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Abstract.  A method is presented in this paper to analyze the dynamic response behavior of suspended 
building structures. The effect of semi-rigid connections that link suspended floors with their supporting 
structure on structural performance is investigated. The connections, like the restrains in non-structural 
suspended components, are designed as semi-rigid to avoid pounding and as energy dissipation components 
to reduce structural response. Parametric study is conducted to assess the dynamic characteristics of 
suspended building structures with varying connection stiffness and suspended mass ratios. Modal analysis 
is applied to identify the two distinct sets of vibration modes, pendulum and bearing, of a suspended 
building structure. The cumulative modal mass is discussed to ensure the accuracy in applying the method of 
response spectrum analysis by SRSS or CQC modal combination. Case studies indicate that a suspended 
building having semi-rigid connections and proper suspended mass ratios can avoid local pounding failure 
and reduce seismic response. 
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1. Introduction 
 

Some structural components such as floor slabs, ceilings, piping, and boilers are designed to 

hang on their supporting structures. For buildings, many suspended structures were built around 

the 1970s, including the Johannesburg Standard Bank Centre in South Africa, Munich landmark 

BMW Tower in Germany, Hong Kong HSBC Main Building, and Minneapolis Federal Reserve 

Bank in the United States. Some of them are described in the literature (Schueller 1977, Hart et al. 

1985). Although many suspended buildings have been built around the world, there are no explicit 

specifications for suspended building structures in current design codes/standards against seismic 

loading. Conventional connections, such as rigid, are generally considered in design so that the 

available codes/standards can be applied.  

On the other hand, design codes/standards do have specifications for non-structural suspended 

components, such as suspended ceilings and industry equipment. Past earthquakes show that 

suspended ceilings might experience severe damage during strong earthquake motions, such as the 
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damage of suspended ceiling and light fixtures in residential building during the Northridge 

earthquake (FEMA-74, 1994), and the damage in nuclear power plant during the Kashiwazaki-

Kariwa earthquake (EPRI, 2008). The collapse of suspended ceilings might cause serious injuries, 

and even deaths of occupants and financial loss of properties. The failure is most likely caused by 

the lack of seismic restraints or poor design details on ceiling systems. To deal with ceiling failure 

due to strong earthquakes, building codes/standards (e.g., ASCE (2005), ASTM (2011)) require 

seismic restraints for suspended non-structural components based on quasi-dynamic analysis 

accounting for seismic loading. Seismic experience also indicated that when the suspended 

ceilings were adequately restrained per code provisions, the extent of such damage was reduced 

considerably (McKevitt, 1995). For suspended building structures, much work is required to attain 

the code/standard specifications for structural design purposes. Since restraints/connections are 

required for non-structural suspended components in current codes/standards, it is worth studying 

how the restraints, which connect suspended floors to their supporting structures, affect the 

response of suspended building structures.  

From these building layouts, a suspended building can be defined as that having at least a floor 

hanging on the mega girder of core-tube or frame supporting structure. A suspended floor section 

has one or more storey floor slabs suspended on the same horizontal transfer girder. One of the 

problems in the suspended building structures is the structural instability due to up-shifted gravity 

loading in mega core-tube or frame supporting systems. Assessing the stability of suspended 

structures to ensure their robustness against all environmental loading is presented in another 

paper (Liu and Lu 2013). If the structural system is stable, there is still an issue with pounding 

between the suspended floors and their supporting structures as identified by Goodno and Gere 

(1976). This issue might cause local damage when the suspended portions impact on the 

supporting structure due to seismic loading. To resolve this pounding problem, deformable or 

semi-rigid connections can be designed in the suspended structural system to absorb energy. 

Damage of these connections is allowed and they can be replaced after a strong earthquake strike. 

This paper is to discuss the dynamic behavior of suspended building structures when semi-rigid 

connections are introduced. To this end, the structural modeling is presented first to account for 

the connections between suspended floors and their supporting structures. Then, the modal 

analysis method is used to investigate the dynamic characteristics, while the response spectrum 

method is utilized to predict the seismic response for structural design. Finally, case studies upon 

changing connection stiffness are performed to illustrate the seismic behavior of suspended 

building structures. 

This paper is focused on discussing the modal nature of suspended building structures. 

Conventionally, the method of spectrum analysis has been applied during the design phase, as it 

generally leads to more conservative results than those obtained from time-history analysis. 

However, due to the special aspect of suspended structures having huge suspended mass/weight, 

spectrum analysis may not capture the actual seismic response of this type of structures. Thus, it is 

worthwhile in the future to further investigate the seismic behavior of suspended structures using 

the method of time-history analysis, where actually recorded or artificially generated time histories 

can be imposed onto structures. The results from response spectrum analysis will be compared 

with those from time history analysis, where the representative ground motions are compatible to 

the corresponding design spectra. 
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2. Modeling of suspended building structures 
 

As in the conventional finite element analysis, the geometric and mechanical properties of a 

suspended building structure can be applied in the structural modeling. However, the geometrical 

stiffness due to suspended mass should be considered in the modeling. To simulate the effect of 

heavily suspended weight/mass on structural response, it is convenient to introduce a combined 

element model having lumped mass and connection stiffness for predicting and grasping the 

dynamic characteristics of suspended building structures. This section provides a way to develop 

the dynamic model for analyzing suspended building structures. The formulation of structural 

motion is derived to account for both connections and suspended mass. 

 
2.1 Semi-rigid connections for suspended buildings 
 
In order to model suspended building structures, this subsection presents a connection model to 

account for the effect of the suspended floor sections. As shown in Fig. 1(a), the suspended floor 

section of mass m is suspended on the transverse mega outrigger/girder with hanger of length L. 

When there is no connection between the suspended section and the mega supporting column/tube, 

a large sway of deflection d due to earthquake may cause pounding and localized damage. In 

practice, the suspended floor section should be connected somehow to the supporting structure to 

provide a horizontal access way for the occupants. Thus, the connection should be designed to take 

advantage of suspended-floor section in a controllable manner to degrade seismic vibration and 

avoid local pounding damage. To this end, the joint, which connects the vertical hanger to the 

transverse girder, should freely rotate to allow sway of the suspended section. How the stiffness k 

in Fig. 1(a) affects the swing of the suspended mass m may be found in the dynamic analysis of the 

suspended building systems (Liu and Lu 2013). Each horizontal joint, which connects a suspended 

floor to the supporting column/tube, should be designed as semi-rigid (Liu 2010) with stiffness k 

and damping coefficient c to transfer lateral loading and dissipate input energy. When the semi-

rigid connections are determined to meet the three-level performances described below, suspended 

buildings can be designed as a type of structural control systems against seismic loading 

effectively. 

The performance level corresponds to a normal operational state of the building that 

experiences minor seismic events. In this situation, the suspended building remains intact, and the 

connection between the suspended floor section and the supporting structure behaves elastically, 

i.e., the horizontal connection stiffness k = S in Fig. 1(b). The force-deformation relationship 

shown in the figure represents the combined effect of the connected component and the damper. 

This combined connection is called as connection for short hereafter. It is seen that up to the first 

performance level, there is no structural damage to any building components, and the building is 

suitable for immediate occupancy after the earthquake event.  

Second, the performance level requires protecting the occupants in the suspended building that 

experiences moderate earthquake events but local damage is intentionally allowed to dissipate 

earthquake energy. In this level, the horizontal semi-rigid connection in Fig. 1(a) has evolution of 

plasticity but there is no damage to the suspended floor, hanger, and supporting structure. The 

building can be re-occupied once the damaged semi-rigid connection, if any, is replaced to recover 

its function. Under moderate seismic loading, the horizontal connection experiences considerable 

stiffness degradation in dissipating input earthquake energy. Under transient seismic loading, the  
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(a) Suspended floor and connection (b) Force-deformation relation 

Fig. 1 Semi-rigid connection and response behavior 

 

 

suspended building is enforced cyclically so that the force-deformation relationship of the 

connection follows the curve in Fig. 1(b). This cyclic model is for axial semi-rigid connections, 

and is similar to the model for flexural semi-rigid connections described in the literature (Liu 

2010). It is seen that the connection is loaded in the positive direction following a monotonic 

nonlinear curve up to point A, and then unloading proceeds linearly to point B, at which the 

internal loading reduces to zero. This unloading may continue from point B following a nonlinear 

cure in the negative direction down to point C. From this point, linear reloading to point D occurs 

to indicate the completeness of the first loading cycle. Another new cycle will start from point D, 

and the cyclic loading is repeated until the end of the earthquake loading. Detailed information for 

determining the connection model and its parameters may be found in the previous research (Liu 

2010). This model may not be exact, but recent research shows that the localized stiffness 

degradation affects the local response significantly but not the global response of the structure. 

Therefore, the hysteretic model described in Fig. 1(b) is considered sufficient to model the 

stiffness degradation of connections in suspended buildings. 

Third, the performance level requires protecting the collapse of the suspended building that 

experiences major earthquake events, which are considered as a basis for design of suspended 

buildings. In this case, both stiffness degradation and strength deterioration occur as indicated in 

Fig. 1(b) from point E to point F with deflections dc and df, respectively. It is assumed that the 

horizontal connection loses its function completely, and the suspended floor section is structurally 

separated from the vertical supporting structure. From Fig. 1(a) without the horizontal connection, 

the suspended floor section can swing freely. Such swing of the suspended-floor section further 

dissipates the earthquake energy to protect the supporting structure from collapse.  

It is noted that when the connection is limited in the elastic range, the nonlinear connection 

behaviour can be ignored in the analysis. For further simplification, when the connection stiffness 

S in Fig. 1(b) is equal to zero, a configuration of suspended structures with free hung masses is 

achieved. Another extreme case is that when the connection stiffness S is infinitive, a 

configuration of suspended structures with rigid connection is attained. Past experience from 

performance of suspension bridges and suspended roofs indicates that the influence of geometric 
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nonlinearity on these suspended structures may be significant due to large displacement. For 

suspended building structures to be studied, in addition to the material and/or connection 

nonlinearity as shown in Fig. 1, the effect of geometric nonlinearity on structural response should 

be taken into account. To capture such a nonlinear effect, step-by-step incremental analysis has to 

be carried out for the developed analysis models for suspended building structures. This paper is 

intended to establish a model for both static and dynamic analyses of suspended building 

structures. The following will discuss how the change in connection stiffness affects the structural 

response in the three specific levels presented above and the evolution of the whole nonlinear 

process is not covered hereinafter. Tracing the whole structural response accounting for both 

material and geometric nonlinearities will be considered in the future research. 

