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Abstract.  Although the family methods with unconditional stability and numerical dissipation have been 
developed for structural dynamics they all are implicit methods and thus an iterative procedure is generally 
involved for each time step. In this work, a new family method is proposed. It involves no nonlinear 
iterations in addition to unconditional stability and favorable numerical dissipation, which can be 
continuously controlled. In particular, it can have a zero damping ratio. The most important improvement of 
this family method is that it involves no nonlinear iterations for each time step and thus it can save many 
computationally efforts when compared to the currently available dissipative implicit integration methods. 
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1. Introduction 
 

In general, the vibration problems governed by the equations of motion can be categorized into 
two types. One is inertial problems and the other is wave propagation problems. The class of 
inertial problems is also known as structural dynamics problems, to indicate that the response is 
dominated by low frequency modes only. The wave propagation problems are the shock response 
from impact and explosions and the problems where wave effects are important, to indicate that 
both low and high frequency modes contribute to the response. It is recognized that the inertial 
problems are best solved by implicit algorithms (Newmark 1959; Bathe and Wilson 1973; Krieg 
1973; Dobbs 1974; Belytschko and Schoeberle 1975; Zienkiewicz 1977; Belytschko and Hughes 
1983; Hughes 1987), while explicit algorithms (Newmark 1959) are more appropriate for wave 
propagation problems. This is because that an implicit algorithm can have unconditional stability, 
and thus a larger time step can be used since the high frequency modes are unimportant for inertial 
problems. On the other hand, the major advantage of explicit algorithms is the explicitness of each 
time step and thus the computation cost of a single time step is much cheaper than for an implicit 
method since it involves no nonlinear iterations. Hence, if high frequency responses are important, 
then the time steps required to accurately integrate these high frequency modes will satisfy the 
upper stability limit automatically.  
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Some structure-dependent integration methods (Chang 2002, 2007, 2009, 2010) have been 
proposed to integrate the major advantages of the implicit and explicit algorithms together, i.e., the 
unconditional stability of implicit algorithms and no nonlinear iterations of explicit algorithms. As 
a result, they are promising for solving inertial problems. However, these methods have no 
numerical dissipation although favorable numerical dissipation can be used to suppress any 
spurious growth of high frequency modes. Among the currently available integration methods, 
some family methods were developed to have favorable numerical dissipation, such as Wilson  
method (Bathe and Wilson, 1973), HHT  method (Hilber et al. 1977), WBZ  method 
(Wood et al. 1981), generalized   method (Chung and Hulbert 1993) and the methods 
developed by Zhou and Tamma (2004, 2006). All these dissipative integration methods are 
implicit algorithms and thus an iterative procedure is generally needed. Therefore, it seems 
valuable if numerical dissipation can be further introduced into the previously developed structure-
dependent integration methods since they already have unconditional stability and involve no 
nonlinear iterations. For this purpose, a new family of structure-dependent integration methods 
with desired numerical dissipation was proposed and is presented herein, where both numerical 
properties and computational efficiency are explored.   
 
 

2. Proposed family method 

 

Consider the equation of motion for a single degree of freedom system 

 fkuucum                                                      (1) 

where m , c , k  and f  are the mass, viscous damping coefficient, stiffness and external force, 

respectively; and u , u  and u  are the displacement, velocity and acceleration, respectively. A 

family method is proposed for the step-by-step solution of Eq. (1) and it can be written as 
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where 
i

d , 
i

v , 
i

a  and 
i

f  are the nodal displacement, velocity, acceleration and external force at 
the i th  time step respectively, t is a step size and 

i
k  is the stiffness at the end of the i th  

time step. The coefficients 
0

  to 
3

  are found to be 
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where   is a viscous damping ratio;  0 0
t    and mk /

00
  is the natural frequency of 

the system determined from the initial stiffness of 
0

k . In addition, p  is the parameter to govern 

the numerical properties and D  is defined as  
3

2

0 0

3 2
1

1 4 1

p p
D

p p


 
     

  
                                        (4) 

The development details of this method are similar to those of the previously published 
algorithms (Chang 2009, 2010) and thus will not be elaborated herein.  

For computationally efficiency, it is important to express 
0

  and 
2

0
  in terms of the initial 

structural properties and step size for a structure-dependent integration method (Chang 2009, 
2010). Thus, the relations of 

0 0
2c m  and    

22

0 0
t k m    are found from the 

fundamental theory of structural dynamics. After substituting these relations into Eqs. (3) and (4), 
they become 
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 (5) 

These coefficients remain invariant for a whole integration procedure since they are determined 
from the initial structural properties of 

0
c  and 

0
k  if a fixed time step is also employed.  

