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Abstract. Squat reinforced concrete walls require enough shear strength in order to promote flexural
yielding, which creates the need for designers of an accurate method for strength prediction. In many cases,
especially for existing buildings, strength estimates might be insufficient when more accurate analyses are
needed, such as pushover analysis. In this case, estimates of load versus displacement are required for
building modeling. A model is developed that predicts the shear load versus shear deformation of squat
reinforced concrete walls by means of a panel formulation. In order to provide a simple, design-oriented tool,
the formulation considers the wall as a single element, which presents an average strain and stress field for
the entire wall. Simple material constitutive laws for concrete and steel are used. The developed models can
be divided into two categories: (i) rotating-angle and (ii) fixed-angle models. In the first case, the principal
stress/strain direction rotates for each drift increment. This situation is addressed by prescribing the average
normal strain of the panel. The formation of a crack, which can be interpreted as a fixed principal strain
direction is imposed on the second formulation via calibration of the principal stress/strain direction obtained
from the rotating-angle model at a cracking stage. Two alternatives are selected for the cracking point: fcr
and 0.5fcr (post-peak). In terms of shear capacity, the model results are compared with an experimental
database indicating that the fixed-angle models yield good results. The overall response (load-displacement)
is also reasonable well predicted for specimens with diagonal compression failure.
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1. Introduction

Structural walls are frequently used to improve building stiffness and strength. Squat walls,
which present low aspect ratio (less than 2) are common in nuclear plants, low-rise buildings,
building facades and parking lots. In RC structures two regions can be distinguished, the B- and D-
regions (Schlaich et al. 1987). B-regions are those remote from the area of load application (or
reaction) or discontinuities, where the Bernoulli hypothesis for bending theory is reasonable. D-
regions are those that are close to the points of load application or discontinuities, where the stress
flow is distorted. In the case of squat walls, low slenderness and a combination of axial and lateral
loads results in highly distorted stress flows. This situation challenges many models, especially if
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they are design-oriented capable of predicting the shear strength or providing more information
such as the load versus displacement response, which might be useful for pushover analysis.

Several models have been used to idealize the response of squat walls. Finite element
formulation with a reasonable RC model has shown good correlation with experimental results
(Palermo and Vecchio 2002; Mo et al. 2008). Even simpler formulations based on fibers that are
modeled with panel behavior provide good response (Massone et al. 2009; Massone 2010).
However, such approaches are still far from being massively used by designers, given the need of
specific non-linear analysis software (usually non-commercial). Other models, while having a
physical approach to the wall shear response, are yet still simple. These models can be divided in
two groups: (1) strut and tie models and (2) panel models. Strut and tie models are a common
formulation for D-regions, but most of them are intended to predict shear strength of structures
providing compression concrete truss elements (strut) in the direction of compression stresses and
reinforcing steel in the direction of tensile forces. The model by Hwang et al. (2001), which has
shown good shear strength prediction belong to this category. The model uses three main struts,
one along the main diagonal of the walls and other two struts going through higher and lower
directions, respectively. The strength estimate is determined by means of equilibrium in the node,
after applying constitutive material laws for concrete and steel. The shear strength is known once
the concrete compressive strength is reached. The model, similar to others within this category,
can only predict the shear strength. Panel models, in the other hand, assume uniform stress/strain
fields within the entire wall section, which allows obtaining the shear force versus shear
displacement response. The work by Hsu and Mo (1985) presents one of the first attempts to
predict the shear response of walls with this approach. In their publication compatibility is
established for the entire wall, constitutive material loads are defined for concrete and steel, and
equilibrium is determined in the longitudinal (vertical) direction, which results in a nonlinear
equation that requires solution for each displacement step. In order to solve the equilibrium
equation the transverse normal strain (expansion) is considered equal to zero. This approach
results in a principal stress/strain direction that rotates with the increment of lateral displacement
(rotating-angle approach). Other similar proposed models have varied the assumption in the strain
field, instead of assuming zero expansion, the location of the principal strain (and stress for most
models) direction is set as the main diagonal geometric direction of the wall section (Gupta and
Rangan 1998). This is also limited by either zero transverse strain (large constrain) or zero
transverse stress (free edge). In this case, the principal stress/strain direction is fixed (fixed-angle
approach). Examples of rotating-angle and fixed-angle approach models can be found in Hsu and
Mo (2010). A current research has shown that the cracking pattern might not be consistent with the
direction of the main diagonal geometric direction (Kaseem and Elsheikh 2010). The work by
Kaseem and Elsheikh instead of using a prescribed transverse stress or strain (usually zero)
provided a calibrated expression for the principal strain/stress direction based on a best-fit of shear
strength estimate for a database of wall tests. Good predictions, in this case, are sensitive to the
selected database and extrapolation of the use of the calibrated principal stress/strain direction
might not be adequate.