 
2.2 Element analysis 
 
To consider the effect of semi-rigid connections as discussed in the previous subsection on 

structural response, a beam-column element with end connection stiffness applied for framed 

structures (Liu et al. 2008, 2010) is employed in this study. This model can simulate the effects of 

semi-rigid connections, element-end damage, element inelasticity, element shear deformation, and 

geometrical nonlinearity on structural response. For dynamic analysis, the model is modified 

through adding lumped masses at its two ends as shown in Fig. 2(a), where L = element length, E 

= material Young’s modulus, G = material shear modulus, I = cross-section moment of inertia, A 

= cross-section area, and As = equivalent shear area. Furthermore, terms rj, tj and nj (j = 1, 2) are 

the corresponding bending, shearing and axial stiffness degradation factors, and unity is used for 

elastic analysis. Using these parameters, an element stiffness matrix can be derived and detailed 

expressions can be found in the literature (Liu 2009).  

For a hanger with suspended floor mass, the model may be simplified form Fig. 2(a) to that in 

Fig. 2(b), where terms E, A, and L are respectively the Young’s modulus, cross-section area, and 

length of the hanger. The upper end of the hanger has a rotational connection of stiffness R, which 

can be approximated to zero to conservatively ignore the rotational stiffness (Liu and Lu 2013). At 

low end 2, it is assumed that no axial restraint is imposed on the hanger, and the floor gravity load 

P = msg is applied to account for the effect of gravitational force on stiffness. Meanwhile, the 

suspended floor mass ms is connected to the mega vertical element with axial stiffness kc and 

damping coefficient cc. Stiffness kc is similar to the rotational stiffness of semi-rigid connections. 

For this hanger model, only lateral stiffness is taken into account as geometrical stiffness. As 

discussed for a pinned hanger with suspended mass ms, the hanger stiffness matrix is given by  

1 1
[ ]

1 1
sk S

 
  

 
                                                                  (1) 

in which S represents the stiffness from the suspended gravity load and end rotational 

restraints/connections. It is shown that the effect of the upper end rotational restrains on the lateral 

stiffness of hunger is insignificant (Liu and Lu 2013). Thus, when the upper end in Fig. 2(b) is 

assumed as a pin connection to ignore the rotational restraint, the lateral stiffness S becomes P/L, 

which will be used in the example analyses of this paper. The damping effect in the suspended 

hanger system may be simulated using the Rayleigh damping model. When the damping factor of 

cs can be measured from testing, the damping matrix for the hanger can be directly expressed as 
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(a) Conventional element (b) Suspended element 

Fig. 2 Element modeling for suspended buildings 

 

 

1 1
[ ]

1 1
s sc c

 
  

 
                                                                 (2) 

Note that cs plays a role in damping the rotation of the hanger around the supporting point 1, to 

which a rotation damper may be attached to adjust the magnitude of cs. Similarly, for the 

connection between the suspended floor/mass and the vertical supporting structure with stiffness kc 

and damping coefficient cc, the element stiffness and damping matrices can be expressed as 

1 1 1 1
[ ] ;   [ ]

1 1 1 1
c c c ck k c c

    
    

    
                                          (3a, b) 

which are similar to those matrices of a truss element in tension or compression. A translational 

spring and a damper may be designed to adjust the magnitude of coefficients kc and cc, 

respectively. Meanwhile, the distributed mass of the suspended floor section is assumed to be 

lumped to its mass centre, and a concentrated mass element ms is added to node 2 in Fig. 2(b) for 

dynamic analysis. 

 

2.3 Equations of structural motion 
 
In the dynamic analysis of suspended structures, the aim is to compute the structural response, 

including displacements, accelerations, and internal forces (stresses) at certain positions of the 

structure as a function of time. Before conducting the dynamic analysis, a real structure needs to 

be mathematically idealised to some extent to obtain the element information as discussed in the 
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previous subsection. The continuous parameters of mass, damping and stiffness for the mega 

supporting element and suspended floor section are represented by element matrices. Integrating 

all the element mass matrices, element damping matrices, and element stiffness matrices by 

dynamic equilibrium, the equations of motion are obtained, which can be symbolically expressed 

as the following matrix equation 

0[ ]{ } [ ]{ } [ ]{ } [ ]{1}M u C u K u M y                                          (4) 

where [M], [C], and [K] are respectively the mass, damping, and stiffness matrices for the structure 

with suspended floor sections discussed above. Vector {u} represents the relative displacements of 

the structure to its base. Term {1} is a vector whose every element is unity, and y0 is the base 

motion due to earthquake. Note that Eq. (4) governs the motion just in one direction and it is often 

applied for symmetrical structures. After conducting the analysis in each direction, the combined 

response is obtained by the square root of sum of the squares (SRSS). However, when a building is 

not symmetric, the torsion effect should be taken into account, and Eq. (4) should be interpreted as 

a three-dimensional equation that accounts for the contributions from all three mutually 

perpendicular directions. In such a case, the three translational motions and, if required, the three 

rocking motions, should be enforced simultaneously to the base of superstructure.  

Since the suspended-floor sections are linked to the supporting structure of a suspended 

building using semi-rigid connections, two steps can be taken to form the matrices in Eq. (4). In 

the first step, the supporting structure is modeled following the method in conventional dynamic 

analysis. For the supporting structure, there are no special requirements when assembling the mass 

matrix [M] and stiffness matrix [K], but some care should be given to forming the damping matrix 

[C]. For civil structures, the damping sources come primarily from internal friction within the 

material and the Coulomb friction at connections between components of a structure, whereas the 

damping effect due to the structure exposed to air is generally negligible. Thus, the resulting 

damping forces are a function of the strain (or deflections) in the structure. For an elastic structure, 

its damping force is proportional in magnitude to the internal elastic force, and at the connections, 

the damping force is almost constant, depending on the normal compressive force between the 

moving pieces. The structural damping force can be modeled using the hysteretic damping model. 

However, the equivalent viscous damping model is commonly employed because of its ease in 

mathematical treatment. To simplify the dynamic analysis, the damping matrix [C]1 for the mega 

components (girder and core tube) of the supporting structure is assumed by using the Rayleigh 

damping model to linearly combine the corresponding mass and stiffness matrices of the 

supporting structure to get 

12111 ][][][ KaMaC                                                         (5) 

which maintains symmetry to facilitate the modal decomposition and transient analyses due to the 

symmetry of [M]1 and [K]1 for the supporting structure. In this model, the mass contribution is 

significant in the low frequency range, while the stiffness contribution is more significant in the 

high frequency range. The combination of Eq. (5) somehow averages the uneven variation with 

respect to frequency as discussed in determining the two coefficients a1 and a2, which relates to 

the results of the modal analysis.  

In the second step, the mass, stiffness, and the damping matrices in Eq. (4) are augmented to 

account for the suspended floors section by section. For an intuitive description, a shear-type  
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Fig. 3 Illustration of a simple dynamic model 

 

 

building structure with a suspended floor section shown in Fig. 3 is considered in this step. The 

core-tube supporting structure includes lumped masses m1 to mn from the bottom to the top of the 

core tube associated with storey stiffness k1 to kn. The typical suspended-floor section has a 

lumped mass ms suspended by hanger from the top mega girder. The suspended-floor mass is 

connected to the vertical supporting structure with stiffness kc and damping coefficient cc. Based 

on the mass, damping and stiffness matrices of the supporting structure formed from the first step, 

the augmentation of the equations of motion is described as follows. 

For the lumped mass model in Fig. 3, it is straightforward to augment the mass matrix by 

setting M(n+1),(n+1) = ms, and all other relevant non–diagonal elements to zero. For the stiffness 

matrix, Eqs. (1) and (3a) are used to augment the matrix [K]. At the top hanging point, the lateral 

stiffness from the first step is kt, and adding the stiffness ks from Eq. (1) yields the augmented 

stiffness. In a similar manner, at the bottom end, the connection stiffness from the first step is kb, 

and adding the stiffness kc from Eq. (3a) yields the augmented the corresponding stiffness element. 

Finally, the stiffness element becomes K(n+1),(n+1) = ks+ kc, and the augmented  stiffness matrix is  

[ ]

t s s

b c c

s c

k k k

K k k k

Sym k k

 
 

 
 
 
 

   
 
 

 
 
 

                                         (6) 

k1, c1 

m1 

cc kc 

ms 

L
 

kn, cn 

mn 

mt kt, ct 

mb 

kb, cb 

ks, cs 

Rigid link  
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given by in which the correlated non-diagonal elements -ks and -kc are added. This procedure is 

repeated until all suspended-floor sections are assembled into the stiffness matrix [K].  

In augmenting the damping matrix [C], the same procedure that formed Eq. (6) can be adopted 

and the location of element cs + cc from Eqs. (2) and (3b) corresponds the augmented degree of 

freedom (DOF). The connection damping cc of the suspended mass relates to only the bottom DOF 

that reflects the suspended floor being connected to the core tube. Thus, the combined damping 

value cb + cc is obtained, where cb comes from the first step relevant to the bottom-connection 

point. Meanwhile, the damping cs of the suspended hanger relates to only the top DOF that reflects 

the suspended floor section being hung from the mega outrigger. Therefore, the combined 

damping value ct + cs is integrated at the cross node of the mega outrigger and core tube, where ct 

comes from the first step for the core tube relevant to the top-hanging point. This procedure is 

repeated until all suspended floor sections are assembled into the damping matrix [C]. Note that 

applying this procedure assumes that the element damping matrices of Eqs. (2) and (3b) can be 

determined, which in turn assumes that the properties of the rotational and translational dampers 

can be measured for the applied dampers. It is also noted that the total damping matrix [C] formed 

by the previous two steps is symmetrical but may not have the same expression as the Rayleigh 

model in Eq. (5) for the supporting structure. When the damping coefficients in the second step are 

not available, the damping matrix may be estimated using the Rayleigh damping model as 

expressed in Eq. (5) once the total mass matrix [M] and stiffness matrix [K] are augmented. 

