2008, Makris and 

Vassiliou 2012) 

p )0(                                                               (39) 

Given the result of Eq. (39), our problem now reduces in identifying what shall be the 

acceleration amplitude and duration of a pulse capable of inducing an initial angular velocity 

pTt p   )( . It is known (Makris and Roussos 1998, 2000) that the shape of the pulse influences 

the exact value of the slenderness needed for the block to remain standing; nevertheless, it is also 

known that the rectangular pulse has the strongest overturning potential among all other physically 

realizable pulses (differentiable acceleration signals that produce finite ground displacement) with 

the same amplitude and duration. Consequently, a rectangular pulse yields conservative results, 

1207



 

 

 

 

 

 

Nicos Makris 

which are attractive in design. Accordingly, we proceed by examining what is the angular velocity 

induced in a free-standing block excited by a rectangular pulse with acceleration amplitude ap and 

duration Tp. Fig. 6 shows the free-body diagram of a free-standing block that is about to enter 

rocking motion due to a positive ground acceleration; while Eq. (15) gives the value of the angular 

acceleration )0(  at the instant when rocking initiates. 

Eq. (15) indicates that the free-standing column initiates its motion with a finite angular 

acceleration= )0( . Makris and Vassiliou (2012) observed that during the duration, 0≤t≤Tp, of a 

rectangular pulse, the value )(t  maintains a nearly constant value ( )0()(   t  for 0≤t≤Tp), thus 

the nearly linear increase in the angular velocity. Accordingly, at the expiration of the pulse, the 

angular velocity of the block is approximately 

p

p

TT

p

p T
g

a
pdt

g

a
pdtTt

pp

)1
tan

(sin)1
tan

(sin)0()( 2

00

2   



                (40) 

Consider now that the rectangular pulse <ap, Tp> is strong enough to bring the block at the 

verge of overturning (   )large(t , 0)large( t ). Given that the limit state at the verge of 

overturning happens after a very large time when compared with the duration of the pulse, Tp, the 

duration of the pulse can be assumed zero when compared with the time needed to reach the limit 

state. Accordingly, within the very large time scale of the limiting equilibrium, the angular 

velocity )( pTt   given by (40) can be assumed as )0( t . With this consideration, and after 

dropping the minus sign in front of the right-hand side of Eq. (40)—which is merely associated 

with the direction of shaking—the equation of the right-hand sides of Eqs. (40) and (39) gives: 

p

p
T

g

a
p )1

tan
(sin 


                                                    (41) 

For slender blocks, α=sinα and Eq. (41) gives 

 

p

pp

pT

pT

g

a




1
tan                                                           (42) 

Consequently, when a free-standing block with size 















R

g
pR

4

3
 is subjected to a rectangular 

acceleration pulse with amplitude ap and duration Tp, the condition for the block to remain stable is 

p

pp

pT

pT

g

a




1
tan . 

 

Eq. (42) which was derived by using first principles of dynamics has the same form as Eq. (28) 

that was extracting by fitting the minimum overturning acceleration spectra computed numerically. 

The only difference is that the unity in the denominator of Eq. (42) that is derived for a rectangular 

acceleration pulse is replaced in Eq. (28) with γ=π/3 for a Type-A and a Type-C pulses or γ=π/2 
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Fig. 8 Values of the function φ(pTp) that offer the minimum design slenderness (Eq. 37) as a function 

of the dimensionless product Πω=pTp 

 

 

for a Type-B pulses. Fig. 8 plots the function 
p

p

p
pT

pT
pT





 )(  for γ=1, π/3 and π/2. Given that 

the rectangular acceleration pulse has the strongest overturning potential among all other 

physically realizable pulses with equal duration the heavy dark line for γ=1 in Fig. 8 is above the 

minimum-slenderness lines as extracted from the corresponding overturning spectra. Accordingly, 

in the interest of safety the heavy dark line for γ=1 is recommended as a design curve to size the 

slenderness of free-standing object with a known height (given p). 

 
 
9. The Dynamics of the Rocking Frame 
 

While Fig. 7 illustrates the ample dynamic stability of a slender free-standing column as its size 

increases (large values of ωp/p), the concept of rocking isolation becomes attractive and 

implementable once the dynamics of the rocking frame like the one shown in Fig. 1 (right) or Fig. 

2 is delineated and explained to the extent that it can be easily used by the design engineers. 

