
 
 
 
 
 
 
 

Earthquakes and Structures, Vol. 7, No. 5 (2014) 627-645 

DOI: http://dx.doi.org/10.12989/eas.2014.7.5.627                                                                                          627 

Copyright ©  2014 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=eas&subpage=7         ISSN: 2092-7614 (Print), 2092-7622 (Online) 
 
 
 

 
 
 
 

Constitutive models of concrete structures 
subjected to seismic shear 

 

Arghadeep Laskar1, Liang Lu2, Feng Qin3, Y.L. Mo4, Thomas T.C. Hsu4,  
Xilin Lu2 and Feng Fan3 

 
1
Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 200076, India 

2
Institute of Structural Engineering and Disaster Reduction, Tongji University, Shanghai, 200092, China 

3
School of Civil Engineering, Harbin Institute of Technology, Harbin, 150090, China 

4
Department of Civil and Environmental Engineering, University of Houston, Houston, 77204-4003, USA 

 
(Received December 17, 2014, Revised December 5, 2014, Accepted February 26, 2014) 

 
Abstract.  Using OpenSees as a framework, constitutive models of reinforced, prestressed and prestressed 
steel fiber concrete found by the panel tests have been implemented into a finite element program called 
Simulation of Concrete Structures (SCS) to predict the seismic behavior of shear-critical reinforced and 
prestressed concrete structures. The developed finite element program was validated by tests on prestressed 
steel fiber concrete beams under monotonic loading, post tensioned precast concrete column under reversed 
cyclic loading, framed shear walls under reversed cyclic loading or shaking table excitations, and a seven-
story wall building under shake table excitations. The comparison of analytical results with test outcomes 
indicates good agreement. 
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1. Introduction 
 

Shear is one of the most critical aspects in seismic design of concrete structures. Lu et al. (2012) 

and Xing et al. (2013) studied shear in reinforced concrete beam-column joints through 

experiments and found that shear reinforcement can reduce cracks in beam-column joints. Moretti 

and Tassios (2013) critically examine the code provisions for shear design of short columns. The 

past three decades have seen a rapid development of knowledge in shear of reinforced concrete 

(RC) structures. Various rational models have been proposed that are based on the smeared-crack 

concept and can satisfy Navier's three principles of mechanics of materials (i.e., stress equilibrium, 

strain compatibility and constitutive laws). These rational or mechanics-based models on the 

“smeared-crack level” (in contrast to the “discrete-crack level” or “local level”) include the 

compression field theory (CFT) (Vecchio and Collins 1981), the modified compression field 

theory (MCFT) (Vecchio and Collins 1986), the rotating-angle softened truss model, (RA-STM) 

(Hsu 1993, Belarbi and Hsu 1995, Pang and Hsu 1995), the fixed-angle softened truss model, (FA-

STM) (Hsu and Zhang 1996, Pang and Hsu 1996), the softened membrane model, (SMM) (Zhu et 
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al. 2001, Zhu and Hsu 2002), and the cyclic softened membrane model, (CSMM) (Mansour 2001, 

Hsu and Mansour 2005, Mansour and Hsu 2005a, 2005b). 

Vecchio and Collins (1981) proposed the earliest rational theory CFT, to predict the nonlinear 

behavior of cracked RC membrane elements. However, the CFT was unable to take into account 

the tension stiffening of the concrete in the prediction of deformations because the tensile stress of 

concrete was assumed to be zero. In 1986 the MCFT was proposed to include a relationship for 

concrete in tension to better model the stiffness of experiments.  

The RA-STM, a rational theory developed at the University of Houston (UH) in 1995, had two 

improvements over the CFT: (1) The tensile stress of concrete was taken into account so that the 

deformations could be correctly predicted, and (2) the smeared (or average) stress-strain curve of 

steel bars embedded in concrete was derived on the “smeared crack level” so that it could be 

correctly used in the equilibrium and compatibility equations which are based on continuous 

materials.  

By 1996 the UH group reported the FA-STM that is capable of predicting the “concrete 

contribution” (Vc) by assuming the cracks to be oriented at the fixed angle. Zhu et al. (2001) 

derived a rational shear modulus and produced a solution algorithm of FA-STM that is as simple 

as that of RA-STM. 

Another significant advancement has come with the improvements on the softened truss models 

(rotating-angle and fixed-angle). As they were, these models could predict the ascending response 

curves of shear panels, but not the post-peak descending curves. By incorporating the Poisson 

effect of cracked RC (characterized by two new Hsu/Zhu ratios), the Softened Membrane Model 

(SMM) was developed which can satisfactorily predict the entire monotonic response curves, 

including both the ascending and descending branches (Hsu and Zhu 2002).  