Because the damping matrix is symmetrical, the conventional method can be used in the modal 

decomposition. 

 

 

3. Modal properties of suspended structures 
 

Dynamic characteristics of suspended buildings can be interpreted using their modal properties. 

A mode of vibration is characterized by a modal frequency and its mode shape, and the modal 

properties are determined by solving a generalized mathematic eigen problem. A modal analysis is 

conducted to find the frequencies and the corresponding modes. These properties can be applied to 

assess the performance of building structures with pendulum floor sections. In addition, when the 

response spectrum method is utilized in the seismic analysis, the modal information is useful for 

selecting mode number and modes in the response spectrum analysis. 

 
3.1 Modal characteristics of a simple example 
 

In structural dynamics, the frequency and mode relate to the eigenvalue and eigenvector, which are 

concepts in the field of linear algebra. Eigenvalues and eigenvectors are the properties of a given 

matrix and all the eigenvectors span an eigenspace. In general, the eigen problem is defined in 

structural dynamics as the problem of free vibration without damping effect, causing the damping 

term and force term in Eq. (4) to vanish. Following this method, this subsection provides a 

discussion on the modal properties of a simple suspended system in Fig. 4, where the distributed 

mass of the supporting core tube is lumped as mass m1 to its top. The core tube has lateral stiffness 

k1 and damping coefficient c1. While for the suspended-floor section, the hanger has height L, 

lumped mass m2, and lateral stiffness k2. Following the procedure to integrate the stiffness and 

damping matrices, the first step is to form the mass matrix [m] = m1 and the stiffness matrix [K] = k1. 
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Fig. 4 An example model for optimal parametrical analysis 

 

 

It is ready to generate the mass and stiffness matrices and expressed as 

1

2

0
[ ]

0

m
M

m

 
  
 

;  
1 2 2

2 2

[ ]
k k k

K
k k

  
  

 
                                            (7a, b) 

in which the stiffness associated with the suspended floor section is k2, which is equal to m2g/L in 

an extreme case (Liu and Lu, 2013). For the given parameters, the following relationships hold 

 1

1 1 1

1

;       2 2s s s s s

k
c m m k

m
                                                  (8a, b) 

where s and s are the circular frequency and damping ratio for the supporting structure alone. 

For the portion hung on the supporting structure, the frequency and damping coefficients have the 

following relationships 

2

2

2

;       2h h h h

k
c m

m
                                                          (9a, b) 

where h and h are the circular frequency and damping ratio, respectively, for the hung-floor 

section alone. In order to investigate the effect of parameters on seismic response of the suspended 

structure, the following non-dimensional parameters are introduced 

2

1

;  ;  h h

s s s s

fm f

m f f

 
  

 
= = = = =                                         (10a, b, c) 

in which  is the ratio of suspended mass to the lumped mass of supporting structure;  is the ratio 

of suspended frequency to the supporting frequency; and  is the ratio of the earthquake excitation 

frequency f to the frequency fs of the supporting structure.  

In order to find the frequency response of the suspended system, substituting Eq. (7) into the 

frequency equation Eq. (8) yields the eigenvalue equation. Solving the equation can find the two 

eigenvalues 1 and 2, from which the corresponding two frequency ratios are given by 

{ }2 2 2 2 20.5 1 (1 ) [1 (1 ) ] 4     = + + + + -m                                      (11) 

k1 c1 

k2, c2  

m1 

m2 

L
t 

L
 

Rigid link 
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(a) Response of frequency 1 

 
(b) Response of frequency 2 

Fig. 5 Frequency response with variation of frequency and mass ratios 

 

 

which is related to the suspended mass ratio  and frequency ratio . To see the variation of the 

two frequency ratios, Eq. (11) is depicted in Fig. 5. It is seen that, when the mass ratio  is 

considerably small and   1, the first two frequency ratios become 1 =  and 2 = 1. This means 

that the first frequency f1 tends to the pendulum frequency fh and the second frequency f2 tends to 

the supporting structural frequency fs. In this special case, no interaction between the supporting 

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2


f 1
/f

s
0.1 0.5
1 1.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2



f
2
/f

s

0.1 0.5
1 1.5

425



 

 

 

 

 

 

Yuxin Liu and Zhitao Lu 

structure and the suspended mass occurs; i.e., the supporting structure and its suspended portion 

vibrate independently. With the increase of mass ratio  , the first frequency ratio 1 (= f1/ fs ) is 

not greater than unity and decreases significantly when the frequency ratio  is larger as shown in 

Fig. 5 (a). On the other hand, the second frequency ratio 2 (= f2/ fs) is not less than unity and 

increases significantly when  the frequency ratio  is larger as shown in Fig. 5 (b) with the increase 

of mass ratio . From Eq. (11) and Fig. 5, when the frequency ratio  is quite small (say 0.1), the 

first frequency f1 tends to the pendulum frequency fh and the second frequency f2 tends to the 

supporting structural frequency fs. They nearly do not relate to mass ratio  as shown in Fig. 5. 

Even though  reaches the value of 0.5, the two frequency ratios do not change significantly with 

the variation of mass ratio. When the frequency ratio  become larger (say 1), however, the first 

frequency ratio decreases but the second frequency ratio increases considerably. The first 

frequency ratio is sensitive to small value of , while the second frequency ratio is sensitive to 

large value of . These results indicate that increasing suspended mass ratio will decrease the 

frequency of suspended-floor section but increase the frequency of the supporting structure as the 

frequency of the supporting structure maintains constant. Adjusting the mass and frequency ratios 

can yield proper frequency distribution against dynamic loading. 

In connection to the frequency nature above, the mode shape properties of the suspended 

system in Fig. 4 are discussed as follows. Upon substituting the obtained frequency in Eq. (11) 

into the eigenvector Eq. (7), the ratio of the displacement of supporting structures to the 

displacement of the suspended-floor section is given by  

  222

2

1

2 4)1(1)1(1(1
5.0

1 



                                    (12) 

which describes two mode-displacement ratios, and their variations are depicted in Fig. 6 against 

the mass and frequency ratios. Corresponding to the first frequency, the displacement ratio of 

mode 1 from Eq. (12) is not less than unity with the increase of mass ratio ξ as shown in Fig. 6(a). 

This indicates that the supporting structure and the suspended-floor section move in the same 

direction. When the system has small suspended-mass ratio, the suspended mass has quite large 

displacement relative to the mass of the supporting structure. The suspended mass has a tendency 

to run away from the supporting structure. When the frequency ratio is small (say ξ = 0.1), the 

mode displacement ratio is considerably large, and compared to the suspended mass, the 

supporting structure remains nearly at rest. With the increase of frequency ratio ξ, such a relative 

displacement decreases. It is interesting to note from Fig. 6(a) that, for the conventional tuned 

mass damper (TMD) with suspended mass ratio up to 0.05 (Liu and Lu 2013), the difference of 

mode displacements may be remarkably large. For instance, this difference is over 100 when ξ = 

0.1; and the difference is over 20 when ξ = 0.5. Thus, in design of a pendulum TMD, a larger 

frequency ratio should be applied to avoid pounding due to the excessive relative displacement. 

On the other hand, in design of suspended building, the suspended mass ratio is generally greater 

than 0.5, and the relative displacement can be controlled by adjusting the swing stiffness. In order 

to make use of the swing to dissipate energy, the stiffness of the suspended-floor section should 
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not be so big to lead to large frequency ratio and in turn to cause too small relative displacement. 

Relevant to the second frequency, mode-displacement ratio 2 expressed in Eq. (12) with minus 

of the ± symbol is not greater than zero with the increase of mass ratio  and frequency ratio  as 

shown in Fig. 6(b). This indicates that the supporting structure and the suspended mass move in 

opposite direction. The suspended mass behaves in a tendency to pull the supporting structure 

back. When the frequency ratio is small (say  less than 0.5), the mode ratio has quite small 

absolute value and nearly has no change with the variation of mass ratio as shown in Fig. 6(b). 
  Particularly, for the conventional TMD with suspended mass ratio reached to 0.05 (Liu and Lu, 

2013), the suspended mass nearly has no displacement compared to the mass center of the 

supporting structure when  < 0.5. With the increase of frequency ratio  (say 1), the second 

 

 

 
(a) Response of mode shape 

 
(b) Response of mode shape 2 

Fig. 6 Mode shape factor with variation of frequency and mass ratios 
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mode-displacement ratio has large gradient and the suspended mass moves in the opposite 

direction with relative large displacement. For suspended building structure with mass ratio  > 

0.5, the variation of the second mode ratio is not quite significant with the increase of the 

frequency ratio. This small relative displacement may be useful to reduce the pounding effect in 

the suspended system.  

It is observed from the discussion above that suspended structures have different modal 

properties compared to the conventional bearing type of structures. The first frequency of the 

suspended system does not exceed the frequency of the supporting structure, while the second 

frequency is not less than the frequency of the supporting structure as shown in Fig. 6. In the first 

mode shape the two masses move in the same direction, and the displacement of the suspended 

mass is not less than the mass displacement of the supporting structure as shown in Fig. 6(a). 

However, in the second mode shape the two masses move in opposite direction as indicated in Fig. 

6(b). A suspended portion sacrifices its stiffness to make the supporting structure gain stiffness so 

that the supporting structure may be protected against dynamic loading in general. The frequency 

and suspended mass ratios should be adjusted to achieve optimum structural response as expected. 

 
 

4. Response spectrum analysis and effective mass 
 

The modal properties discussed in the previous section alone may not be enough to be applied 

in assessing the response behaviour of suspended buildings. This section provides a discussion on 

the structural response of suspended buildings subjected to earthquake ground motions using the 

method of response spectrum analysis. This method is simple but conservative and has been 

extensively applied in seismic design since not all the modes are required for estimate of structural 

response. However, the effectiveness and accuracy of the modal superposition method need be 

reassessed when it is applied in analysis of suspended building structures because of different 

modal properties compared to conventional building structures. 