Results on the dynamic response of two free-standing columns capped with a freely supported 

beam have been presented by Allen et al. (1986), after adopting a Lagrangian formulation. In the 

Allen et al. (1986) paper it was assumed that the mass of each column, mc, is much less than the 

mass of the freely supported beam, mb, and therefore, the equation of motion derived was for 

mb/mc→∞. Furthermore, the results presented were obtained by solving the linearized equation of 

motion. It is worth noting that while the governing equation for the rocking frame appearing in the 

Allen et al. (1986) paper shows clearly that the response involves the slenderness, α, and size, R, 
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of the columns of the rocking frame, the Allen et al. (1986) paper does not make any attempt to 

associate the dynamic response/stability of the rocking frame with that of the solitary rocking 

column. 

In an effort to explain the seismic stability of ancient free-standing columns that support heavy 

epistyles together with the even heavier frieze atop, Makris and Vassiliou (2013) studied the 

planar rocking response of an array of free-standing columns capped with a freely supported rigid 

beam as shown in Fig. 9. 

The free-standing rocking frame shown in Fig. 9 is a single DOF structure with size 

22 hbR   and slenderness α=atan(b/h). The only additional parameter that influences the 

dynamics of the rocking frame is the ratio of the mass of the cap beam, mb, to the mass of all the N 

rocking columns, mc, γ =mb/Nmc. For the Temple of Apollo in Corinth where the frieze is missing, 

γ is as low as 0.3, whereas in prefabricated bridges, γ>4. As in the case of the single rocking 

column, the coefficient of friction is large enough so that sliding does not occur at the pivot point 

at the base and at the cap beam. Accordingly, the horizontal translation displacement u(t) and the 

vertical lift v(t) of the cap beam are functions of the single DOF θ(t). Following a variational 

formulation Makris and Vassiliou (2013) showed that the equation of motion of the rocking frame 

shown in Fig. 9 is 














 )]()](sgn[cos[

)(
)]()](sgn[sin[

31

21
)( 2 tt

g

tu
ttpt

g







            (43) 

Eq. (43), which describes the planar motion of the free-standing rocking frame, is precisely the 

same as Eq. (5), which describes the planar rocking motion of a single free-standing rigid column 

 

 

 
Fig. 9 The free-standing rocking frame with columns having size R and slenderness α is more stable 

than the solitary free-standing column shown on the left having the same size and slenderness 
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with the same slenderness α, except that in the rocking frame, the term p
2
 is multiplied with the 

factor (1 + 2γ)/(1 + 3γ). Accordingly, the frequency parameter of the rocking frame, p̂ , is 

pp




31

21
ˆ




                                                           (44) 

where Rgp 4/3  is the frequency parameter of the solitary rocking column and γ =mb/Nmc is 

the mass of the cap beam to the mass of all N columns. 

For a light cap beam (γ =mb/Nmc→0), the multiplication factor (1 + 2γ)/(1 + 3γ)→1 and the 

array of free-standing columns coupled with a light epistyle exhibit precisely the dynamic rocking 

response of the solitary free-standing column. On the other hand, as the mass of the epistyle 

increases, 

3

2

31

21
lim 





 




                                                          (45) 

According to Eq. (43), the rocking response and stability analysis of the free-standing rocking 

frame with columns having slenderness, α, and size, R, is described by all the past published work 

on the rocking response of the free-standing single block (Housner 1963, Yim et al. 1980, Aslam 

et al. 1980, Ishiyama 1982, Spanos and Koh 1984, Zhang and Makris 2001, Makris and 

Konstantinidis 2003, Vassiliou and Makris 2012, Dimitrakopoulos and DeJong 2012, among 

others), where the block has the same slenderness, α, and a larger size R̂  given by 

 

RRR 
























21
1

21

31ˆ                                               (46) 

The remarkable result offered by Eq. (43) – that the heavier the cap beam is, the more stable is 

the free-standing rocking frame despite the rise of the center of gravity of the cap beam – has been 

also confirmed by the author after obtaining Eq. (43) for a pair of columns with the algebraically 

intense direct formulation after deriving the equations of motion of the two-column frame through 

dynamic equilibrium (Makris and Vassiliou 2014). Furthermore, numerical studies with the 

discrete element method by Papaloizou and Komodromos (2009) concluded to the same result – 

that the planar response of free-standing columns supporting epistyles is more stable than the 

response of the solitary, free-standing column. This finding has also been confirmed in the 

experimental studies of Mouzakis et al. (2002), Drosos et al. (2012) and Drosos and 

Anastasopoulos (2014a,b). Fig. 10 summarizes the increasing seismic stability as we go from the 

solitary free-standing column to the free-standing rocking frame. 