It is important to note that the two difference equations of the proposed family method (PFM) 
are structure dependent since their coefficients are functions of the initial structural properties m  
and 

0
k . Hence, this method is entirely different from the methods developed by Zhou and Tamma 

(2004, 2006) although theirs methods can cover almost all the second order methods. It is found 
that all the coefficients of the difference equations for the Zhou and Tamma’s methods are 
constant values. In addition, they are implicit methods. It is manifested from the second line of Eq. 
(2) that the displacement 

1i
d


 can be explicitly determined from the previous two step data and 

thus it is explicit. This is exactly the same as that for the Newmark explicit method (NEM), where 
the equation of motion for the ( 1)i th   time step is not involved in determining the 

displacement 
1i

d


. As a result, they involve no nonlinear iterations for a nonlinear systems. 
 
 
3. Recursive matrix form 
 

For free vibration, the proposed family algorithm can be succinctly expressed in a recursive 

matrix form (Bathe and Wilson 1973; Hilber et al. 1977; Hughes 1987) of  

1i i
X AX                                                            (6) 
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where     T1

2

111   iiii at,vt,dX  is defined, and A  is an amplification matrix. Hence, the 

characteristic equation of A  can be obtained from 0 IA   and is found to be 

0
32

2

1

3  AAA                                                   (7) 

where  is an eigenvalue of the matrix A  and the coefficients ,  and 
3

A  are found to be 

 

 

 

3

2

21

3 2

2

22

3 2

2

3

2 1 1 2 4
2

8 1 1

2 12 1 1 2
1

4 1 1

1 1 2 1

8 1 1

p p
A

D D p p

pp
A

D D p p

p p
A

D p p





   
      

    

   
      

    

     
      

      

                            (8) 

where B  is further defined as  

3
1

1

p
B

p



  


                                                    (9) 

for brevity. It is worth noting that for a linear elastic system 
0

   is taken in the corresponding 

equations.  

 
 
4. Convergence 
 

The convergence of a computational method is implied by the consistency and the stability 

based on the Lax equivalence theorem (Lax and Richmyer 1956). The consistency is in terms of 

the qualitative measure such as the order of accuracy determined from the local truncation error. In 

general, an algorithm is said to be convergent if it is both consistent and stable. 

 

4.1 Consistency and local truncation error 
 

A local truncation error is defined as the error committed in each time step by replacing the 

differential equation with its corresponding difference equation (Belytschko and Hughes 1983; 

Bathe 1986; Hughes 1987). The approximating difference equation for PFM can be obtained from 

Eq. (6) after eliminating velocities and accelerations and is found to be 

1 1 2 1 1 2
0

i i i i
d Ad A d Ad

  
                                            (10) 

Consequently, after replacing Eq. (1) by Eq. (10), the local truncation error for PFM is: 

 1A 2A
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 
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In addition, if )(tu  is assumed to be continuously differentiable up to any required order, the 

terms of  u t t   u t t  and  2u t t   can be expanded into finite Taylor series at t . As a 

result, after substituting 
1

A  
2

A  and 
3

A  into the resultant of Eq. (11), the local truncation error for 

PFM is found to be  
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 (12) 

for a linear elastic system. This equation reveals that PFM has a minimum order of accuracy 1 and 

thus its consistency is verified for any values of p  and  . In addition, an order of accuracy 2 can 

be generally achieved for either 1p   or 0  . 

 
4.1 Stability 

 
Stability analysis of PFM is very complicated since it has three non-zero eigenvalues due to 

0
3
A , as shown in Eq. (8). Alternatively, stability conditions for the cases of 0  and 

  are cautiously examined and are applied to find out the restrictions of the parameters p  

and   to have unconditional stability. As a result, in the limiting case of 0 , Eq. (7) reduces 

to  

 
2

1 0                                                       (13) 

It is apparent that 
1,2

1   and 
3

0  ; and these eigenvalues are independent of the 

parameters p  and  . On the other hand, in the limit  , it is found to be  
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            (14) 

for any viscous damping ratio. The roots of this equation are plotted in Fig. 1 as functions of p . It 

is apparent that PFM is stable in the limit   if 1 / 3 1p   is satisfied since in this range 

the spectral radius is always less than or equal to 1. This figure shows that the decrease of p  

below 1/2 will increase the spectral radius. Thus, it is implied that the range of 1 / 2 1p   is of 

interest.  