 
4.1. Mode superposition method 
 
On the basis of the modal analysis, the obtained modal properties can be applied in the dynamic 

analysis using the coordinate transformation {u} = []{v}, where [] is the mode matrix and {v} is 

the generalized coordinate vector expanded in the modal space. The outstanding advantage of this 

method is that not all the modes are selected in the mode superposition analysis. In an extreme 

case for a conventional high-rise building, the first mode may be sufficient for predicting dynamic 

response. Without loss of generality, suppose Nm modes are used in the linear combination of 

eigenvectors to obtain the following expression 

1

{ } { } [ ]{ }
mN

i i

i

u v v 


                                                            (13) 

Substituting Eq. (13) into the equations of motion in Eq. (4) and then multiplying the transpose 

of [] on both sides yields  

0[ ]{ } [ ]{ } [ ]{ } [ ] [ ]{1}TM v C v K v M y                                                (14) 

where the [M] and [K] are symmetric matrices of generalized mass and stiffness in the modal 
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space with rank of Nm. When the Rayleigh damping model in Eq. (5) is applied, the generalized 

damping matrix [C] in Eq. (14) is also symmetric. When the normality conditions in Eq. (9) are 

applied, the matrices [M], [C] and [K] become diagonal so that Eq. (14) is decomposed into Nm 

independent equations 

2

02i i i i i i iv v v y         (i = 1,2,…, Nm)                                             (15) 

in which i is the ith modal damping ratio and i is the ith circular frequency of the system. In Eq. 

(15), term i is the ith modal participation factor having expression 

{ } [ ]{1} { } [ ]{1}

{ } [ ]{ }

T T

i i

i T

ii i

M M

MM

 


 
                                                       (16) 

where Mi is the ith generalized mass.  

It is seen from the previous derivation that using the modal superposition method can 

decompose the n-DOF system into n or Nm-single DOF systems, and each single DOF system is 

subjected to ground motion y0. The responses vi (i = 1, 2,…, Nm) of the Nm SDOF systems 

described in Eq. (15) can be solved separately and then the structural response is found using Eq. 

(13). Depending on the way specifying the ground earthquake input, there are two methods to find 

each DOF solution defined in Eq. (15). When the ground motion is defined by a time history, the 

direct-integration method is used to find the response. While the ground motion is defined by 

spectrum against frequency or period, the response spectrum method is applied to find the 

maximum response. Since the design earthquake is normally stipulated in design codes as 

acceleration response spectra versus period/frequency, the response spectrum method is commonly 

applied in structural design. Of course, once the time history compatible with the design response 

spectrum is determined, more accurate response can be predicted using the method of transient 

analysis. The following discussion focuses on the response spectrum method based on the design 

ground response spectrum. 

After obtaining the maximum response Ri (e.g., the relative displacement, relative velocity and 

absolute acceleration, moment, shear or axial force) for mode i, the corresponding maximum 

structural response R is determined by combining all the modes of interest. In the modal 

superposition, the maximum structural response R can be obtained by use of the following general 

double sum combination (Wilson et al. 1981, NRC 2006) 

1 1

m m

i ij j

i j

R R R
 

                                                                (17) 

where parameter ij is defined as a cross-modal coefficient that accounts for the correlation 

between modal responses. When the complete quadratic combination (CQC) method with constant 

modal damping is employed, the combination factor ij is determined by (Wilson et al. 1981) 

1.5

2 2 2 2 2 2

8 ( )

(1 ) 4 (1 ) 4( )

i j i j

ij

i j i j

    


       




    
                                        (18) 

where the frequency ratio  = fj/fi= Ti/Tj,  i and j are the ith and jth modal damping ratios used to 

evaluate the modal correlation. When parameter  approaches to unity, the modal correlation is 

relevant to the modal damping values alone, and only when i = j, complete correlation occurs 

with factor ii = 1. Thus, when two frequencies are close, the factor of Eq. (18) should be used in 
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the modal combination of Eq. (17).  When  is small or quite large, the modal correlation is 

insignificant when the modal damping ratios are small; i.e., ij  0 when i  j. Therefore, the 

following well-known expression of the Square Root of Sum of Squares (SRSS) method may be 

used as recommended in the design of nuclear power plants (CSA 2010) 

2

1

mN

i

i

R R


                                                              (19) 

According to the US NRC RG 1.92 (2006), the CQC method in Eq. (19) can be used provided 

that the following conditions are met: when   2% and 0.9  <1; or  = 5% and 0.8   < 1; or  

= 10% and 0.66  <1. When it is justified that there is no closely spaced frequencies to make sure 

 is quite small or large, the SRSS method can lead to sufficient accuracy of the combined 

response. Note also that when a three dimensional building structure is analysed respectively in the 

three mutual orthogonal directions, the total response can be obtained by combining the responses 

from all the perpendicular directions using the SRSS method.  

In seismic design of building structures, the earthquake input to the superstructure is 

characterized by the specified design ground response spectra. When the ground spectral 

acceleration Sa is specified for a SDOF system with mass m, the earthquake impact force imposed 

on the mass is given by 

a

a

S
F mS mg W

g
                                                            (20) 

where W is the corresponding weight and  = Sa/g is a coefficient accounting for earthquake 

impact. Some design codes define the response spectrum of  as a function of the structural period 

T for seismic design. For instance, the Chinese code stipulates the following expression for seismic 

design of buildings (GB-500011 2010) 

2
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2max
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0.2 ( 5 )           5 < 6
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
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

 

  



 


   

                                        (21) 

where max is relevant to the design intensity and earthquake frequency specified for a site as given 

in Table 1. Term Tg is the site characteristic period given in Table 2 for different soil sites 

associated with different design groups. Parameters , 1 and 2 are relevant to the damping ratio  

of the structure to be designed and the specific values are given in Table 3. Thus, the acceleration 

response spectrum is determined for seismic design and a typical shape of the spectrum is shown 

in Fig. 7 based on Eq. (21). 

To apply Eqs. (20) and (21) in analyzing a multiple degrees of freedom (MDOF), the mode 

shape {}i and period Ti of interest should be found first, and then the earthquake force is 

determined. For instance, if the ith mode is taken into account and the inertial force applied at the 

jth mass is given by 

ij i i ij jF W                                                                    (22) 
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Fig. 7 Coefficient of ground response spectrum for seismic design 

 

 

where i is the earthquake coefficient (g) for the ith mode and is determined from the max such as 

in Table 1, the characteristic period Tg in Table 2, and the coefficients in Table 3. The mode 

participation factor i is calculated using Eq. (16). In Eq. (22), term Wj is the weight corresponding 

to the jth mass. 

For a suspended-floor mass, its seismic force determined using Eq. (22) is transmitted to the 

mega supporting girder and column according to the horizontal connection stiffness and the lateral 

stiffness of the suspended-floor section. Suppose the seismic force for a typical suspended-floor 

section in Fig. 3 is Fis for the ith mode from Eq. (22). The seismic force at the top hung point is Fit, 

and then the total seismic force, Fit, imposed on the mass of the mega girder in mode i is given by 

s

it it is

s c

k
F F F

k k
 


                                                             (23) 

At the same time, if the seismic force on the bottom mass of the mega vertical column is Fib, 

and then the total seismic force, Fib, imposed on the mass of the mega-column mass in mode i is 

given by  

c

ib ib is

s c

k
F F F

k k
 


                                                            (24) 

It is seen from Eqs. (23) and (24) that when the connection stiffness between the suspended-

floor section and the vertical supporting column is zero, then the seismic force on the suspended 

mass is transmitted to the hung point when pounding does not occur. Once the seismic forces 

applied on the core tube or the mega vertical column are found, the inter-storey shear force in the 

jth storey of mode i is estimated by 

ij iq

q j

V F


                                                                    (25) 

where the summation is conducted from storey j to the top storey. Based on the storey shear force 

of the vertical supporting structure in Eq. (25), the storey-drift response in mode i can be 

calculated by 

/ij ij jV k                                                                    (26) 
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Table 1 Maximum horizontal ground acceleration max (g) 

Design intensity 6 7 8 9 

Frequent earthquake 0.04 0.08 (0.12) 0.16 (0.24) 0.32 

Seldom earthquake 0.28 0.50 (0.72) 0.90 (1.20) 1.40 

Note: values in brackets are applied to regions having design basis accelerations 0.15g and 0.3g 

 
Table 2 Site characteristic period Tg (sec) 

Design group Site class 

I0 I1 II III IV 

1 0.20 0.25 0.35 0.45 0.65 

2 0.25 0.30 0.40 0.55 0.75 

3 0.30 0.35 0.45 0.65 0.90 

 
Table 3 Earthquake spectrum coefficients versus damping ratios 

  1 2 

0.01 0.97 0.025 1.52 

0.02 0.95 0.024 1.32 

0.05 0.90 0.020 1.00 

0.10 0.85 0.014 0.78 

0.20 0.80 0.001 0.63 

0.30 0.78 0.000 0.56 

 

 

Meanwhile, the lateral displacement of the suspended-floor section is given by 

is

is

s c

F

k k
 


                                                                   (27) 

 

When kc = 0, the displacement from Eq. (27) represents that of the suspended mass relative to 

the mega hung girder; while kc = , this displacement reduces to that of the vertical column at the 

horizontal connection point. Note that a general computation can be achieved by incorporating into 

the static analysis method. To this end, substituting the mode inertial force from Eq. (22) of mode i 

into the structural stiffness equations to find the displacement vector, and then from element 

stiffness equation to find the internal forces for the corresponding mode. 

The bending moments for each storey can be figured out once the storey shear forces are found 

from Eq. (25). When the modal response for each mode has been determined, the resultant 

response can be obtained by using Eq. (17) or (19). Using the CQC, especially the SRSS, 

combination method will overestimate the structural response because at a location the maximum 

responses for the modes under consideration may not occur at the same time. Thus, the response 

spectrum method based on CQC combination is conservative for design. If more accurate response 

is expected, modal time-history method can be applied in the analysis. 