This publication deals with the development and validation of a panel model for squat walls
capable of predicting the shear strength as well as the shear load versus shear displacement. The
model uses a similar methodology to the one developed by Kaseem and Elsheikh, but determines
the principal stress/strain direction differently. Two approaches are considered: (1) rotating-angle
(crack) and (2) fixed-angle (crack) models, which are based on calibrated normal (vertical and
horizontal) average strains in walls.
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Fig. 1 Wall configuration: (a) geometry and resultant stresses, (b) concrete and steel stresses
(after Kaseem and Elsheikh 2010)

2. Model formulation

Similarly to previous panel model formulations (Hsu and Mo 1985; Gupta and Rangan 1998;
Kaseem and Elsheikh 2010), the material model for reinforced concrete is based on the idea of the
modified compression field theory (MCFT) (Vecchio and Collins 1986). The MCFT establishes
the panel concrete response in the two principal directions based on uniaxial material constitutive
laws, including softening of concrete in compression due to cracking in the orthogonal direction
(other principal direction). Steel response is incorporated assuming perfect adherence between
concrete and steel.

2.1 Geometrical model

Once a diagonal crack develops in the wall element, the web steel reinforcing bars are subject
to tensile forces and concrete usually sustain forces in compression in one principal direction and
tensile forces in an orthogonal direction. Fig. 1a shows the horizontal and vertical reinforcements
which are oriented in directions L and t, forming the L-t coordinate system. The principal direction
of concrete in compression goes along direction d, which is inclined at an angle o with respect to
the longitudinal direction of the vertical reinforcement (Fig. 1b). The direction perpendicular to d
is called r (principal tensile direction).

2.2 Equilibrium and compatibility
Assuming that web steel reinforcement is subjected to stresses along its longitudinal direction

(no dowel action) and reinforcement is placed in two orthogonal directions (L, t); equilibrium
equations governing the system in the L-t coordinate are represented as follows,
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0, = o4cos’a + o.sinfa+p.f, = % (1)
o, = agsina + o,.cos’a + p.fy 2)
T = (—04 + 0,)cosa sina 3)

where f; and f, are the average reinforcement stress in directions L and t, respectively, p; and p;
are the web steel reinforcing ratio in the same respective directions, g; and o; are the average
normal stress in the reinforced concrete panel in the respective directions, T, is the concrete shear
stress in the plane L-t, and finally, 64 and o, are the principal concrete stresses in the principal
directions d and r (Fig. 1b). In Eq. (1), N is the applied axial load and A is the area between flange
(or enlarged wall boundary) element centroids (Fig. 1a).

Assuming that the stress distribution in the wall web is uniform, the shear resultant force can be
expressed as follows,

V =1,t,dy, (4)

where t,,, is the wall web thickness and d,, is the horizontal distance between flange element
centroid (Fig. 1a). In rectangular walls, it is assumed that d,, = 0.8L,,, where L, is the wall
length. Compatibility is established for the entire panel section, assuming that stress (concrete) and
strain field principal directions coincide, yielding,

g, = gqc08%a + g,.5in*a (5)
& = gg48in*a + g.cos’a (6)
Yie = 2(& — g4)cosa sina @)

where €;, &, €4 and g, are the normal strain values consistent with directions L,t,d and r,
respectively, and y;, is the shear strain in the L-t plane. Assuming that the wall top lateral
displacement is governed by the shear strain, the lateral displacement is determined as,

A=yHy, (8)

where H,, is the wall height (Fig. 1a).

2.3 Material constitutive laws

2.3.1 Concrete

Selected material properties are identical as incorporated by Kaseem and Elsheikh (2010).
Concrete constitutive law in compression is proposed by Zhang and Hsu (1998), which considers
the degradation of concrete compressive capacity due to tensile strain (cracking) in the orthogonal
direction. Assuming that direction d corresponds to the compressive principal direction, the
compressive (a4, negative for compression) response is described as follows,
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where f”_is the concrete compressive strength, &, is the compressive strain consistent with £

(solid line, Fig. 2a), ¢ is the reduction factor due to cracking (Fig. 2a) that causes softening in the

compressive direction. As seen in Fig. 2a, ¢ reduces the peak concrete strength and also the strain
at peak stress (dotted line). Assuming that the r direction corresponds to the principal tensile

direction, concrete in tension (o, positive for tension) is modeled according to Gupta and Rangan
(1998) proposition as follows,

o, =E.e, if0< ¢ <&y (12)
1 (eut—&p) .
or = flet (EuttTct)' if et < & < &y (13)

o, =0, if e <& (14)

where f'c, = 0.4,/f’ (MPa) is the tensile concrete strength with e, = f'./E. and E, =

4700,/f' (MPa). Ultimate tensile strain, &, is set as 0.002 which coincides with steel yielding
for most cases (Fig. 2b).

2.3.2 Reinforcing steel

The uniaxial model for reinforcing steel uses an elasto-plastic stress (f;) versus strain (&)
response (Fig. 2c), defined as,

fs = Es&s, if &5 <¢, (15)
fs=F ifes=¢g (16)

where E; is the steel reinforcement elastic modulus, £, is the yield stress of steel. Subscript “s” is
replaced by “t” or “L” for transverse or longitudinal reinforcement, respectively.

2.4 Strain field

As mentioned earlier, different assumptions have been used by previous researchers that allow
estimation of the principal stress/strain angle (o). Some of them have being based on zero stress or
strain values in the horizontal normal direction arguing that either the wall side faces are free of
forces (usually not too short walls) or the wall cannot expand horizontally due to support (pedestal,
beam) constrain (extremely short walls), respectively. Imposition of one of these two assumptions
allows determination of the principal strain/stress direction. In other cases, the principal direction
is simply forced in the direction of the wall geometric main diagonal.
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Fig. 2 Material constitutive laws: (a) concrete in compression, (b) concrete in tension, and (c) steel.