During rocking motion of a free standing frame, the moment-rotation curve follows the curve 

shown in Fig. 9 (bottom) without enclosing any area. Energy is lost during impact when the angle 

of rotation reverses. At this instant it is assumed that the rotation continues smoothly and that the 

impact forces are concentrated at the new pivot points. Application of the angular momentum-

impulsive theorem in association with the change of the linear momentum of the cap-beam 

(Makris and Vassiliou 2013) offers the ratio of the kinetic energy of the rocking frame after and 

before impact  
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2

22

1

2

31
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
r                                        (47) 

Eq. (47) indicates that the maximum coefficient of restitution, r , of the rocking frame that is 

needed to engage into rocking motion is always smaller (therefore more energy is dissipated) than 

the maximum coefficient of restitution of the solitary column = 2sin
2

3
1  (Housner 1963), 

which is recovered when γ=mb/2mc=0. 

The ample seismic stability of the free-standing rocking frame is shown by considering the 

two-column bent shown in Fig. 11 where its moment-rotation curve follows a negative slope as 

shown at the bottom of Fig. 10. Sliding at the pivot point during impact is prevented with a recess 

at the pile-cap and the cap-beam as shown in Fig. 11. In this numerical example, the cylindrical 

piers of the free-standing bridge bent are 9.6m tall with a diameter d=2b=1.6m. These are typical 

 

 

 
Fig. 10 The large free-standing column with size R and slenderness α is more stable than the 

geometrically similar smaller column shown at the far left of the figure. The free-standing rocking 

frame with columns having the same size R and same slenderness α is more stable than the solitary 

rocking column. A heavier freely supported cap-beam renders the rocking frame even more stable 

regardless of the rise of the center of gravity of the system 
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dimensions of bridge piers for highway overpasses and other bridges in the USA and Europe. 

Taller bridge piers with the same aspect ratio will result to even more stable configurations. With 

2h=9.6m and 2b=1.6m the slenderness of the bridge pier is tanα=b/h=1/6=0.167 and its frequency 

parameter 
R

g
p

4
3

 =1.23. Depending on the length of the adjacent spans and the per-length 

weight of the deck, the mass ratio 
c

b

m
m

2
  assumes values from 4 and above (γ≥4). By 

adopting the low-end value of γ=4, the corresponding frequency parameters of the frame is 

sradppp /1832.0
31

21
ˆ 









. 

Consider now that the frame is subjected to a strong ground motion that contains a distinguishable 

pulse similar to those shown in Fig. 4 or Fig. 7. Let us assume that the period of the long duration 

pulse is Tp=1s, which is a rather long period (Bertero et al. 1978, Hall et al. 1995, Makris and 

Chang 2000, Baker 2007, Vassiliou and Makris 2011 among others). With Tp=1s (ωp=6.28rad/s), 

the dimensionless product 28.6
p

p
 . According to the minimum overturning acceleration 

spectra shown in Fig. 7, which are for α=10
o
, for either a symmetric or antisymmetric Ricker pulse 

the dimensionless overturning acceleration Πg/Πα is larger than six ( 6
tan






 g

apg
);  

 

 

 
Fig. 11 Free-standing rocking bridge bent. Potential sliding during impact is prevented with the recess 

shown. No vertical post-tensioning, no continuation of the longitudinal reinforcement of the columns 

through the rocking interfaces at the pile-caps and the cap-beam. Its seismic resistance originates 

primarily from the mobilization of the rotational inertia of its piers 
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Consequently, when the rocking frame shown in Fig. 11 is excited by a Ricker pulse with 

Tp=1.0s, the minimum overturning acceleration amplitude of the pulse ap>6gtanα. For the rocking 

frame shown in Fig. 11, tanα=1/6; therefore ap>1g – which is a very high acceleration amplitude 

for a recorded pulse with duration Tp=1s. This illustrates the ample seismic stability of the free-

standing rocking frame. 