Fifteen RC elements (panels) under reversed cyclic shear stresses, were tested by (Mansour and 

Hsu (2005a), 2005b). Based on these test results, the Cyclic Softened Membrane Model (CSMM) 

was proposed to rationally predict the hysteretic loops of RC. The CSMM can accurately predict 

the pinching effect, the shear ductility and the energy dissipation capacities of the two-dimensional 

membrane element (Hsu and Mansour 2005). For these reasons, CSMM is the most appropriate 

model to be implemented into the OpenSees platform (OpenSees 2013) for the prediction of the 

cyclic shear force-displacement behavior of walls (or other two-dimensional structures) where 

shear deformations are significant. In recent years the SMM has also been extended to prestressed 

concrete (PC) and prestressed steel fiber concrete (PSFC) to develop SMM-PC (Wang 2006, 

Hoffman 2010). This can be used in conjunction with the CSMM to rationally predict the 

hysteresis loops for two-dimensional shear critical prestressed concrete structures. Research efforts 

to extend the application of these two-dimensional models to three-dimensional structures are 

currently under execution. 

In this paper, the introduction of CSMM for RC, PC and PSFC is presented, including the 

equilibrium and compatibility equations, the constitutive relationships of the materials and finite 

element implementation. Five sets of constitutive relationships are summarized, namely reinforced 

concrete, prestressed concrete, embedded mild steel bars, embedded prestressing tendons and 

prestressed steel fiber concrete. In the finite element implementation section, the element 

formulation is derived. Adopting the OpenSees as the finite element framework, a finite element 

program named SCS (Simulation of Concrete Structures) (Mo et al. 2008) developed for RC was 

extended to include PC and PSFC. Lastly the SCS was validated through comparison between the 

test results and simulated outcomes. 
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a   

(a) Applied principal stresses in local coordinate 
(b) Reinforcement component in local 

coordinate 

Fig. 1 Coordinate systems for RC and PC element 

 
 
2. Cyclic softened membrane model (CSMM) for RC, PC and PSFC 

 
The cyclic softened membrane model was first developed by Mansour and Hsu (2005b) for 

reinforced concrete structures. This paper extends the CSMM to include prestressed concrete and 

prestressed steel fiber concrete structures. 

 
2.1 Coordinate system in CSMM 

 
Three Cartesian – coordinates, x–y, 1–2, and xsi – ysi, are defined in the reinforced/prestressed 

concrete elements, as demonstrated in Fig. 1 (Hsu and Mo 2010).Coordinate x–y represents the 

local coordinate of the elements. The coordinate 1–2 defines the principal stress directions of the 

applied stresses, which have an angle 1  with respect to the x – y coordinate. Steel bars can be 

distributed in different directions in the concrete. Coordinate xsi – ysi shows the ‘ith’ direction of 

the reinforcing steel bars, where the ‘ith’ steel bars are located in the direction of axis xsi at an 

angle si  to the x – y coordinate. Stresses and strains can be transformed between coordinate 

systems using transformation matrix   T   given in Eq. 1. 

    

2 2

2 2

2 2

2
2

c s sc
T s c sc

sc sc c s


 
  
   

                                                       (1) 

where α is the angle from the original coordinate to the new coordinate, c = cos(α) and s = sin(α). 

 
2.2 Equilibrium equations 
 
The equilibrium equation that relates the applied stresses in the x–y coordinate (σx,, σy and τxy) 

to the internal concrete stresses
1

c , 
2

c  and 
12

c ) in the principal stress directions, and the steel bar 

stresses ( sif ) in the bar directions is expressed in Eq. (1). 

   
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1 2
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= ( ) + ( ) 0
0

c

x si si
c

y si
c i

xy

f
T T

 
   
 

    
       
        

                                         (2) 

where    is the steel ratio in the ‘ith’ direction,          and          are the transformation 

matrices from the 1–2 coordinate and the xsi – ysi coordinate to the x – y coordinate, respectively. 
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2.3 Compatibility equations 
 

The compatibility equation, which represents the relationship between the steel strains ( si ) in 

the si six y  coordinate and the concrete strains ( 1 , 2 , and 12 / 2 ) in the 1–2 coordinate, is given 

in Eq. (3) 1 , 2  and si  are biaxial strains, taking into account the Hsu/Zhu ratios of cracked 

reinforced concrete (Zhu and Hsu 2002). 

   
si 1

si 1 2

12si

22

siT
 
   




   
    

   
     

                                                      (3) 

 

where   1siT   is the transformation matrix from the 1 2  coordinate to the xsi – ysi coordinate, 

and si   and si are the smeared Poisson effect and the smeared dowel action for the steel bars in 

the ‘ith’ direction, which are neglected in the CSMM. 