A previous research calibrated expressions for the average wall expansion (average transverse
strain) along the wall height, which was used to provide an input for a model that offers a coupled
response between shear and flexure for a displacement-based element (Massone 2010). The
calibrated expressions are based on a two-dimensional finite element formulation with consistent
material and panel model. Thus, the model uses the same principles defined by the MCFT
(Vecchio and Collins 1986). Calibration of wall expansion was performed over a database of
analytical results for a broad range of geometric parameters, as well as, material properties,
vertical and horizontal web steel ratio, level of axial load and boundary condition. Validation of
the analytical expression with experimental data indicates good correlation. According to the study
(Massone 2010), the expressions for walls with fixed-end condition (double curvature) and free-
end condition (cantilever) are defined as follows,

Double curvature

0.47 0.25
&t max = 0.0033(100p, + 0.25)7053 (’L’—W + 0.5) (f_}‘;O’LV n 5) (1008)4 (17)
S0) _ oo (YY)
€t max = s (HW 7T) (18)
Cantilever
Etmax = 00055(100pt + 0_25)—0-44(1005)1_4 (19)
2, 0.75 Yy .
el) _ sin (0.76HW T[) if 0=y =0.38H, 20)
Et,max . 0.75 (Y+0.24H,, )
t s ( 1.24H,, n) if 0.38H, <y < H,

where § = A/H,, is the wall lateral top drift, and y is the vertical location (measured from wall
base). The maximum values of average expansion ( & mq,) are located at 0.5H,, for double-
curvature walls and at 0.38H,, for cantilever walls (Eq. 17 and 19), and transverse strains vary
along the height according to Eqg. 18 and 20. As for the implementation in this work an average
strain field is required, therefore the expression is integrated over the height yielding an average
(over the height) value of &, = 0.69¢& ax-

For the vertical average normal strain (g;) for walls a similar procedure was performed (Villar
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2010), yielding the following expressions,

Double curvature

-0.16 —-0.35
&, = 0.0094(100p, +0.25)7°17 (2 4+ 0.5) ( f,“;‘”LV + 5) (1008) + &y (21)
Cantilever
H —037 ¢ 100N —0.34
&, = 0.0089(100p, +0.25)~075 (2 1. 0 5) (”—L + 5) (1006)%% + &y (22)
where gy = — P is an estimate of the elastic (E., concrete elastic modulus) normal strain due

to the applied axial load N.
2.5 Rotating-Angle (RA) model

The previous expressions for the wall transverse (&;) and longitudinal (&;) average normal

strain together with the drift level (assumed as the shear strain, y;.), provides the full components
of the strain field. The principal strain direction is determined by combining Eq. 5, 6 and 7,

_ _ 2
yielding @ = tan™! (— (eemer) (Et EL) + 1>, which changes (rotates) with the variation of

YLt YLt

strain values. The main characteristic of this model is that the algorithm is non-iterative. This is
because the strain field (&, €, and y.+ = &) is known for the wall panel for every drift level,
which makes possible obtaining the stress field (o¢, 0;, and t;¢) by using the constitutive material
laws, leading to an estimate of the shear resultant by equilibrium (Eq. 4). In this way, the
equilibrium equation in the vertical direction is not necessarily satisfied (Eq. 1).

Fig. 3 shows the variation of the principal strain direction (&) predicted by the model for
specimen T-5 (Orakcal et al. 2009) with axial load (N=0.17"As) and specimen G-8 (Galletly 1952)
without axial load. Similar results are obtained with other specimens distinguished by the axial
load. The wall with axial load (Fig. 3a) shows an angle that increases with drift until a point where
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Fig. 3 Estimated principal direction variation with drift: (a) Wall with axial load (T-5; Orakcal et
al. 2009), and (b) wall without axial load (G-8; Galletly 1952)
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it tends to stabilize (the angle is measured between the vertical and the principal compressive
direction, then the smaller the value of a, the more vertical becomes the compressive principal
strain). This is consistent with the physical response of the wall panel, since before applying lateral
loads (y. = 0) the main compressive direction should be upright (o = 0) as the only acting load
is the vertical force, N. Once the lateral load appears, the concrete compressive principal strain
deviates from the vertical direction due to shear strain, increasing the angle o.. In walls without
axial load (Fig. 3b), the principal direction varies slightly.

Although this formulation could be used as a simple implementation to obtain the overall load
versus displacement response for walls, the use of the calibrated average strain functions (vertical
and horizontal) do not guarantee increasing compressive principal strain (&) values for the entire
drift range. Even though it is not common, in few cases reduction of compressive strain can be
seen for relatively large drift levels. This limitation does not impede analyzing the response for
relatively small drift levels, such as initiation of cracking. In the other hand, experimental evidence
indicates that once the crack has formed, usually at an early stage, the location of the crack does
not rotate showing that principal tensile strain direction remains almost in a fixed angle. Thus, the
concept of fixed-crack or fixed-angle approach is investigated.