 
4.2 Cumulative modal mass 
 

In some design codes, the cumulative modal mass is used as a criterion to assess the accuracy in 

the response spectrum analysis. In practice, not all the modes are required to consider in the modal 
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superposition since the modes with extreme high frequencies have little contribution to the 

structural response. The number of significant modes may be based the design code to cover the 

frequency ranging from 0 up to 33 Hz (CSA 2010), or to 50 Hz to account for the high frequency 

effect in seismic qualification by testing (IEEE-344 2005). Alternatively, the number of significant 

modes may be checked in such a way that the inclusion of any additional modes in the analysis 

does not increase the response by more than 10% (ASCE 4-98 2000). However, this may be 

difficult for engineers to apply because selecting the response (stress, strain, displacement, force, 

moment, or all of them) at which location is seems to be random. Even if this can be done, several 

rounds of reanalyses for complex structures are time consuming and may affect the construction 

schedule. Therefore, using the cumulative modal mass not less than 90% total mass to assess the 

accuracy may be more practical. 

To derive the effective mass for suspended building structures, it is assumed that a static 

analysis is performed to apply the maximum inertial force due to ground earthquake motion as 

static loading. In this case, the stiffness equations can be expressed as  

0max[ ]{ } { } [ ]{1}K u F M y                                                    (28) 

which is a special situation of Eq. (4) by ignoring the inertial and damping forces on its left-hand 

side and replacing ground acceleration time history by its maximum value. It is assumed that the 

modal properties are known from the modal analysis, and the unity vector {1} in Eq. (28) is 

expanded in the modal space as 

1

{1} { }
mN

i i

i

c 


                                                               (29) 

where Nm is the number of modes to be considered, and when all modes are taken into account, 

vector {1} is exactly expanded in the modal space. Multiplying both sides of Eq. (29) by {}i
T
[M] 

yields the following expression  

{ } [ ]{1} { } [ ]{ }T T

i i i iM c M                                                          (30) 

where the modal normality condition in Eq. (9a) is applied. Compared with Eq. (16), it is found 

that the unknown combination factor ci is equal to the modal participation factor; i.e., 

i ic                                                                        (31) 

Substituting Eq. (31) into Eq. (29), and then into Eq. (28) yields the external force {F} that is 

expanded in the modal space and the expression is given by 

0max 0max

1 1

{ } [ ] { } [ ]{ }
m mN N

i i i i

i i

F m y m y   
 

                                          (32) 

On the other hand, from equilibrium condition, the total base shear V of the superstructure is the 

summation of all the applied inertial forces above grade. Thus, from Eq. (28), the base shear V is 

expressed as 

                2

0max 0max 0max 0max

1 1 1

{ } {1} { } [ ]{1}
m m mN N N

T T

i i i i ei e

i i i

V F M y y M y M M y  
  

                     (33) 
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where Mei is the effective mass contributed by mode i to the base shear, and Me is the cumulative 

modal mass. For the specified ground acceleration,
0maxy , the base shear V in Eq. (33) is determined 

by the cumulative modal mass alone. More intuitively, such a nature can be characterized by 

0max

0max

ei ei i

i

t t t

M y M V

M y M V
                                                              (34) 

which reflects the ratio of the effective mass to the total mass Mt. From the expression above, the 

ratio i can also be interpreted as the ratio of the ith modal shear Vi to the total base shear Vt 

0max

1 1

m mN N

ei

t t i a t

i it

M
V y M V V

M
 

 

                                                   (35) 

 

 

 
Fig. 8 A structural model with three suspended floor sections 
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where a is the cumulative modal mass ratio. It is seen from Eqs. (33) to (35) that when all modes 

are considered (Nm = n), the mass ratio a = 1, which means that all the mass of the superstructure 

is contributed to produce seismic force. To select sufficient number of modes in the response 

spectrum analysis, at least 90% (a  0.9) of the actual mass is taken as a criterion to ensure the 

modal number for meeting the design requirement (ASCE 2006). From Eq. (35), the cumulative 

modal mass means how much of the total base shear is used in the seismic analysis. 

It should be mentioned out that the ninety percent rule (of base shear) can ensure the accuracy 

for the response of conventional bearing type of building structures, but it may not guarantee the 

accuracy in some special situations. For instance, the missing mass effect should be taken into 

account for the dynamic analysis of nuclear piping systems (Neelwame 1993). As it will be shown 

in the following example analysis, the cumulative modal mass may not be a good indicator for the 

response accuracy of suspended building structures. 

 

5. Example case studies 
 

To illustrate the dynamic behaviour and seismic response of suspended structures, this section 

presents the analysis results for the model in Fig. 8, which is based on the core-tube type of 

suspended buildings (Liu 1999). In the first case analysis, the dynamic properties are discussed to 

show the variation of frequencies and mode shapes of the suspended structure. Then the nature of 

cumulative modal mass for the suspended structure is assessed to see the usefulness of the 

cumulative modal mass in the modal superposition method. Finally, seismic response spectrum 

analysis is performed to evaluate the contribution of modes, and comparison of seismic response is 

carried out to see the effectiveness of applying suspended-floor configuration to resist earthquake 

motion. 

 
5.1. Modal characteristics 
 
This example case study focuses on the modal analysis of the building structure in Fig. 7 to 

investigate the dynamic nature of a more general suspended building compared to that in Section 

3. Assume that the height l for all storeys is 3.5 m, and the length L for all hangers is 3.5 m as well. 

A lumped mass m of 200 ton from each floor/roof and the adjacent storeys is concentrated at each 

elevation with transfer girder. At the elevation of the suspended floor level, a suspended mass ms 

of 100 ton (m/2) is hung on the mega transfer girder, and another half of the mass mc of 100 ton is 

concentrated at the core-tube supporting structure. For simplicity, the inter-storey stiffness k of 

42000 kN/m is constant for all storeys. The damping coefficients c and cc are not considered in the 

modal analysis. The influence of connection stiffness kc between the suspended mass and the core 

tube on the modal properties is considered in two conditions: kc = 40000 kN/m and kc = 0. Then the 

frequency variation is assessed by changing the values of the connection stiffness and suspended 

mass ratios. 

The stiffness matrix [K] can be integrated following the procedure as explained for Eq. (6), and a 

diagonal mass matrix [M] is ready to form based on the mass distribution shown in Fig. 8. To find 

the frequencies and modes, the FORTRAN code, developed based on the subspace iteration 

method (Liu 1999) and verified in predicting abnormal modes associated with zero/infinite 

frequencies in the large force method (Liu and Lu 2010), is applied in the analysis. Using the  
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Fig. 9 Mode shapes with large connection stiffness (kc = 400kN/m) 
 

 

 
Fig. 10 Mode shapes without connection stiffness (kc = 0) 
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Fig. 10 Continued 

 

Table 4 Influence of connection stiffness on frequencies (Hz) 

kc(kN/m) Ratio % f1 f2 f3 f4 f5 f6 f7 f8 f9 

  0.556 1.637 2.618 3.448 4.082 4.484    
40000 95.24 0.555 1.587 2.339 2.775 3.241 3.254 5.985 6.173 6.385 

4000 9.52 0.535 0.980 1.015 1.200 1.912 2.841 4.803 5.213 5.579 

400 0.95 0.377 0.412 0.414 0.688 1.835 2.821 4.707 5.142 5.520 

40 0.1 0.273 0.284 0.284 0.653 1.829 2.819 4.698 5.138 5.513 

4 0.01 0.258 0.267 0.268 0.650 1.829 2.819 4.697 5.135 5.513 

0 0 0.256 0.265 0.266 0.650 1.828 2.819 4.697 5.135 5.513 

 

Table 5 Influence of suspended mass on frequencies (Hz) 

ms (ton) Ratio % f1 f2 f3 f4 f5 f6 f7 f8 f9 

40 20 0.304 0.310 0.310 0.594 1.709 2.709 3.788 4.357 4.756 

60 30 0.288 0.296 0.296 0.613 1.748 2.749 4.018 4.549 4.946 

80 40 0.279 0.288 0.289 0.632 1.787 2.785 4.312 4.799 5.189 

100 50 0.273 0.284 0.284 0.653 1.829 2.819 4.698 5.138 5.513 

120 60 0.268 0.280 0.281 0.675 1.872 2.850 5.228 5.613 5.970 

140 70 0.264 0.278 0.279 0.699 1.915 2.879 6.012 6.338 6.666 

160 80 0.261 0.276 0.277 0.725 1.960 2.905 7.337 7.598 7.879 

 

 

computer code for the first condition kc = 40000 kN/m, the 9 modes of the structural system are 

illustrated in Fig. 9, where the small solid circles represent the masses lumped on the core tube and 

the small solid squares are the suspended-floor masses. It is seen for the suspended structure with 

large connection stiffness that the suspended masses move nearly together with the core-tube 
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masses at the corresponding elevations. With the increase of modes up to mode 6, the suspended 

masses separate from the corresponding connected masses and have larger and larger 

displacements. The separation generates strain energy in the connections and the large 

displacements of the suspended masses create kinetic energy to dissipate the earthquake input 

energy. For the last three modes in Fig. 9, the suspended masses and the masses at supports on the 

core tube nearly remain their original static state, but the corresponding masses on the core tube at 

the suspended-floor elevations have considerable deflections. Earthquake motion may not have the 

high energy to excite these high modes, as shown in the analysis of effective modal masses and the 

response spectrum analysis in the following two subsections. 

In another extreme case with kc = 0, the 9 modes of the structural system are depicted in Fig. 10. It 

is observed for the freely suspended floors that for the first three modes, the core-tube masses are 

nearly remained at rest, and the suspended floors have considerably large displacements. This 

means that earthquake motion with low frequency contents can easily excite the vibration modes 

of the freely suspended floors. In mode 4, the mode shape of the core tube is similar to the mode of 

a conventional building, and the suspended floors have small deflections and a tendency to pull the 

core tube back to its original static state. It is interesting to note that from mode 5 to 9 the 

suspended masses are nearly at rest, but the corresponding core-tube masses at the suspended-mass 

elevations have relative large deflections. This indicates that the suspended floors play a role in 

restoring the core tube to its original rest state.  