 
2.4 Biaxial srains vs. Uniaxial strains 

 
To solve the equilibrium Eq. 2 and compatibility Eq. 3, the stress-strain relationships of 

concrete and steel have to be based on the biaxial strains 1 , 2 and si . Since general laboratory 

experiments can provide only the uniaxial constitutive relationships of concrete and steel (rather 

than the biaxial constitutive relationships), the biaxial strains in Eq. 3 must be converted to 

uniaxial strains before the uniaxial constitutive relationships can be utilized. Thus, Eqs.4 to 6 have 

been derived by Zhu and Hsu (2002) to relate the set of biaxial strains ( 1 , 2 ,and si ) to the set of 

uniaxial strains ( 1 , 2 and si ) using the Hsu/Zhu ratios ( 12 , 21 ).  

                         
1 1

2 2

12 12

1 1

2 2

V
 
 

 

   
    
   
      

                                      (4) 
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                                                  (5) 

The uniaxial strain of steel ( si ) can be obtained by transforming uniaxial strains of concrete 

( 1  and 2 ) using Eq .6. 

   
si 1

si 1 2

12si

22

siT
 
   




   
    

   
     

                                                   (6) 

Once the uniaxial strains 1 , 2 and si  are determined, the stresses 1

c , 2

c , 
12

c  and sif  in Eq. 
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(2) can be calculated using the uniaxial constitutive relationships of materials. 

 
2.5 Constitutive models 

 
2.5.1 Uniaxial constitutive relationship of concrete in RC/PC 
The cyclic uniaxial constitutive relationships of cracked concrete in compression and tension 

are summarized in Fig. 2. In the graph, the vertical axis represents the cyclic stress 
c , with 

positive tensile stress above the origin and negative compressive stress below the origin. The 

horizontal axis represents the cyclic uniaxial strain  , with positive tensile strain to the right of 

origin and negative compressive strain to the left of origin. 

The upper right quadrant gives the tensile envelope stress–strain curves T1 and T2. In the lower 

left quadrant is the compression envelope stress–strain curves C1 and C2. The unloading and 

reloading curves are represented by the series of straight lines C3-C7 in the compressive strain 

regions, and T3, T4 in the tensile strain region. Each straight line connects two points with their 

coordinates specified in the lower right quadrant. 

 
Tension 
In decompression (Stage UC) of PC, constitutive relationship are shown in Eq. (7) The tensile 

envelope curves, T1 and T2 in the biaxial condition, were found to be close to the monotonic 

curves. Since the tensile stress is very small compared with the compressive stress, the tensile 

envelope curves T1 and T2 are taken, for simplicity, to be the same as the monotonic curves 

expressed by Eqs (8) and (9). 

 Stage   UC for PC onlyc

c ci cx ciE                                         (7) 

  Stage   T1 c

c ci cx cx ci cr ciE                                            (8) 

 

0.4

Stage   T2 ( )c cr
cr cr ci

ci

f


   
 


    

 
                           (9) 

where: cE  is the decompression modulus of concrete, taken as 0/ckf  , where k =1.4-1.5 and cf   is 

maximum compressive stress of concrete obtained from standard cylinders, 

ci and ci are initial compressive stress and strain in concrete due to prestress force, which are 

taken as zero for RC, 

cx  is the extra strain in concrete after decompression, calculated by /ci ci cE   , 

cr  is the concrete cracking strain, 

cE  is the modulus of concrete in tension before cracking, 

crf  is cracking stress of concrete, taken as 0.31 (MPa)cf  . 

 

 
Compression 

The uniaxial compression constitutive relationships in stage C1 and C2 are shown in Eqs. (10) 

and (11) respectively. 
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  

2

4 4 0

0 0

Stage   C1 2 0c

c cT cTD f f f
 

   
 

   
            

    

     (10) 

 

2

0
0

/ 1
Stage   C2 1

4 / 1

c

cD f
 

   


  
      

  

     (11) 

where:  is the softening coefficient, D is the damage coefficient, 

0  the concrete cylinder compressive strain at cf  , 

4cTf  is the concrete stress of point TD  on the vertical axis at the end of stage T4.  

When concrete stress did not reach stage T2, 4cTf  is zero, and the curve of stage C1 should go 

through the origin as shown in Fig. 2. 