2.6 Fixed-angle (FA) model

A fixed-angle model assumes that the principal strain (and stress in most cases) direction
remains unchanged with loading (e.g., Gupta and Rangan 1998; Kaseem and Elsheikh 2010). For
small wall top displacements, cracks have not formed yet, such that a main strut is not defined.
Once severe cracking of concrete due to diagonal tension occurs, the strut forms, and its angle
begins to stabilize and remains unchanged throughout drift increments.

If the procedure for the rotating-angle model is used to define the direction of the principal
strain, a milestone needs to be defined that establishes that the concrete strut has formed in the
crack direction. In this case, the strain field is determined with the calibrated expressions for
vertical and transverse strains (&; and ¢;) and prescribed wall drift values (y;;). Upon increments
of drift levels, the principal tensile strain increases until the concrete tensile stress is reached
o, = fq. That establishes initiation of cracking (criterion 1); however the strut is not necessarily
stabilized (Fig. 3) so that further lateral displacement results in variation of principal direction.
Once the strut is considered stable, the strut angle can be defined as the principal strain/stress
direction for the fixed-angle model. At relatively large tensile principal strains in concrete, tensile
capacity can reduce until zero stress. Considering that at that strain level the compressive strut
should have formed, in an average sense, the principal strain direction can be set to the point
where half the tensile capacity of concrete has been reduced (g, = 0.5f,;) after cracking, setting
the strut direction to a moment between initiation of cracking and zero tensile concrete stress
(criterion 2). These two criteria (o, = f,, consistent with &, = €., and g, = 0.5f,, consistent
with &, = 0.5(e. + €,¢)) are used to defined the crack direction for the fixed-angle model,
based on the calibrated vertical and horizontal average wall deformations expressions. Sensitivity
of the principal direction selection criteria is shown later in the text.

A wide variety of geometric properties (aspect ratio), axial load level, steel reinforcing ratio
and material properties were used, based on the experimental database detailed later, in order to
determine the crack direction for each model. The drift level was selected for the instant that either
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criteria was reached. Given a specific drift level, vertical and horizontal strain values were
determined (based on Eq. 17, 19, 21 and 22). Once the crack direction is determined as a =

_ _ 2
tan-1 (_ (E;/ e 4 (S;/ SL) +1>, the principal tensile strain, based on compatibility
Lt Lt

equations, is determined as &, = )%tana + & and compared to both possible criteria. Least-

square method is used to determine a calibrated expression for the crack direction. Similar
parameters as for the vertical and horizontal deformation expressions are used, where the most
relevant terms were the ones related to axial load and aspect ratio.

2.6.1 Criterion 1: 6, = f

The expression is calibrated for cantilever and double-curvature walls, vyielding good
predictions with the procedure indicated above. Correlation factor (R%) was 0.98 for the cantilever
case, and 0.99 for walls with double curvature. Results are as follows,

. Hy —-0.605 N —-4.6
Cantilever «a = 175.2 (m + 5) (f'ctwLw + 1) (23)
Hy -0.25 N —6.65
Double curvature a =90.6 (E + 5) (f’ctwLw + 1) (24)

2.6.2 Criterion 2: 0. = 0.5f 4

Similarly to the previous case, the expression is calibrated for two boundary conditions,
yielding good predictions. Correlation factor (R?) was 0.94 for the cantilever case, and 0.99 for
walls with double curvature. Results are as follows,

-0.54 -1.36
Cantilever « =143.4(22+5) - ~—+1) (25)
w Tetwlw
-0.36 -2.27
Double curvature a=102.6 (IZ—W + 5) (f, ZVL + 1) (26)

Upon definition of the crack direction (), the principal strain and stress direction is fixed for
the entire analysis. Different drift levels are defined in order to obtain the overall shear load versus
shear displacement. Compatibility (Eq. 5-7), material constitutive laws (Eq. 9-16) and vertical
equilibrium (Eg. 1) establishes an iterative scheme. The equilibrium equation might be solved
using Newton-Rapson. The shear force is determined (Eq. 3, 4), once the vertical equilibrium is
satisfied within a tolerance.

3. Model response

3.1 Experimental database

A database that contains 252 specimens was used to validate the proposed model, which are
collected from prior studies. This database summarizes the work by Hirosawa (1975) and
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Mohammadi-Doostdar and Saatcioglu (2002), and the publications by Massone et al. (2009),
Hidalgo et al. (2002), Yamada et al. (1974), Antebi et al. (1960), Barda et al. (1977), Benjamin
and Williams (1957), Cardenas et al. (1980), and Galletly (1952). The database includes walls
with enlarged boundary elements (68%) as well as rectangular walls (32%), cantilever walls (85%)
and walls with double curvature (15%). The vertical boundary steel reinforcement ratio ranges
from 0.7% to 11% (of the boundary area). Vertical and horizontal web reinforcement ratio vary
between 0% and 3.7%, while the yield stress of all the reinforcing bars are between 209 MPa and
624 MPa. The compressive strength of the concrete varies between 12.4 MPa and 63.4 MPa. The

axial load, although applied to few cases, had a maximum ratio of fL = 0.27.