In the section above the seismic stability of the rocking frame (Fig. 11) has been shown by 

using as ground excitation strong pulses described either by symmetric or antisymmetric Ricker 

wavelets. The acceleration amplitude, ap, and the duration, Tp, of any coherent acceleration pulse 

allow the use of dimensional analysis; and the derivation of the associated Π products presented in 

this work improves the understanding of the physics that govern the problem together with the 

organization and presentation of the response. Nevertheless, in an effort to further confirm the 

ample seismic stability of tall slender structures when subjected to strong recorded motions we 

report the results presented in Figs. 9-14 of Ishiyama’s 1982 seminal paper. In this paper, Ishiyama 

(1982) shows that free-standing columns taller than 8m (800cm) and wider than 1m (100cm) 

survive the combine horizontal and vertical excitations of the May 15, 1940 El Centro Earthquake, 

the July 2, 1952 Taft Earthquake and the June 12, 1978 Miyagi-Oki Earthquake. Now the columns 

of the rocking frame shown in Fig. 11 are 9.6m (960cm) tall while they are 1.6m (160cm) wide; 

and according to Ishiyama’s (1982) results they are most stable since the 160cm width of the 

column of the rocking frame is way beyond the scale of Ishiyama’s graphs. The addition of the 

cap-beam on top of the columns renders the entire free-standing rocking frame even more stable. 

Experimental studies on the dynamic response of the rocking frame (trilith) have been 

presented by Pena et al. 2008. In that study the slenderness of the columns is 

tanα=2b/2h=0.22/0.8=0.275 (α=15.38
o
), mmmR 415.0)11.0()4.0( 22  , the frequency 

parameter of the columns, p=4.21 rad/s and 434.0
3052

265





kg

kg
 . With these values the 

frequency parameter of the rocking frame is sradppp /79.39.0
31

21
ˆ 









. Fig. 11 of Peña et 

al. 2008 paper plots response histories of the columns and cap-beam of the trilith when subjected 

to a constant sine excitation with amplitude uo=5mm=0.005m and frequency f=3.3Hz. With these 

values the amplitude of the base excitation is gsmfuu ogo 219.0/15.2)2( 22   . Accordingly, 

the peak base excitation gugo 219.0  is smaller than gg 275.0tan   which is the minimum 

acceleration that is needed for uplifting of the rocking frame (see Eq. (43) or Makris and Vassiliou 

(2013) for a formal derivation with the principle of virtual work). 

Given that gggugo 275.0tan219.0   , the trilith tested by Peña et al. 2008 apparently did 

not experience a pure rocking motion; but rather it experienced an inferior vibration mode due to 

possible minor anomalies of the contact surfaces. It is possible that these anomalies are responsible 

for the highly three dimensional behavior of the rocking frame that was recorded by Peña et al 

2008. Given that such anomalies may be present to future implementations of the concept of the 

rocking frame, the potential sliding during impact can be prevented with the creation of a recess as 

shown in Fig. 11. 
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10. The Emerging Concept of Rocking Isolation for Bridges 
 

The concept of allowing the piers of tall bridges to rock is not new. For instance, the beneficial 

effects that derive from uplifting and rocking have been implemented since the early 1970s in the 

South Rangitikei Bridge in New Zealand (Beck and Skinner 1971). Nevertheless, despite the 

successful design of the South Rangitikei bridge and the ample dynamic stability of the rocking 

frame as documented in Fig. 7 in association with Eq. (43) and further confirmed by numerical and 

experimental studies (Ishiyama 1982, Psycharis et al. 2003, Papaloizou and Komodromos 2009, 

Mouzakis et al. 2002, Drosos et al. 2012, Drosos and Anastasopoulos 2014a,b) most modern tall 

bridges (with tall slender piers) are protected from seismic action via base (shear) isolation of the 

deck, rather than via (the most natural) rocking isolation. Part of the motivation of this work is to 

show in the simplest possible way that in the event that a rocking system is selected, the heavy 

deck atop the tall slender columns not only does not harm the stability of the columns but in 

contrast enhances the stability of the entire rocking system as shown by Eq. (43). 

This work comes to support the emerging design concept (mainly advanced by the 

prefabricated bridge technology) of concentrating the inelastic deformations of bridge frame at the 

locations where the bridge-piers meet the foundation and the deck (Mander and Cheng 1997, Sakai 

and Mahin 2004, Wacker et al. 2005, Mahin et al. 2006, Cheng 2008, Cohagen et al. 2008, 

Yamashita and Sanders 2009, Barthès et al. 2010, among others). It shall however be stressed that 

in the prefabricated bridge technology, the bridge piers and the deck are not free standing, 

therefore, the structural system is essentially a hybrid system in-between the rocking frame 

examined in this work and a traditional ductile moment-resisting frame. 

In this hybrid system the bridge-piers are connected to their foundation and the deck with a 

post-tensioned tendon that passes through the center-axis of the piers, together with longitudinal 

mild-steel reinforcement which runs near their outer surface. With this design, in most times the 

initial negative stiffness (see Fig. 3 bottom) of the rocking frame is eliminated and altered to a 

positive quantity; therefore, the behavior of prefabricated bridge frames has very little in common 

with the behavior of truly rocking frames and they merely behave as traditional inelastic structures 

where forces and deformations are estimated with the equivalent static lateral force procedure. 