The softening coefficient can be determined by Eqs. (12) through (17) 

   1 2 3( )T c p ff f f f W W                     (12) 

where 

   1

1

1 400
T

T

f 


 


             (13) 

    2

5.8
0.9 and in MPac c

c

f f f f
f

       


                                 (14) 

  3 1
24

f


   


            (15) 

  
1                                     for RC

0.09 1
1.15     for PC and PSFC

6

pW  
 


 
 

                             (16) 

 1 for RC and PC
1 0.2 for PSFCfW

FF
 


  

                                     (17) 

where: T is the uniaxial principal strain in tension, 

 is the deviation angle, defined as 1r    , where r  is the angle from t coordinate to 

r d  coordinate which represents the direction of the principal stresses in concrete, 

FF  fiber factor in PSFC. 

The damage coefficient is taken as a linear function of the compression strain c  : 

 
0

1 1.0cD






                                                                    (18) 

where c   (always negative) is the maximum compression strain normal to the compression 

direction under consideration, and occurred in the previous loading cycles. The symbol  is a 

constant taken as 0.4 to best fit the test results of the cyclic shear stress-strain curves of the test 

panels (Mansour 2001). 

 

Unloading and reloading 

The unloading and reloading curves, which can be applied to RC, PC and PSFC, are 
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constructed by connecting consecutively a set of points given in Fig. 2. The linear expression 

between two points is given as: 

 
c c

ii ccE                                                              (19) 

where c

i and i are concrete stress and strain at the load reverse point ‘i’ or at the point where the 

stages change; ccE is the slope of linear expression and is taken to be 

 1

1

c c

i i
cc

i i

E
 

 









                                                            (20) 

where 
1

c

i 
and 1i  are concrete stress and strain at the stage under consideration. 

 
Shear 
For a stress and strain analysis based on the smeared-crack concept, a rational and simple 

shear modulus as in Eq. (21) has been derived theoretically by Zhu et al. (2001), which can be 

applied to RC, PC and PSFC. 

 12 1 2
12

12 1 2/ 2

c c c
cG

  

  


 


                                                       (21) 

 
2.5.2 Uniaxial constitutive relationship of mild steel bar 

The constitutive model for PSFC along with the factors that will affect PSFC are summarized 

in this section, including the constitutive relationships of cracked PSFC in tension and 

compression. The envelope curves are plotted in Fig. 4..These proposed constitutive relationships 

of PSFC takes into account the effect of presence of steel fibers in the concrete (Hoffman 2010). 

 

Tension 

The relationships of the stress c  versus the uniaxial strain   of PSFC in tension are given 

in Eqs. 26 and 27. 

Stage UC:  1

c

c ci cx ciE                     (22) 

Stage T1:    1( )c

c ci cx ci cy ciE                          (23) 

Stage T2:    ( )c

c ci cy ci cult ciE                          (24) 

Stage T3:  ( )c IV

c ci cult ciE                      (25) 

where： cE  = decompression modulus of concrete taken as 02 /cf   

ci  = initial strain in concrete due to prestress, 

ci  = initial stress in PSFC, 

cx  = extra strain in concrete after decompression calculated by /ci ci cE   , 

maxc  = PSFC maximum strain taken as 0.04 pi , 

cult  = PSFC ultimate strain taken as 0.01 pi , 

pi  = strain at initial prestress, 
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cultf  = PSFC ultimate stress strain taken as (0.2 12 )l cFF f  , 

cy  = PSFC yield strain taken as 0.0005,  

cyf  = PSFC effective “yield” stress for Proportional Loading, taken as  

0.4* * cFF CF f 
, 
 ( cf   and cf   are in MPa), where CF = 1 for PSFC 

tensile volume confined (sandwiched) by two or more tendons, or CF = 

0.5 for PSFC tensile volume unconfined by tendons, 

cE  = modulus of PSFC taken as / ( )cy cy cxf   , 

cE  = modulus of PSFC taken as ( ) / ( )cult cy cult cyf f    , 

IV

cE  = modulus of PSFC taken as max/ ( )cult cultf    , 

 
Compression 

The smeared (average) constitutive relationships of PSFC stress c  and the uniaxial strain 

  are given in Eqs. (26) and (27). 

 

2

0 0 0

2 1c

cf
  

 
  

   
      
    

               (26) 

or 

2

0

0

1
1 1

4 1

c

cf
  

 
 

  
     

   

               (27) 

where   is the softening coefficient, which can be determined in Eq. (12). 