CLW w
3.2 Strength

In order to determine the shear strength for the entire database, the models (rotating and fixed-
angle models) were run for large range of drift levels in order to observe a peak shear force. In the
other hand, for the flexural capacity of the wall, a simple flexural model was implemented based
on sectional analysis using the same constitutive law for concrete and reinforcing steel, but
without the concrete softening (¢ = 1). This was required since most tests indicate a failure mode
based on observation, all specifying shear cracking, such that it is not evident whether the flexural
capacity (mainly yielding of boundary reinforcement) was reached before excessive shear cracking
or crushing, associated with shear failure. Thus, failure type, based on shear and flexural capacity
estimates, would be associated to each wall for a specific model.

Table 1 shows the main results for the entire database for the rotating-angle model and the
fixed-angle models (both criteria). All rotating-angle and fixed-angle models were run for all
specimens. In order to validate the capacity of the model formulation to predict shear capacity, the
table rows were divided into specimens with shear and flexural failure. The average ratio between
the predicted capacity and the experimental evidence (Vmogel/Vies) IS Shown, together with the
standard deviation (SD) and the number of specimens in each failure type group. Regarding the
cases associated to shear failure, the rotating-angle model (RA), although simple (non-iterative),
underestimates the shear capacity (0.69) with relatively large scatter (0.31). Regarding the fixed-
angle models, criterion 1 (o, = f.;, FA1) provides a good strength estimate, but the scatter is
similar to the rotating-angle model. Criterion 2 (o, = 0.5f,;, FA2) shows less scatter (0.26) with
a relatively conservative estimate of the shear strength (0.84). In all cases, the number of
specimens that is estimated to fail in flexure is around 70 (close to 30% of the database). This
shows consistency between the models, especially considering that the average flexural capacity
ratio (Vmoge/Viest) 1S Close to 1 in all cases. The worse correlation occurs for criterion 1 of the
fixed-angle models, where the scatter is larger than in the other two cases, with almost 10 more
specimens within this category. This suggests that these specimens are wrongly labeled as flexural
failure. All these indicates that criterion 2 of the fixed-angle models presents a good combination
of accuracy and small dispersion of data (note that the 0.3 standard deviation of criterion 1 covers
175 specimens, whereas it reduces to 0.26 for criterion 2 for even more specimens - 183).

The inaccuracy of the RA model does not imply that general models with this consideration are
incapable of predicting the shear response, but the inconvenience of this specific model lays in the
fact that the model is mainly based on strain calibration (vertical and horizontal) and compatibility,
using only equilibrium in order to determine the shear strength. In the other hand, the importance



Shear response estimate for squat reinforced concrete walls via a single panel model 857

Table 1 Wall shear strength predictions

Model Failure V modet! Viest SD N° specimens
All cases 0.77 0.31 252
Rotating angle shear 0.69 0.31 186
Flexure 1.0 0.14 66
Fixed anale All cases 0.97 0.27 252
Cr terior? 0 Shear 0.95 0.30 175
Flexure 1.03 0.18 77
. All cases 0.89 0.24 252
(Eﬁigrfgr?'ze) Shear 0.84 0.26 183
Flexure 1.02 0.15 69
= 1.2
2
2 1
s
>
0.8
—— VModel/VTest -2 All cases
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Fig. 4 Sensitivity of average strength ratio (Vimode/Vies) and standard deviation to criteria
selection for the fixed-angle model

of this model is its capability of providing a reasonable estimate of the principal strain direction, o,
since strain and compatibility are well captured, which is used for the fixed-angle models.
Regarding the criteria selection for the fixed-angle models, Fig. 4 shows the predicted capacity
to experimental ratio (Vimoegel/Viest) OF average strength ratio and standard deviation for cases where
the crack formation or the principal angle direction is set for different levels of tensile strain in the
direction r (&, x-axis). This analysis required a prescribed value of o for each specimen within the
experimental database, and also for each tensile strain level. Each value of « was determined with
the RA model, and once known, the fixed-angle model was run for the entire experimental
database in order to obtain the shear strength of each wall test. This provides a comparative
analysis between both selected criteria for the fixed-angle model and other potential criteria for the
same formulation. As it can be seen in Fig. 4, large scatter for the cases labeled as shear failure is
observed if the principal direction is forced before cracking (& < &). This is because the model
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provides lower shear strength and several specimens result labeled as flexural failure, increasing
also the average strength ratio for flexural cases. Once the selection of principal direction is set
after cracking (starting with criterion 1), an important drop of scatter is observed providing
progressively lower scatter, but with a lower average strength ratio. At approximately the location
of criterion 2, the standard deviation shows further modest reduction, while still the average
strength ratio for all cases is just about 10% below 1.0. This indicates that criterion 2 is a plausible
selection that provides low scatter and a reasonable strength prediction. No further analysis is
provided here, since an optimum value would be attached to the selected material models.

3.3 Strength — parameter sensitivity

This section studies how the strength predictions are sensitive to different wall parameters such
as: aspect ratio, web steel reinforcing ratio, axial load, concrete compressive strength and
boundary condition. All plots show the strength ratio between the model estimate and the
experimental value (Vmogel/Viest) Versus each parameter under analysis for all specimens. The data
corresponds to the fixed-angle model for criterion 2 (o, = 0.5f.;, FA2). Trend lines are included
for all models (rotating-angle (RA) model, fixed-angle model with criterion 1 (FAL) and fixed-
angle model with criterion 2).