The frequencies corresponding to the previous two case with kc = 40000 kN/m and 0 are 

provided in Table 4. In addition, to consider the influence of connection stiffness on frequency, the  

calculated frequencies when kc = 4, 40, 4000, and  kN/m are shown in the table. The second 

column shows the ratios of the connection stiffness to the core-tube storey stiffness (42000 kN/m) 

in percentile. In the extreme case when the connection stiffness approaches infinity, the 

conventional building construction is achieved and the six frequencies are given in Table 4. This 

table indicates that when the effect of suspended-floor construction is taken into account, the 

frequencies of the building change substantially. With the connection stiffness decreases from 

infinity, the first frequency f1 gradually reduces to 0.256 Hz from 0.556 Hz. When the connection 

stiffness is close to the core-tube storey stiffness (95.24% of the core-tube stiffness) associated 

with the nine modes shown in Fig. 9, the first frequency f1 changes only 0.18% but the higher 

frequencies have significant changes. For example, the 4
th
 frequency f4 of 2.775 Hz reduces 19.5% 

from 3.448 Hz. As the connection stiffness decreases to 400 kN/m (0.95% of the core-tube 

stiffness), the first frequency reduces 32%, while the 4
th
 frequency f4 of 0.688 Hz reduces 80% 

from 3.448 Hz. When the connection stiffness decreases to zero corresponding to the mode shapes 

shown in Fig. 10, the first frequency 0.256 Hz reduces 54% from 0.555 Hz and the 4
th
 frequency f4 

of 0.65 reduces 81% from 2.755 Hz.  

It is also noted that it may not be appropriate to compare the frequencies sequentially between a 

conventional structure and a suspended structure because the pendulum modes and bearing modes 

shown in Fig. 10 are distinct in the suspended structure. For instance, the first frequencies 0.556 Hz 

of the bearing-type structure cannot be compared with 0.256 Hz of the freely suspended structure. 

In fact, the modes 4 to 9 for the freely suspended structure are comparable to the six modes of the 

conventional structure. Thus, comparing f4 to f9 in the last row with f1 to f6 in the second row of 

Table 4, the corresponding frequency in the suspended structure increases; e.g., f4 of 0.65 Hz 

increases 17% from the f1 of 0.556 Hz in the second row. Because the total mass/weight is the 

same for the two systems, the increase of frequency may be equivalent to the stiffness increase of 
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Seismic behavior of suspended building structures with semi-rigid connections 

the core-tube supporting structure due to the application of suspended construction. This may be 

one of the factors that suspended structures have good dynamic nature against transient loading. 

It is observed from Table 4 that with small connection stiffness (say less than 1% of the core-

tube storey stiffness), the first three frequencies decrease slightly with the reduction of the 

connection stiffness, and the rest 6 frequencies have insignificant change. For instance, for the first 

mode, frequency f1 of 0.273 Hz with kc = 40 kN/m is decreased 6.2% to 0.256 Hz with kc = 0; after 

the third frequency, nearly no frequency change occurs. Thus, applying some connection stiffness 

between the suspended-floor sections and the core tube will not substantially change the 

suspended pendulum nature for structure control. Meanwhile, the small stiffness connection may 

be ignored in the dynamic analysis for simplicity. 

To investigate the effect of suspended mass ratio on frequency, assume that mass ms + mc = 200 

ton maintains constant and the horizontal connection stiffness kc = 40 kN/m to keep the pendulum 

nature of the suspended floors and to avoid pounding. The suspended mass ms is selected as values 

of 40 ton to 160 ton with increment of 20 ton. The computation results for the nine frequencies in 

each specified mass ratio are given in Table 5. It is seen that the frequency variation is divided into 

two groups. The first group includes the first three frequencies that correspond to the pendulum 

modes, while the second group includes the last six frequencies that correspond to the modes of 

the core-tube supporting structure. In the first group, with the increase of suspended mass ratio, the 

value of each frequency decreases. For instance, when the mass ratio is 20%, the first frequency f1 

is 0.304 Hz, which is 14% greater than 0.261 Hz when the mass ratio is 80%. In the second group, 

with the increase of suspended mass ratio, the value of each frequency increases. For instance, 

when the mass ratio is 20%, the fourth frequency f4 is 0.594 Hz, which is 22% less than 0.725 Hz 

with 80% mass ratio. With the increase of mode number in the second group, the difference of the 

frequencies becomes more significant associated with the increase of suspended mass ratio. When 

the mass ratio is 20% the highest frequency f9 is 4.756 Hz, which is 40% less than 7.879 Hz when 

the mass ratio is 80% of 200 ton. These results implicitly indicate that with the increase of 

suspended mass, the suspended-floor sections lose stiffness and the supporting structure gains 

stiffness. 

 
5.2 Cumulative modal mass 
 

To guarantee the accuracy in a response spectrum analysis, the effective mass participated in 

the mode superstition should not be less than ninety percent (ASCE 2006). As discussed in Section 

4, the effective mass represents the portion of the total base shear that is taken in the seismic 

analysis. Since the base shear is commonly calculated at first and then distributed it to the 

superstructure for determining the structural displacements, internal forces and moments for 

structural design, the effective mass is naturally applied to estimate the number of modes that 

ensure accuracy of the base shear being applied. This example is to illustrate the application of the 

effective mass criterion to conventional and suspended building structures. The two cases 

corresponding to the modes in Figs. 9 and 10 are considered in the following. 

In Case 1 with connection stiffness kc=40000 kN/m, substituting each mode vector and mass 

matrix into Eq. (16) yields the modal participation factors of i, which are given in Table 6. Based 

on Eqs. (33) and (34), the modal effective mass Mei and mass ratio i for mode i are found and 

given in the table. Finally, from Eq. (35) the cumulative modal mass ratio a with the variation of  
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Table 6 Comparison of effective masses and mass ratios 

Mode (i) 1 2 3 4 5 6 7 8 9 

C
as

e 
1

 i 1.249 0.409 0.427 0.037 -0.003 -0.004 0.132 -0.102 0.052 

Mei 1045 109 39 0 0 0 4 2 1 

i 87.09 9.06 3.25 0.03 0.00 0.00 0.33 0.19 0.05 

a 87.09 96.16 99.41 99.43 99.43 99.43 99.76 99.95 100 

C
as

e 
2

 i 1.606 0.364 -0.137 1.025 0.383 -0.181 0.227 -0.142 0.064 

Mei 503 24 3 566 72 14 11 5 1 

i 41.91 2.03 0.29 47.21 6.00 1.19 0.91 0.38 0.09 

a 41.91 43.95 44.23 91.44 97.44 98.62 99.54 99.92 100 

 

 

modes is also provided in Table 6. It is observed from the table that since the connection stiffness 

is quite large and the structure is close to the conventional bearing type of structures, the first two 

modes alone have cumulative mass ratio 96.16%. This ratio is greater than the code required 90% 

of the total base shear force, and thus the rest modes can be neglected in the mode superposition 

analysis. 

On the other hand, for Case 2 with connection stiffness kc= 0, following the same computation 

procedure the values of i, Mei i, and a are found and shown in Table 6. It is seen that up to the 

fourth mode the cumulative mass ratio reaches 91.44%, which is greater than 90% of the total 

mass/base shear. However, using the 90% rule of mass participation for this suspended building 

structure may be inappropriate because some other significant modes are ignored. The modal mass 

ratio of mode 5 is 6%, which is considerably greater than 2.03% contribution from mode 2, and 

even the mass ratio 0.38% of mode 8 is greater than 0.29% contribution of mode 3. Thus, for this 

specific suspended building structure, the consecutively accumulated mass ratio may be 

inappropriate for judging the accuracy, and modes 1, 2, 4, 5 and 6 may be taken into account in the 

response spectrum analysis. These results show that the conventional cumulative mass ratio may 

not be a good indicator to show the accuracy in the response spectrum analysis of suspended 

building structures. In order to predict structural response much more accurate, the cumulative 

mass should be considered from the pendulum modes and the bearing modes. Alternatively, the 

transient time-history analysis with direct integration may be conducted to overcome such a 

difficulty in judging the accuracy. In the following subsection, the response spectrum analysis is 

performed to illustrate how each mode contributes to the whole structural response . 

 
5.3 Results by response spectrum analysis 
 

To show the mode contribution to the structural response, the suspended building system in 

Fig. 7 is applied again in the following analysis. For earthquake input motion, suppose the building 

is located at seismic design intensity 8, and the frequent earthquake event is taken into account. 

From Table 1 the maximum horizontal ground earthquake impact factor max = 0.16. In addition, 

the building is constructed on the soil site of class II associated with design group 2 so that the site 

characteristic period Tg = 0.4 sec from Table 2. As well, it is assumed that the structural damping 

ratio is 5%, which leads to   = 0.9, 1 = 0.02, and 2 = 1 based on Table 3. 
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Seismic behavior of suspended building structures with semi-rigid connections 

5.3.1 Comparison of SRSS and CQC methods 
Assume the each suspended-floor mass ms = 100 ton and mc = 100 ton such that  = 0.5 as 

applied in the modal analysis in Subsection 5.1. When the connection stiffness kc is assumed 
40000 kN/m, the natural periods for the nine modes are 1.802, 0.631, 0.428, 0.362, 0.31, 0.308, 
0.167, 0.162, 0.157 sec come from Table 4. Substituting the previous site parameters and these 
nine natural periods into Eq. (21) yields the corresponding nine   values 0.037, 0.082, 0.116,  
0.135, 0.155, 0.156, 0.16, 0.16, 0.16. After the response for each mode is found, the SRSS method 
and CQC method with constant modal damping 5% are respectively applied to combine the modal 
responses. The maximum responses of displacement, acceleration for each node/mass, and shear 
force for each storey are provided in Table 7, where the relative difference  is determined by 
(CQC/SRSS-1)100. It is observed for this case with large connection stiffness that, using SRSS 
and CQC methods can get almost the same displacement response. The maximum difference of 
displacements is only 0.65%, and the maximum difference is 1.56% for the shear forces. Thus, 
from design point of view, using SRSS can yield accurate prediction of response. However, if 
acceleration response is expected for design of the mounted equipment (IEEE-344 2004), the CQC 
method should be applied since the SRSS method underestimates the acceleration by 17.08% at 
the first floor level but overestimates 9.34% at the fifth floor level. 