 
2.5.3 Uniaxial constitutive relationship of prestressing steel 

The cyclic constitutive relationships of reinforcing steel bars embedded in concrete and 

subjected to uniaxial strains (Mansour et al. 2001) are summarized in Fig. 4. The solid curves 

represent the smeared stress–strain curves of steel bars, while the dotted curves are the monotonic 

stress–strain relationship of a bare bar. In the smeared stress–strain curves, stages 1T, 2T, 1C and 

2C are the envelope curves and stages 3 and 4 are the unloading and reloading curves. 

 
Envelope curves 
For embedded steel bars, the envelope curves under cyclic loading closely resemble the 

monotonic stress–strain curves (Belarbi and Hsu 1994, 1995, and Hsu and Zhang 1996, Hoffman 

2010). In Stages 1T and 2T, the relationship of the smeared stress ( sf ) and smeared uniaxial strain 

( s ) of an embedded steel bar can be described by equations for a bilinear model, as shown in Eqs. 

(28)-(30). 

 stage  1T = ( )s s s s yf E       (28) 

 stage  2T =(1-0.096 )(0.91-2 ) (0.2 1)(0.02 0.25 ) ( )s y s s s yf FF B f FF B E          (29) 

  
1.5

1/ /cr yB f f   (30) 

where: Es is the elastic modulus of rebar before yielding, 
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y   is the yield strain of rebar, taken as (0.93 2 )y B  , where y is the yield strain of bare 

bar, 

  is the steel ratio, and yf is the yield stress of bare bar, 

FF is the fiber factor in PSFC, for RC and PC FF is zero. 

The smeared (average) constitutive relationships of embedded mild steel in compression are 

given as in Eqs. (31) and (32). 

Stage 1C s s s s yf E                  (31) 

Stage 2C =-s y s yf f               (32) 

 
Unloading and reloading 
The unloading and reloading stress vs. strain curves of embedded steel bars, stages 3 and 4, 

take into account the Bauschinger effect. This curve was found by Mansour et al. (2001) to be well 

represented by the Ramberg–Osgood type of expression first used by Yokoo and Nakamura (1977), 

as shown in Eq. (33). 

   

1

stage  3 and 4 = 1

R

Rs i s i
s si

s y

f f f f
A

E f
 




 

  
     
 
 

          (33) 

where: if and si are the smeared stress and smeared uniaxial strain of steel bars at the initial load 

reversal point, 

the coefficients A and R taken as 0.11.9( / )p y    and 0.210( / )p y    to best fit the test 

data, where p  is the smeared uniaxial plastic strain of rebars. 

 
2.5.4 Uniaxial constitutive relationship of prestressing steel 

The smeared (average) stress( psf ) and strain ( s ) relationships of prestressing tendons 

embedded in concrete (Wang 2006, Hoffman 2010) are given in Eqs. (34) and (35) 

 
0.7 pu

ps ps s s

ps

f
f E

E
             (34) 

 
1

0.7

1

ps s pu

ps s

m psm

ps s

pu

E f
f

E
E

f







  

  
      

         (35) 

where: psE  = elastic modulus of prestressing tendons taken as 200 GPa, 

puf  = ultimate strength of prestressing tendons taken as 1862 MPa, 

psE  = modulus of prestressing tendons in plastic region, taken as 209 GPa,  

puf   = revised strength of prestressing tendons, taken as 1793 MPa, 

m = shape parameter, taken as 4 for prestressing steel in PC and 5 for prestressing steel PSFC. 

In the above equations, p  replaces ps  in the subscript of symbols for the longitudinal 
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tendons, and tp  replaces ps  for the transverse tendons. 

The cyclic behavior of mild steel can be extended to prestressing tendons. Hence during 

unloading and reloading stages, the stress strain relationship of prestressing tendons is the same as 

that of mild steel, as given by Eq. (33). 
 
 
3. Finite element implementation 

 

The constitutive laws discussed before are combined with the equilibrium and compatibility 

equations to form a tangent stiffness matrix     for element.The details of the derivation of     is 

presented in Zhong (2005).    is formulated as: 

   /
2

x x

y y

xy xy

D d d
 
 
 

   
   

    
      

                                                 (36) 

   is evaluated by 

                   1 1 1 1c si si si
i

D T D V T T D T V T                             (37) 

In Eq. (37),      is the uniaxial tangent constitutive matrix of concrete,       is the uniaxial 

tangent constitutive matrix of steel, and    is the matrix defined previously in Eq. 

(5).        ,         ,             and           are the transformation matrixes. 