3.3.1 Aspect ratio, H,,/L,,

According to Fig. 5a, all models present good correlation to the aspect ratio, with average
strength ratio variation between 10% and 20%, approximately, for the range of test data. Almost
all models have trend lines under the strength ratio of 1.0. As the aspect ratio increases, the
behavior is more flexural, which is better captured by the model for flexure, resulting in less
scatter and with an average close to 1.0.

3.3.2 Longitudinal web steel strength ratio, p,f,,

Fixed-angle models present moderate dependency to the longitudinal web steel strength ratio
with variation of about 30% to 40% over the data range, whereas the average strength ratio
variation increases to about 100% for the range for the rotating-angle model (Fig. 5b). The
rotating-angle model tends to be very conservative for low amount of web reinforcement. The
better correlation with the fixed-angle models might be related to the fact that in that model,
vertical equilibrium is satisfied in the analysis given an important role to the vertical web
reinforcement. In all models, conservatism reduces with the increase of the parameter. Similar
overall and trend response is observed for transverse web reinforcement strength ratio given that
similar web ratio exists in both directions for most tests in the database.

3.3.3 Concrete strength, f',.

Fixed-angle models present moderate dependency to the concrete strength with variation of
about 30% over the data range, whereas the average strength ratio variation increases to about 60%
for the range for the rotating-angle model (Fig. 5c). In all models, conservatism reduces with the
increase of the parameter.

3.3.4 Wall cross-section and boundary condition
All models present low dependency to the wall cross-section and boundary condition, with
similar values for walls with enlarged end sections and rectangular walls, as well as cantilever
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walls compared with double-curvature walls (Fig. 5d). Only the rotating-angle model presents a
larger dependency to the boundary condition (cantilever versus double curvature). The fixed-angle
model with criterion 2 (o, = 0.5f,;) slightly improves the response for rectangular walls
compared to walls with enlarged end sections.

3.3.5 Axial load ratio, N/f’ t,,L,,

Fig. 5e shows the dependency of the model to the axial load ratio. The database includes only
15% of specimens with an axial load larger than 0.01f.t,, L,,, because there is little experimental
information of walls with axial load. The dependency is moderate for most models with variation
of about 40% for all cases. However, for the fixed-angle model with criterion 2 (o, = 0.5f ) the
average strength ratio variation is smaller, better capturing the effect of axial load. In this case, two
aspects improve the response to the axial load: (1) the vertical equilibrium includes the effect of
the axial load and (2) the principal strain/stress direction is set for larger tensile strains than for
criterion 1 (o, = f,), indicating that crack direction tends to be more horizontal (larger o), when
axial load is applied, increasing, in general, its contribution to the shear strength. Thus, the
selection of crack formation in criterion 2 seems to be consistent with a good prediction of shear
strength for walls with axial load.

Shear capacity in squat walls is known to increase with axial load. Considering that there is
little experimental data available in the literature where this aspect has been studied as an isolated
variable, the test program by Terzioglu (2011) is reviewed regarding specimens with similar
characteristics. Table 2 includes a selection of specimens that are analyzed in this work. Geometric
and material properties, as well as the level of axial load and shear capacity (Vi) are included in
the table. All specimens were short rectangular walls (aspect ratio equal or less than 1) loaded with
a point lateral load applied to the top of the wall. The wall specimens were anchored to a strong
floor and tested in cantilever with pseudo-static lateral loads applied with increasing cyclic top
drift levels. The axial load was maintained constant throughout the tests.

Specimens SW-T1-S2-9 (Test 9), SW-T1-N5-S1-10 (Test 10) and SW-T1-N10-S1-11 (Test 11)
were similar, but with variation of axial load. The axial load was 0, 0.05/":Ay and 0.1f":A, for the
specimens, respectively. Fig. 6a shows the analytical and experimental shear strength for these
three specimens. All models indicate a capacity increase with axial load, however, the rate of
increment is better predicted with the fixed-angle model with criteria 2 (o, = 0.5 f.;). The
rotating-angle model highly overestimates the increment of shear capacity with axial load in part
associated to an underestimation of the response without axial load (Fig. 6a). The fixed-angle
model with criteria 1 (o, = f,;) is almost insensitive to the variation of axial load. Considering
that the test data indicates an increase of shear strength with axial load, but with a decreased rate
with the highest axial load (0.1/°:A), it is interesting to analyze the model response for even higher
levels of axial loads. Fig. 6b shows the analytical response of a wall with similar characteristics as
Test 9, but with variation of axial load. In this case, the response is normalized by the strength
estimate for the case with zero axial load. As it can be seen, at low axial load levels, there is an
increment of shear capacity with axial load, whose rate of increment reduces with the level of axial
load, at a point (in some cases) where the shear capacity decreases for further axial load
increments. This is because most of the compressive capacity of concrete and steel (that controls
the peak capacity) is Consumed by the application of a large axial load.