For the purpose of comparison, suppose the connection stiffness kc is changed into zero and 
other parameters in the previous case are remained unchanged. Based on the last row of Table 4, 
the corresponding natural periods for the nine modes are 3.902, 3.769, 3.761, 1.539, 0.547, 0.355, 
0.213, 0.195, 0.181 sec.  Similar calculation using Eq. (21) yields the nine earthquake impact  
factors 0.03, 0.03, 0.03, 0.037, 0.093, 0.138, 0.16, 0.16, and 0.16. Once the response for each 
mode is found, the SRSS and CQC method with constant modal damping 5% are respectively used 
to combine the modal responses. The maximum responses of displacement, acceleration for each 
node/mass, and shear force for each storey are provided in Table 8. It is observed for this case with 
freely suspended floors that, using SRSS method can get displacement response of the supporting 
structure with maximum difference 1.78% relative to the CQC method, but for the suspended-floor 
masses the displacement difference is as high as 30.9% due to the closely spaced 
frequencies/periods. A 4.07% of maximum difference of the shear force occurs at the top of the 
core tube. Applying the SRSS and CQC methods will yield significant difference of acceleration 
responses for both the suspended floors and their supporting structure, and the maximum 
difference is 30.47%. Therefore, the CQC rather than the SRSS method should be applied in the 
mode superposition analysis of suspended structures with small connection stiffness. 

 
 

Table 7 Structural response with large connection stiffness (kc = 40000 kN/m) 

Node/Storey 1 2 3 4 5 6 7 8 9 

D
is

p
l.

 

(m
m

) 

SRSS 9.24 17.56 24.84 30.64 34.84 37.05 9.95 25.77 35.96 

CQC 9.27 17.59 24.85 30.64 34.83 37.03 10.01 25.78 35.95 

 (%) -0.38 -0.17 -0.04 0.00 0.03 0.05 -0.65 -0.04 0.03 

A
cc

el
. 

(g
) 

SRSS 0.042 0.039 0.047 0.042 0.050 0.056 0.059 0.056 0.050 

CQC 0.050 0.040 0.043 0.041 0.046 0.055 0.062 0.055 0.049 

 (%) -17.08 -2.07 8.63 0.90 9.34 1.57 -3.80 2.09 1.49 

S
h

ea
r 

(k
N

) 

SRSS 388 356.6 315.2 262.4 200.5 110.9 - - - 

CQC 389.5 356.7 315.1 261.8 199.1 109.2 - - - 

 (%) -0.39 -0.03 0.03 0.23 0.70 1.56 - - - 
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5.3.2 Assessment of mode contribution 
For a conventional bearing-type building structure, three to six modes are generally taken in the 

response spectrum analysis to satisfy the 90% of cumulative modal mass. This may be different for 

suspended structures as discussed for the results in Table 8. To assess further the mode 

contribution to structural response, the displacement and acceleration at each node for each mode 

are analyzed in the following. Since a single mode consideration is considered without mode 

interaction, the following ratio is used as an indicator 

2

9
2

1

ik

ik

jk

j

R
r

R





, i=1,..,9; k=1,..,9                                                      (39) 

 
 
Table 8 Structural response without connection stiffness (kc = 0) 

Node/Storey 1 2 3 4 5 6 7 8 9 

D
is

p
l.

 

(m
m

) 

SRSS 6.7 13.1 18.3 22.9 25.9 28.1 83.7 134.0 167.2 

CQC 6.9 13.3 18.4 23.0 25.9 28.1 120.0 134.5 142.7 

 (%) -1.78 -1.65 -0.87 -0.52 -0.23 0.04 -30.29 -0.37 17.17 

A
cc

el
. 

(g
) 

SRSS 0.049 0.046 0.052 0.045 0.053 0.056 0.023 0.036 0.045 

CQC 0.059 0.047 0.049 0.045 0.046 0.055 0.033 0.036 0.038 

 (%) -16.46 -3.01 6.82 1.27 14.34 1.80 -30.47 -0.06 17.96 

S
h

ea
r 

(k
N

) 

SRSS 283.0 269.4 227.7 207.3 148.5 115.1 - - - 

CQC 288.1 274.3 226.0 205.3 145.1 110.6 - - - 

 (%) -1.77 -1.79 0.75 0.97 2.34 4.07 - - - 

 
Table 9 Contribution of each mode to structural response (kc = 40 kN/m) 

Node # 1 2 3 4 5 6 7 8 9 

M
o

d
e 

#
 t

o
 d

is
p

la
ce

m
en

t 

1 19.2 19.9 20.3 20.9 20.8 21.2 75.5 96.8 96.4 

2 0.1 0.1 0.0 0.0 0.0 0.0 22.0 1.8 3.4 

3 0.0 0.0 0.0 0.0 0.0 0.0 2.4 1.3 0.2 

4 74.2 75.7 78.3 78.8 79.0 78.0 0.1 0.1 0.1 

5 5.6 4.2 1.3 0.2 0.1 0.7 0.0 0.0 0.0 

6 0.5 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

M
o

d
e 

#
 t

o
 a

cc
el

er
at

io
n

 

1 0.0 0.1 0.2 0.5 0.5 0.5 70.0 92.1 91.8 

2 0.0 0.0 0.0 0.0 0.0 0.0 23.9 2.0 3.7 

3 0.0 0.0 0.0 0.0 0.0 0.0 2.6 1.4 0.2 

4 4.0 17.9 28.2 58.7 56.2 56.5 3.4 4.4 4.3 

5 18.6 61.2 29.6 6.7 5.4 32.9 0.1 0.0 0.0 

6 8.8 16.1 1.0 30.6 2.1 7.7 0.0 0.0 0.0 

7 54.0 0.3 34.9 1.2 14.8 1.3 0.0 0.0 0.0 

8 13.7 3.6 2.1 1.3 19.0 1.1 0.0 0.0 0.0 

9 0.9 0.8 3.9 1.1 2.0 0.1 0.0 0.0 0.0 
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where Rik is the ith mode response at node k. The computation is conducted for the case where ms 
=100 ton and kc = 40 kN/m, and the results are given in Table 9. This table shows that for 
displacement response, the first mode contribution to the deflections of the three suspended floors 
are 75.5%, 96.8%, and 96.8% but to the supporting structure only from 19.2% to 21.2%. The 
second and third modes mainly contribute to the deflection of the three suspended floors and have 
nearly no contribution to the supporting structure. For mode 4, the contribution to the displacement 
of the supporting structure from 74.2% to 78.0%, but only 0.1% to the suspended floors. Mode 5 
still has some contribution to the supporting structure, but the contribution from the rest modes is  
negligibly small. This example shows that the first pendulum mode and the first bearing mode 
have strong interaction. Therefore, if 10% error is tolerable, the first two pendulum modes and the 
first two bearing modes may be selected in the response spectrum analysis for this specific case. 
For a general suspended building structure under a single-direction earthquake excitation, at least 
the first three modes corresponding to the suspended-floor sections and at least the first six modes 
corresponding to the supporting structure should be considered in the mode superposition method. 
Further research is needed to establish a reasonable criterion for the response spectrum analysis. 

For mode contribution to acceleration, Table 9 indicates that the three pendulum modes play a 
main role for the suspended floors, and nearly no contribution to the supporting structure. The 
fourth mode contributes to the acceleration of the supporting structure from 4% to 58.7%, but only 
3.4~4.4% to the suspended floors. These results show that for acceleration contribution, the 
interaction of the pendulum and bearing modes are insignificant. Unlike the mode contribution to 
displacement, the higher modes significantly have contribution to accelerations. For instance, 
mode 7 has 54% contribution to the acceleration of node 1, and mode 9 still has 3.9% contribution 
to the acceleration of node 3. Therefore, if node acceleration is required from the mode 
superposition analysis, the 90% rule of cumulative modal mass is not able to apply and more 
modes are needed for the mode combination. 

 
5.3.3 Evaluate of seismic response reduction 
The main advantage of suspended building construction is to create flexibility in arrangement 

of architectural space, but recently a research interest is given to design of suspended buildings as 

seismic control systems or seismic isolation system (Liu and Lu 2013; Mezzi and Parducci 2006). 

To see the seismic response reduction due to applying the suspended construction, this subsection 

provides a case study on the response of nodal displacements, nodal accelerations, and storey shear 

forces based on the response spectrum analysis. For the model in Fig. 8 with suspend mass ms = 

100 ton ( = 0.5), the response comparison is considered with varying the connection stiffness kc 

from zero to infinity. 

After performing a mode superposition analysis for each connection case, the nodal 

displacement response is listed in Table 10. These results show that the nodal displacements with 

kc = 40000 kN/m are close to those of the conventional bearing-type structure (kc=). Thus, the 

displacement response with kc = 40000 kN/m is taken as a reference to compute the difference  

relative to kc = 2000, 400, 40, and 0 kN/m. It can be seen from Table 10 that with the decrease of 

connection stiffness, the nodal displacements of the supporting structure reduce but the 

displacements of the suspended floors considerably increase. When  kc = 2000 kN/m, the nodal 

deflections of the supporting structure reduce from 6.8% to 7.3% (1), but those of the three 

suspended floors increase from 64.8% to 116.8%. Particularly, for the case of freely suspended 

floors, the maximum top displacement is 28.1 mm, which reduces 24.2% from 37.3 mm; however, 

the maximum displacement of low suspended floor is 120 mm, which increases 1098.8% from 
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10.01 mm as indicated by the relative difference 4. It is interesting to note that the nodal 

displacement reduction of the supporting structure with kc = 2000 kN/m are in the same level of 

those with kc = 0, but the sway deflections of the suspended floors are significantly reduced 

compared to the freely suspended case. Therefore, applying relative stronger connections/devices 

can still maintain the pendulum nature to reduce the displacements of the supporting structure. 