The uniaxial constitutive matrix of concrete     is given by 

   

1 21

212

12

/ 0

/ 0

0 0

c
c

c
c

c
c

E

D E

G

 

 

 
 

 
   
 
 

                                      (38) 

In Eq. (38),    
  and    

 are the uniaxial tangent moduli of concrete in the 1 and 2directions, 

respectively, evaluated at a certain stress/strain state. The off-diagonal terms   
       and 

   
      are obtained by using the uniaxial constitutive relationships and taking into account the 

states of the concrete stresses and uniaxial strains in the 1–2 directions, which are not zero because 

the stress and strain of the concrete in compression is softened by the orthogonal tensile strains.   
  

is the shear modulus of concrete as described previously in Eq. (21). 

The uniaxial stiffness matrix of rebars  siD  is evaluated as follows: 

  
0 0

0 0 0
0 0 0

sisi

si

E
D

 
 
 
 

                                                 (39) 

where    is the steel ratio in ith direction, and      is the uniaxial tangent modulus for the rebars, as 

determined for a particular stress/strain state. 

Adopting the OpenSees as framework, the finite element program named SCS developed for 

RC (Mo et al. 2008) was extended to include PC and PSFC by implementing the new constitutive 

modelsin OpenSees. Additional details about the finite element implementation can be obtained 

from Zhong (2005). This program is able to perform nonlinear finite element analysis of concrete 

structures under static, reversed cyclic, or dynamic loading. 
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4. Validation 
 

The validation studies have been conducted by comparing the analytical results with tested 

results of seven series of tests. Some details about the experiments and simulations can be found in 

the Unified Theory of Concrete Structures by Hsu and Mo (2010). 

 

4.1 Simulation of prestressed steel fiber concrete beams 
 
Since PSFC beams were tested under monotonic loads, this validation and applicability of SCS 

program is only suitable in predicting the behavior of PSFC structures under monotonic loading. 

Finite element meshes of PSFC I-beams are shown in Fig. 5(a) and Fig. 5(b) for web-shear and 

flexural-shear respectively. The detailed description of the test specimens is referred to (Tadepalli 

2011). 

The measured and calculated load-displacement curves for PSFC beam tested in web-shear 

failure mode are shown in Fig. 6(a). It can be seen that the analysis predicts reasonably well the 

load-displacement characteristics of the beam including initial stiffness, post-cracking stiffness, 

yield displacement, and ultimate strength. The numerical simulation of this specimen was ended 

with the uniaxial strain in concrete reaching the ultimate value of 0.002. 

 

 

 
(a) tested under web-shear 

 
(b) tested under flexural-shear 

Fig. 2 Finite element model of PSFC I-beams under web-shear 
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(a) under web-shear (b) under flexural-shear 

Fig. 3 Comparison of experimental and analytical results of beam 

 

  
Fig. 4 Finite element model of post-

tensioned columns 

Fig. 5 Experimental and analytical load drift diagram of 

column specimen 

 

 

The measured and calculated load-deformation curves for PSFC beam with flexure-shear 

failure are shown in Fig. 6(b). Compared with the experimental results, the analysis as well 

predicts the load versus deformation characteristics of the specimen including initial stiffness, 

post-cracking stiffness, yield displacement, and ultimate strength. The numerical simulation of this 

specimen was ended the uniaxial strain in the stirrups reaching the ultimate value and the load 

carrying capacity of the stirrups begin to decrease thereafter. Comparison of other aspects of test 

and analysis results including strain profiles along the cross-sections have also shown good 

agreement (Tadepalli 2011). 

 
4.2 Post tensioned precast column under reversed cyclic loading 
 
A full-scale post tensioned precast hollow bridge column has been tested at the State University 

of New York, Buffalo (Ou 2007). The column has a dimension of 860 mm × 860 mm with 200 

mm thick walls. The height of the column is 4050 mm. The specimens were modeled by the finite 

element model shown in Fig. 7. 

The analytical results of the load-drift relationships of the column specimen are illustrated by 

the pink hysteretic loops in Fig. 8. These pink loops are compared to the blue loops, representing 
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the experimental results. It can be seen that good agreements were obtained for the primary 

backbone curves, the initial stiffness, the yield point, the ultimate strength, and the failure state in 

the descending branch. The hysteretic behavior provided accurate measurements of the residual 

displacements, the ductility and the energy dissipation capacity of the specimen. Comparison of 

other aspects of test and analysis results including strain profiles along the cross-sections have also 

shown good agreement (Laskar 2009). The above-mentioned results verify the capability of SCS 

to predict the reversed cyclic behavior of prestressed concrete structures. 

 
4.3 UH low-rse framed shear walls under reversed cyclic load 
 
Nine 1/3-scale framed shear walls (Fig. 9), subjected to a constant axial load at the top of each 

column and a reversed cyclic load at the top beam, were performed at the University of Houston 

(Gao 1999). Finite element analyses of the nine specimens were conducted with model illustrated 

in Fig. 10. 