860 Leonardo M. Massone and Marco A. Ulloa

21 ®  FA2 (or=0.5fct) - data 27
FA2 (or=0.5fct) - trend
& = = FA1 (or=fct) - trend 8 e
1.5 g = + = RA-trend 1.5 < ’.'
° o % . P

Vmodel/Vtest
VmodeIN test

®  FA2 (or=0.5fct) - data

05 051 ':.. 3 FA2 (or=0.5fct) - trend
g = = FA1 (or=fct) - trend
| = « = RA-trend
0 T T T ¥ T T 0 t . . . r .
0 0.4 m;{ L 1.2 1.6 2 0 4 8 12 16
(a) w/Lw (b) p.f,. [MPa]
2 ®  FA2 (or=0.5fct) - data 2 ®  FA2 (or=0.5fct) - data
FA2 (or=0.5fct) - trend — A2 (or=0.5fct) - trend
- - larged
. 3 FA1 (or=fct) - trend ::;I’g: = = FA1 (or=fct) - trend
" * is . =+ = RA-trend e
- ’ ] [}
3 ] cantilever

VmodeIN test

0.5
0.5
rectangular double
0 ) ) ) : i ‘ section curvature
(© 0 20 40 60 80
fc [MPa] (d o
Cross-section Boundary Condition
24 ®  FA2 (or=0.5fct) - data
FA2 (or=0.5fct) - trend
. = = FA1 (or=fct) - trend
15 = + = RA-trend
b o
2 .
2 .
% 1 F, -: ''''' .
<]
E
> ~ o
0.5
0 T T T T ! |
0 0.1 0.2 0.3
(€) N/tL,f,

Fig. 5 Sensitivity of average strength ratio (Vimege/Viest) t0 — (a) aspect ratio (H,/Ly), (b)
longitudinal web strength ratio (p,f,,), (c) concrete strength (f',), (d) wall cross-section and
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Table 2 Wall test characteristics (Terzioglu 2011)

Vertical web Horizotal web N/fc  Boudary reinf.

He Lot o R G4 R Ao B ol
[ o [ 1% [ [WPd
SW-T2-51-1 75 150 12 193 068 481 0.68 481 0 5.15 440 766
SW-T6-S1-8 150 150 12 226 068 584 0.68 584 0 9.75 528 706
SW-T1-S2-9 75 150 12 240 034 584 0.34 584 0 5.15 473 524

SW-T1-N5-S1-10 75 150 12 263 034 584 0.34 584 5 5.15 473 796
SW-T1-N10-S1-11 75 150 12 270 034 584 0.34 584 10 515 473 846




Shear response estimate for squat reinforced concrete walls via a single panel model 861

1250 5
----<RA
w = =YFA1 (or=fct)
= =FA2 (or=0.5fct) 4
= 1000 -| +=———=tTest G\a -9
i . ‘ﬂ ? - e
£ w3 ®
2 <
o 750 = N [geen  ( RE RA
a Z 5 ',' .',‘ ----- FA1 (or=fct)
= = LT e e FA2 (or=0.5fct)
E > ‘ T C
“ 500 1e--cr R s " T
R I S iy
& 0 T T T T T T 1
250 T | 0O 10 20 30 40 50 60 70
@) 0 5 10 (b) N/Af. [%]

N/Af. [%]

Fig. 6 Shear strength for different axial load levels - (a) absolute strength (predictions and tests)
and (b) normalized strength for broad range of axial load (predictions)

3.4 Overall load versus displacement response

As mentioned previously, this type of model allows not only obtaining the shear capacity, but
also the overall shear load versus shear displacement response of the wall. This characteristic is
suited for pushover analysis of existing or new structures, where commonly the flexural response
is captured by a fiber model and the shear response, usually modelled independently from flexure
can be captured with the proposed model.

One of the relevant aspects of the overall response is the ability to provide insight into the limit
states, especially knowing when collapse or capacity degradation could be observed. In order to
capture degradation in the proposed model, the material constitutive laws require cyclic
formulations allowing unloading in some of the components, when others are degrading its
capacity. A simple unloading branch is set for concrete and steel with stiffness consistent with the
material elastic modulus, because just initiation of degradation is required for a pushover
(monotonically increasing displacement) analysis.

Three specimens are compared (Fig. 7) for the analysis: (a) SW-T2-S1-1 (Test 1), (b) SW-T6-
S1-8 (Test 8) and (c) SW-T1-N5-S1-10 (Test 10) from the test program by Terzioglu (2011). Since
the model is implemented for monotonic loading, the load versus displacement envelop is used as
the experimental response. In order to monitor the shear displacement from tests, internal and
external sensors were used. Internal diagonal displacement sensors were used to determine shear
deformations of the wall. Those sensors were placed within the wall section, such that any sliding
between the wall and the pedestal (foundation) was not incorporated. Additional sensors were
place in most specimens in order to monitor sliding at the wall-pedestal interface. External
diagonal sensors were placed reaching a point in the pedestal, outside the wall. Such
instrumentation incorporated the shear within the wall, as well as the sliding shear in the interface
(wall-pedestal), which was small for these specimens. Specimen SW-T2-S1-1 was monitored with
internal diagonal sensors, whereas for specimens SW-T6-S1-8 and SW-T1-N5-S1-10 the external
diagonal sensors were used.
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Fig. 7 Model and experimental (Terzioglu, 2011) shear load versus shear displacement: (a) SW-
T2-S1-1, (b) SW-T6-S1-8 and (c) SW-T1-N5-S1-10