Accordingly, in the hybrid system, most of the appreciable seismic stability that is associated with 

rocking (see Fig. 7) is eradicated. Furthermore, during seismic shaking the post-tensioned, 

prefabricated bridge frame may be subject to resonance due to its overall positive stiffness; while, 

the longitudinal mild-steel reinforcement that extends through the seismic connection is subject to 

buckling and fracture.  

At present, the equivalent static lateral force procedure is deeply rooted in the design 

philosophy of the structural engineering community which is primarily preoccupied on how to 

improve the ductility and performance of the seismic connections; while the ample dynamic 

rocking stability that derives from the beneficial coexistence of large rotational inertia, negative 

stiffness and gravity as described by Eq. (43) and documented in Fig. 7 is ignored. At the same 

time, it shall be recognized that during the last decade there have been several publications which 

have voiced the need to go beyond the elastic response spectrum and the associated equivalent 

static lateral force procedure (Makris and Konstantinidis 2003, Lagomarsino et al. 2004, 

Apostolou et al. 2007, Resemini et al. 2008, Anastasopoulos et al. 2010, Dimitrakopoulos and 

DeJong 2012, among others). In addition to these studies, Acikgoz and DeJong (2012) and 

Vassiliou et al. (2013) have examined in depth the rocking response of flexible, slender structures 
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and the main conclusion is that the flexure of a tall rocking structure further increases its seismic 

stability. To this end, it is worth mentioning the recent theoretical work on the three-dimensional 

rocking response of free-standing columns (Konstantinidis and Makris 2007, Zulli et al. 2012, 

Chatzis and Smyth 2012a,b) which confirms the seismic stability of free-standing columns in three 

dimensions. The time is therefore ripe for the development of new, physically motivated 

response/design curves which are relevant (in a technically sound way) with the response/design 

of large, slender structures. Part of the motivation for this paper is to bring forward the ample 

seismic stability associated with the free rocking of large, slender structures and the corresponding 

rocking frame. The implementation of the proposed approach needs a systematic investigation of 

several pertinent practical issues such as the potential crushing of the pivoting points of the 

columns (Roh and Reinhorn 2010a,b) and the accommodation of the deck uplift at the end-

abutments. 

 

 

11. Conclusions 
 

Half a century ago George Housner’s 1963 seminal paper marked the beginning of a series of 

systematic studies on the dynamic response and stability of rocking structures which gradually led 

to the development of rocking isolation—an attractive practical and economical alternative for the 

seismic protection of tall, slender structures which originates from the mobilization of their large 

rotational inertia. Partly motivated from this 50-year anniversary, this paper builds upon selected 

past contributions in an effort to bring forward the major advances together with the unique 

advantages of rocking isolation. 

After revisiting Housner’s size-frequency scale effect for the solitary column which merely 

explains that when a free-standing column is sufficiently large it can survive any strong shaking, 

the paper builds upon a recent remarkable result—that the dynamic rocking response of an array of 

free-standing columns capped with a rigid beam is identical to the rocking response of a solitary 

column with the same slenderness; yet, with larger size, which is a more stable configuration (Eq. 

46). Most importantly, the dynamics of the rocking frame reveals that the heavier the freely 

supported beam is, the more stable is the rocking frame regardless of the rise of the center of 

gravity of the cap beam, concluding that top-heavy rocking frames are more stable than when they 

are top-light. 

This “counterintuitive” behavior renders rocking isolation a most attractive alternative for the 

seismic protection of bridges given that the heavier is the deck, the more stable is the rocking 

bridge. The realization of a truly rocking frame which can fully mobilize its rotational inertia with 

neither post-tensioning nor continuation of the longitudinal reinforcement through the rocking 

interfaces shall remove several of the concepts associated with the seismic connections of 

prefabricated bridges such as buckling and fracture of the longitudinal reinforcing bars or spallings 

of the concrete corners. 

The ultimate aim of this paper is to bring forward the ample seismic stability that originates 

from the mobilization of the rotational inertia of free-standing structures and to offer the 

theoretical background in an effort to accept and establish rocking isolation and its associated 

hinging mechanism not only as a limit-state mechanism, but also as an operational state (seismic 

protection) mechanism for large, slender structures as was accepted more than 2.5 millennia ago 

by the builders of ancient temples as shown in Fig. 2. 
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