The analytical and experimental results of the shear force-drift relationships of two shear walls  

 

 

 
 

Fig. 6 Dimensions and steel arrangement 

of specimens 

Fig. 7 Finite element modeling of the wall 

 

 

  
(a) FSW13 (P/P0=0.07,   =0.23%) (b) FSW12 (P/P0=0.4,   =0.23%) 

Fig. 8 Shear force - Drift Displacement of Specimens FSW13 and FSW12 (P/P0 is the 

magnitude of vertical load on each column,ρ_w is the steel ratio in the shear wall) 
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Fig. 9 Dimensions and reinforcement 

of specimen RLB 
Fig. 10 Finite element mesh of specimens RLB 

 

 

are illustrated in Fig. 11. It can be seen that good agreements were obtained for the primary 

backbone curves, including the initial stiffness, the yield point, the ultimate strength, and the 

failure state in the descending branch. The hysteretic behavior provides accurate measurements of 

the pinching effect, the residual displacements, the ductility and the energy dissipation capacity in 

all specimens. Even the failure modes can be predicted by the CSMM-based finite element 

program. Fig. 11 shows that SCS was capable of capturing the ductile and brittle failure behavior 

of specimens FSW13 and FSW12, respectively. In fact, the analytical and experimental results for 

the other seven specimens were also in good agreement (Zhong 2005). Detailed comparison of 

other aspects of test and analysis results including strain profiles along the cross-sections have also 

shown good agreement (Zhong 2005). 

 
4.4 Low-rise framed shear wall under reversed cyclic load 

 

A low-rise shear wall (RLB) was tested under reversed cyclic horizontal loading at National 

Center for Research on Earthquake Engineering, Taipei, Taiwan (NCREE). The specimen and its 

finite model are shown in Fig. 12 and Fig. 13. Reversed cyclic horizontal loads were applied on 

the top of the shear wall, and reversed cyclic analyses were conducted on the specimen (Zhong 

2005). 

The observed and calculated load-displacement relationships for specimen RLB are shown in 

Fig. 14. Compared with the experimental results, the analyses accurately predicted the load versus 

displacement characteristics including precracking stiffness, postcracking stiffness, ultimate 

strength, residual displacement, and energy dissipation. The envelopes including ascending and 

descending branches of the specimen, which show the typical type of shear failure, were 

accurately predicted by the analytical results. Detailed comparison of other aspects of test and 

analysis results including strain profiles along the cross-sections have also shown good agreement 

(Zhong 2005). 
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4.5 Mid-rise famed shear wall under reversed cyclic load 
 

A mid-rise shear wall (RMB) was tested under reversed cyclic horizontal loading at NCREE. 

The dimensions and reinforcements of the specimen are shown in Fig. 15, and finite element 

model of the specimen is shown in Fig. 16. Reversed cyclic horizontal loads were applied on the 

top of the shear wall (Zhong 2005). 

The experimental and calculated load-displacement relationships for the specimen are shown in 

Fig. 17. Compared with the experimental results, the analyses accurately predicted the load versus 

displacement characteristics including precracking stiffness, postcracking stiffness, ultimate 

strength, residual displacement, and energy dissipation. The nearly flattop envelopes of the 

specimen, which is a typical behavior of the flexure mechanism, were also predicted by the 

analyses. Detailed comparison of other aspects of test and analysis results including strain profiles 

along the cross-sections have also shown good agreement (Zhong 2005). Analysis results of 

specimens discussed in Sections 4.4 and 4.5 demonstrates the capability of SCS to predict the 

cyclic behavior of various types of shear critical structures such as shear walls. 

 

 

 

 

Fig. 11 Dimensions and reinforcement 

of specimen RMB 
Fig. 12 Finite element mesh of specimens RMB 

 

 
Fig. 13 Wall elevation in finite element mesh 
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4.6 Framed shear walls under shake table excitations 

 
Two low-rise shear walls with a height-to-width ratio of 0.5 were tested on a shake table under 

seismic excitations at NCREE (Zhong 2005). The two specimens were designed identically with 

the exception of the steel grid orientation in the walls. While one specimen (STC) was designed as 

a conventional shear wall with the steel grid in the horizontal and vertical directions (Fig. 18(a)), 

the reinforcement in the other specimen (STN) was oriented at 45 degrees to the horizontal (Fig. 

18(b)). Accelerometers were placed on the shake table and the top slab to measure the actual 

acceleration of the shake table and the response acceleration of the specimen. Finite element 

model used for analysis is illustrated in Fig. 19. 