Test results are presented for the fixed-angle model with criteria 2 (o, = 0.5f,¢) in Fig. 7, as
well as the experimental envelop response. The analytical prediction of the initial stiffness is
similar to the experimental values for all cases. The capacity, as expected from the previous
analysis, is also similar for all cases even when axial load is applied, however, specimen SW-T6-
S1-8 shows less capacity than predicted. That might be associated to the aspect ratio (taller than
the other specimens), or a test anomaly since most material parameters present higher capacity or
steel gquantity. Other aspect of the behavior is the post-cracking response, which is much softer in
the experimental program compared to the model. More refined material properties (rather than a
simple elasto-plastic steel response, bi-linear tensile response of concrete in tension and almost
parabolic constitutive law for concrete in compression) are required to improve the accuracy for
post-cracking response. Peak strength at cracking is also higher in the model; probably due to the
fact that just a single element is used, impeding an early cracking in the most stressed zones.
Softening of the tensile strength of concrete could prevent such difference. Initiation of
degradation is also similar in all cases. If we define initiation of degradation as the point where the
peak capacity is reduced by 10%, the ratio between the estimated lateral displacement and the
experimental data at such point yields values of 0.95, 0.9 and 1.06 for specimens SW-T2-S1-1,
SW-T6-S1-8 and SW-T1-N5-S1-10, respectively. All these specimens failed due to diagonal
compression, with diagonal cracks forming a series of inclined struts that presented concrete
crushing after reaching the peak shear strength. The ability of the model for predicting the point of
strength degradation helps defining limit states for pushover analysis.

4. Summary and conclusions

In this work, simple rotating-angle and fixed-angle models capable of predicting the shear load
versus shear displacement response of reinforced concrete walls under lateral and axial loads are
presented. The models use a wall panel formulation, as seen in previous researches, based on
average stress and strain fields for a single reinforced concrete wall panel, with common
assumptions such as coincident directions between the principal strain and stress concrete fields,
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and perfect adherence between concrete and steel. Concrete response is incorporated in the two
principal directions with uniaxial material constitutive laws in tension and compression, including
softening of concrete in compression. Web steel reinforcement is represented with an elasto-plastic
uniaxial model.

The rotating-angle model uses a formulation where the principal direction (crack inclination)
moves or rotates at different drift levels. For each drift level the shear lateral force is calculated
using compatibility and material constitutive laws. The strain field is completed by using
calibrated expressions for the vertical and horizontal (expansion) average normal strains. Such
definition generates a principal direction that rotates with drift levels. Equilibrium is used to
determine the shear lateral force at each drift level, without the need of an iterative procedure.
Although simple, after relatively large drift levels, the principal compressive strain might present
reduction, resulting in a conservative estimate of the shear strength capacity with important scatter.
Its accuracy does not invalidate most rotating-angle models, since this one does not apply
equilibrium in the vertical direction, but makes it suitable for estimation of principal strain/stress
direction, since compatibility and calibrated expressions for vertical and horizontal normal strains
are its strength.

The rotating-angle model is used to define the bases for the fixed-angle models. In this case, the
principal direction is fixed, trying to represent the physical observation where after diagonal
cracking of a wall panel, the principal tensile strain tends to grow orthogonal to the crack
direction, maintaining the direction of the principal strain. The crack direction is defined for two
alternative models or criteria: (1) at the initiation of cracking (o, = f.¢), and (2) once the crack
direction is stable and further cracking is observed (g, = 0.5f,;, post-peak). Sensitivity analysis
to the tensile strain that defines the crack direction indicates that criterion 2 presents low scatter for
a reasonable average strength prediction. The direction of the crack is defined with the procedure
used for the rotating-angle model and calibrated for different wall geometric and material
parameters. Upon definition of the crack direction, it is used in junction with the vertical
equilibrium equation, which requires solving a non-linear equation for each drift level. The
strength predictions for the fixed-angle models (peak capacity) were compared to a database of
252 wall specimens collected from the literature. The ratio between the estimated strength by the
models and the experimental strength was 0.97 and 0.89 for criteria (1) and (2), respectively. Close
to 30% of the tests were predicted to fail in flexure by a sectional analysis. Good strength
estimates of the flexural capacity and low scatter indicates that the method correctly distinguishes
between strength controlled by flexure and shear. The shear strength estimates present also low
scatter compared to the experimental estimates. Although criterion (1) presents a better average
strength ratio estimate the larger scatter indicates that it is less accurate.

Sensitivity analyses of the average strength ratio are performed with all models for different
wall parameters (aspect ratio, concrete strength, web steel strength ratio, axial load, web cross-
section and boundary condition). In general, the rotating-angle model presents large dependency to
most wall parameters indicating that the influence of such parameters in the model are not well
predicted. Both fixed-angle models present relatively low dependency of wall parameters to the
average strength ratio indicating that the model correctly represents the physical wall behavior.
The main difference between both fixed-angle models relates to the axial load. Criterion (2)
(g, = 0.5f.), presents a better prediction of the shear capacity for walls with axial load.
Comparison with test data from a specific experimental program indicates that the shear capacity
increases with axial load, which is also well captured by the fixed-angle model with criteria (2).
Criteria (1) (o, = f¢) is less dependent to axial load than the experimental evidence.

Finally, the fixed-angle model with criteria (2) (o, = 0.5f,;) overall shear lateral load versus
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shear displacement was compared with the experimental response of tests failing in diagonal
compression. The general response is well predicted by the model in particular initiation of
strength degradation (10% of capacity reduction), which makes it a desirable model for pushover
analysis.
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