This also leads to the limitation of the excessive sway of the suspended-floor sections and avoids 

the pounding issue. Note that the occupants lived in the suspended-floor sections will feel large 

floor movement and may cause uncomfortable, but compared to injury even death due to strong 

earthquakes, such feeling of large displacement is tolerable. 

Corresponding to the displacement response, the acceleration response is given in Table 11, 

where the response with kc = 40000 kN/s is still taken as a reference to compare the difference 

relative to the selected other connection stiffness. It is seen from the table that with the decrease of 

connection stiffness, the nodal accelerations in low elevations of the supporting structure increase 

but the accelerations are considerably reduced for the suspended floors. For instance, when  kc = 

2000 kN/m, the acceleration at node 1 of the supporting structure is 0.0581 g, which is 15.3% 

higher than 0.0504 g; while the acceleration at node 7 of the suspended floor is 0.0345 g, which is 

44.7% lower than 0.0617 g when kc = 40000 kN/m. Like the response of displacement, the change 

of accelerations is not so sensitive for small connection stiffness. Although the accelerations in the 

low elevations of the supporting structure are amplified due to the suspended floors, the 

accelerations in the low elevations of the suspended floors are reduced significantly. Thus, the 

combined effect makes the reduction of displacements of the supporting structure. It is interesting 

to note that the behaviour of acceleration reduction for the suspended floors has been observed in 

the experiments of bearing-mounted equipment and suspended-floor-mounted equipment 

(Marsantyo et al. 2000). This confirms the correctness of the method in this paper for the analysis 

of suspended building structures. 

 

 
 

 
Fig. 11 Storey shear forces with various connection stiffness (kc) 

0

5

10

15

20

25

0 100 200 300 400

Shear force (kN)

H
e
ig

h
t 

(m
)

Infinity

40000

2000

400

40

0

444



 

 

 

 

 

 

Seismic behavior of suspended building structures with semi-rigid connections 

Table 10 Comparison of nodal displacements (mm) 

Node # 1 2 3 4 5 6 7 8 9 

kc= 9.27 17.66 24.90 30.73 34.91 37.14 - - - 

40000 kN/m 9.27 17.59 24.85 30.64 34.83 37.03 10.01 25.78 35.95 

2000 kN/m 8.58 16.37 23.16 28.52 32.40 34.34 21.70 43.28 59.24 

400 kN/m 6.77 12.90 17.90 22.14 24.97 26.85 57.86 81.00 97.07 

40 kN/m 6.83 13.22 18.29 22.80 25.68 27.79 108.30 124.00 133.30 

0 kN/m 6.9 13.3 18.4 23.0 25.9 28.1 120.0 134.5 142.7 

1 (%) -7.5 -6.9 -6.8 -6.9 -7.0 -7.3 116.8 67.9 64.8 

2 (%) -27.0 -26.7 -28.0 -27.7 -28.3 -27.5 478.0 214.2 170.0 

3 (%) -26.4 -24.8 -26.4 -25.6 -26.3 -25.0 981.9 381.0 270.8 

4 (%) -26.0 -24.3 -25.8 -24.9 -25.6 -24.2 1098.8 421.7 296.9 

 
Table 11 Comparison of nodal accelerations (g) 

Node # 1 2 3 4 5 6 7 8 9 

kc= 0.0486 0.0478 0.0485 0.0493 0.0500 0.0614 - - - 

40000 kN/m 0.0504 0.0395 0.0432 0.0412 0.0458 0.0555 0.0617 0.0551 0.0491 

2000 kN/m 0.0581 0.0454 0.0459 0.0418 0.0418 0.0506 0.0345 0.0482 0.0667 

400 kN/m 0.0588 0.0463 0.0466 0.0416 0.0417 0.0515 0.0365 0.0485 0.0579 

40 kN/m 0.0592 0.0473 0.0485 0.0445 0.0455 0.0550 0.0337 0.0379 0.0405 

0 kN/m 0.0592 0.0475 0.0487 0.0449 0.0459 0.0554 0.0329 0.0362 0.0383 

1 (%) 15.3 14.9 6.2 1.3 -8.8 -8.8 -44.1 -12.5 35.9 

2 (%) 16.8 17.2 7.8 0.9 -9.0 -7.2 -40.9 -12.0 17.9 

3 (%) 17.5 19.8 12.1 8.0 -0.7 -0.8 -45.3 -31.2 -17.4 

4 (%) 17.5 20.1 12.7 8.9 0.3 -0.1 -46.7 -34.3 -22.1 

 

Table 12 Comparison of storey shear forces (%) 

Storey # 1 2 3 4 5 6 

40000 kN/m 0.00 -0.31 -0.28 -0.87 -0.99 -9.30 

2000 kN/m -7.50 -7.29 -7.09 -10.72 -11.29 -13.79 

400 kN/m -27.01 -26.97 -29.91 -27.04 -29.44 -14.78 

40 kN/m -26.39 -24.12 -29.02 -23.17 -28.34 -9.22 

0 kN/m -26.03 -23.34 -28.48 -22.26 -27.85 -8.14 

 
 

For linear analysis of elastic structures, the internal forces are proportional to the relative nodal 

displacements so that for this example the storey shear forces have almost the same nature of the 

nodal displacements. Because the flexible connections between the suspended floors and their 

supporting structure, the internal forces in the suspended portions are generally small. Thus, the 

shear forces of the supporting structure shown in Fig. 11 are compared in the following. It is 

observed that the two cases of large and infinitive connection stiffness have almost the same 

distribution of shear forces. The shear force reduction is more significant in the low elevations  

than the upper elevations. With quite large connection stiffness (say, kc = 2000 kN/s), the storey 

shear forces are reduced to some extent. When the connection stiffness is not greater than 400 
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kN/m, the difference of reduction is not so great. Taking the shear response with infinite 

connection stiffness of kc as the reference, the corresponding relative differences of shear forces 

are summarized in Table 12 to show numerically the efficiency of shear reduction. It can be seen 

that with the decrease of connection stiffness, the shear forces below storey 6 of the supporting 

structure decrease significantly. For instance, when kc = 400 kN/m, the force in storey 1 is 284.3 

kN, which is 27.01% lower than 389.5 kN when kc = ; while the force in storey 6 is  102.6 kN, 

which is only 14.78% lower than 120.4 kN. In general, with flexible connection, the storey shear 

forces of this suspended building structure are reduced in comparison with the conventional 

bearing type structure, and the maximum reduction is around 30%. Therefore, designing buildings 

with suspended floors can generate earthquake control systems to reduce seismic response of the 

supporting structures although the suspended-floor sections may have large sway. 

 
 
6. Summary and conclusions 

 

Presented above include the development of dynamic model and analysis results for suspended 

building structures. The dynamic equations are established based on the pendulum concept 

presented in the previous study (Liu and Lu 2013). In light of the dynamic model, both modal and 

response spectrum analyses are carried out to investigate the dynamic behaviour of suspended 

building systems. The cumulative modal mass is discussed on the application of the response 

spectrum method to the seismic design of suspended structures. Based on this study, the following 

conclusions can be drawn regarding the structural nature and dynamic performance of suspended 

building structures. 

When the pendulum nature and semi-rigid connections are considered in the building structure, 

the resulting structural system becomes a passive control system. Three steps are taken to establish 

the dynamic model for the seismic analysis. First, the mega supporting structure, including the 

vertical tubes and transverse girders, is modeled as a conventional structure, whose mass and 

stiffness matrices are assembled using the direct stiffness method, from which a damping matrix is 

formed using the Rayleigh model. Second, each suspended floor section is modeled as a pendulum 

system, where the lateral stiffness due to suspended weight is taken into account. Third, each 

connection between the supporting structure and the suspended floors is modeled as a semi-rigid 

connection with material damping. In the dynamic analysis, the mass, damping, and stiffness 

matrices obtained in step 1 for the supporting structure are augmented by adding the element 

matrices of each suspended-floor section from step 2 and the corresponding connection from step 

3. 

Results of modal analysis show that the modes of a suspended building structure are distinctly 

divided into two groups. In the first group, each mode is referred to as a pendulum mode 

corresponding to the suspended-floor sections; while each mode in group two is called a bearing 

mode related to the supporting structure. Upon adjusting the suspended mass ratio and connection 

or tie stiffness, the modal properties change considerably. This leads to a possibility to design 

suspended building structures as effective control systems against seismic loading. 

Based on the results of response spectrum analysis, care should be given to the selection of the 

number of modes from the two distinct pendulum and bearing groups. For conventional bearing-

type building structures, sequential modes starting from the first mode are commonly selected in 

the mode superposition analysis. However, for a suspended building structure, the modes should 
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be selected from the first several pendulum and bearing modes for the analysis. The CQC rather 

than the SRSS method should be applied to combine the mode contributions of suspended building 

structures. When acceleration response is expected, more modes should be selected to ensure the 

accuracy of predicted results. Seismic response spectrum analysis reveals that designing buildings 

with suspended floors can reduce the displacements and storey shear forces of the supporting 

structures compared to the conventional bearing type of structures. Although the displacements of 

the suspended floors are increased with the decrease of connection stiffness, the large 

uncomfortable sway is tolerable for occupants compared to injury or death. In general, suspended 

buildings can be designed as effective structural systems to mitigate seismic response and protect 

occupants from strong earthquake motions.  

Due to the distinct pendulum and bearing modes, the method of response spectrum analysis 

may not completely capture the vibrational behaviour of suspended building structures. 

Meanwhile, the maximum responses from the selected modes generally do not occur at the same 

time. Note that complex eigenvalue analysis is of interest in the future to investigate the damping 

effect on the suspended structures. The method of transient time-history analysis will be performed 

to validate the analytical results from the spectrum analysis. Further research is needed to assess 

the established model of suspended building structures from the viewpoint of structural control.  

It should be pointed out that the above conclusions are drawn based on enforcing horizontal 

earthquake motions to the structures alone. Because the first several modes in horizontal direction 

might dominate the horizontal seismic response, the contribution of vertical modes to the 

horizontal response may not be significant. Thus, accounting for the interaction of horizontal and 

vertical ground motions may not considerably change the horizontal response and in turn the 

conclusions from this study. However, further research is needed to study the structural response 

to take such an interaction into account. 
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