The analysis for the first two runs was omitted because the response of the specimen was too 

small when compared with the remaining test runs. Damping proportional to the converged 

stiffness at each time step was applied to model the energy dissipation arising from story 

deformations. The damping ratios were determined based on the different damage levels of the 

specimens (Hsu and Mo 2010). 

 

 

  
(a) STC (b) STN 

Fig. 14 Measured and computed drift time history of specimen STC and STN 

 

  
Fig. 15 A seven-story wall building  

tested at UCSD 
Fig. 16 Finite element model 
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(a) EQ3 Run (b) EQ4 Run 

Fig. 17 Time histories of measured and calculated displacement at building top 

 

 

The calculated drift and time history of specimens STC and STN for the third to the sixth runs 

are presented in Fig. 20 (a) and (b), respectively. The computed drift and time histories show good 

agreement with the measured responses for both specimens. In the sixth run, the analyses slightly 

overestimated the drifts for both specimens. The results also show that the damping ratios used in 

the analyses were appropriate to take into account the different damage levels of the structures. 

Detailed comparison of other aspects of test and analysis results including strain profiles along the 

cross-sections have also shown good agreement (Zhong 2005). The above mentioned results 

demonstrate the efficiency of SCS in predicting the actual seismic behavior of shear critical 

concrete structural components. 
 
4.7 A seven-story wall building under shake table excitations 
 

A full-scale seven-story reinforced concrete wall building (Fig. 21) was tested on the shake table 

located at UCSD's Engelkirk Structural Engineering Center (Zhong 2005). The building was composed of 

a web wall, a flange wall, a post-tensioned precast pier, gravity columns, and slabs at each floor. The 

building was subjected to four increasing intensity of uniaxial earthquake ground motions (EQ1, EQ2, 

EQ3 and EQ4). It is assumed that the flange wall, precast pier and foundation of the seven-story building 

do not transfer shear loads acting on the structure and hence these components of the building have been 

neglected and the building was simplified to a 2-D finite element model, as shown in Fig. 22.  

For simplicity, time histories of the predicted displacement at the top of the building and measured test 

data for EQ3 and EQ4 are presented in Fig. 23. It can be seen from Fig. 23 that the prediction of the 

displacement is close to the measured results both in the vibration frequency and displacement magnitude. 

The above-mentioned results demonstrate the capability of SCS to predict the behavior of large full-scale 

shear critical concrete structures under seismic loading. 

 
 
5. Conclusions 
 

The constitutive models of CSMM for reinforced, prestressed and prestressed steel fiber 

concrete elements subjected to seismic shear were determined by testing full scale reinforced and 

prestressed as well as prestressed steel fiber concrete panels using the Universal Panel Tester 

available at the University of Houston. Adopting the OpenSees as the finite element development 

framework, the finite element program named SCS developed for RC previously was extended to 

include PC and PSFC by implementing the constitutive models in OpenSees. The developed finite 

-8

-6

-4

-2

0

2

4

6

40 45 50 55 60

Time (sec)

D
is

p
la

c
e
m

e
n

t 
(i

n
)

Experiment Analysis

-20

-15
-10

-5

0

5
10

15

20

40 45 50 55 60

Time (sec)

D
is

p
la

c
e
m

e
n

t 
(i

n
)

Experiment Analysis

643



 

 

 

 

 

 

Arghadeep Laskar, Liang Lu, Feng Qin3Y.L. Mo, Thomas T.C. Hsu, Xilin Lu and Feng Fan 

element program was validated by tests on prestressed steel fiber concrete beams under monotonic 

loading, post tensioned precast concrete column under reversed cyclic loading, framed shear walls 

under reversed cyclic loading or shaking table excitations, and a seven-story wall building under 

shake table excitations. Non-linear beam column elements (previously incorporated in OpenSees 

by other researchers) were used to model structural components carrying flexural loads. Since the 

constitutive models are proposed for shear critical structures, they have not been used to create the 

non-linear beam column elements. The comparison of analytical results with test outcomes 

indicates good agreement. All the numerical simulations of the test specimens were ended with the 

uniaxial strains in the materials reaching their ultimate values. The model have not been used to 

predict the cyclic/seismic behavior of PSFC since no suitable test results for PSFC shear-critical 

structures under reversed cyclic loading has been found in literature. However since the model can 

well predict the monotonic behavior of PSFC, the reversed cyclic behavior of PC and the reversed 

cyclic as well as seismic behavior of RC, it is expected to also accurately predict the reversed 

cyclic and seismic behavior of PSFC when such test data becomes available.  
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