After considering the limiting cases of 0  and  , the stability properties of PFM 

with 1 / 2 1p   for a general value of   are further evaluated by the Routh-Hurwitz criterion  
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Fig. 1 Eigenvalues of amplification matrix as   tends to infinity 

 

 

which gives necessary and sufficient conditions for the roots of polynomial to have negative real 

parts and following the procedure given by Lambert (1973). Hence, a necessary and sufficient 

condition for the roots of Eq. (7) to lie within or on the circle 1   is the satisfaction of the 

following inequalities: 
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1 2 3 1 2 3

1 2 3 1 2 3

2 3 1 3

1 0                    3 3 0
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1 0

A A A A A A
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                      (15) 

After substituting Eq. (8) into this equation, it is found that all the five inequalities will be met 

if 0   holds. This proves stability for PFM with the condition of 0  . This fact of stability 

property in conjunction with the previous proof of consistency implies convergence for PFM. 

 
 

5. Numerical properties for PFM 

 

After the proof of the convergence of PFM, it is of great interest to further investigate its 

numerical properties for a linear elastic system. Since the evaluation techniques for an integration 

method can be easily found in the related references (Zienkiewicz 1977; Belytschko and Hughes 

1983; Hughes 1987) and thus will not be elaborated here again. 

 
5.1 Spectral radius 
 

The variation of spectral radius with /t T  is shown in Fig. 2 for 1p  , 0.75, 0.50 and 1/3. 

The spectral radius is always equal to 1 for 1p   and thus it is indicated that zero damping can be 

achieved for PFM. For each curve, the spectral radius is almost equal to 1 for a small value of 

/t T . Subsequently, it decreases gradually and finally tends to a certain value, which is smaller  
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Fig. 2 Variation of spectral radius with /t T  for SPFM 

 

 
 

Fig. 3 Variation of relative period error with /t T  for different p  values 

 
 

than 1 for large /t T  for 0.75p   and 0.50. It is also found this value generally decreases with 

the decrease of p  until 0.50p  . This implies that PFM with 0.50p   can provide the largest 

numerical dissipation for high frequency modes. It is clear that 1 / 3p   cannot have the favorable 

dissipative property since the spectral radius approaches 1 for a large value of /t T . 

 
5.2 Relative period error 
 
Similarly, the variation of the relative period error with /t T  for PFM for various cases is 

shown in Fig. 3 while that for the numerical damping ratio is plotted in Fig. 4. In addition, those 
for the constant average acceleration method (AAM) are also plotted in the figures  
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Fig. 4 Variation of numerical damping ratio with /t T  for different p  values 

 
 

 

Fig. 5 Comparisons of overshoot responses 

 
 
correspondingly for comparisons. Apparently, the relative period error increases with the decrease 

of p  for a given value of /t T . In general, the relative period error is very small for a small 

value of /t T , say / 0.05t T  , as 1 / 2 1p  . Hence, its corresponding time step will lead 

to insignificant period distortion during the step-by-step integration. It is interesting to find that the 

curve for the case of 1p   is almost coincided with that of AAM in Fig. 3. This implies that PFM 

with 1p   will have exactly the same period distortion property as that of AAM. 

 
5.3 Numerical damping 
 
It is manifested from Fig. 4 that the continuous control of numerical damping is evident. In 

addition, the desired numerical damping properties are also achieved since there is a zero tangent 

at the origin and subsequently a controlled turn upward for the curves with 0.75p   and 0.50. 

Hence, the higher modes can be suppressed or eliminated by numerical dissipation and at the same 

time the lower modes are almost unaffected. It is apparent that the case of 1p   leads to no 

numerical dissipation and thus it has the least period distortion as shown in Fig. 3. Figs. 3 and 4 

166



 

 

 

 

 

 

Numerical dissipation for explicit, unconditionally stable time integration methods 

reveal that the increase of numerical dissipation for PFM will sacrifice its period distortion as it is 

found for a general dissipative integration method (Belytschko and Hughes 1983). 

 
5.4 Overshooting 
 
To evaluate the tendency of an integration method to overshoot the exact solutions (Goudreau 

and Taylor 1972; Hilber and Hughes 1978) one can compute the free vibration response of a single 

degree of freedom system for the current time step based on the previous step data. The behavior 

as   gives an indication of the behavior of the high frequency modes. Using Eq. (6), the 

following equations can be obtained for the limiting condition of  . 
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           (16) 

It is manifested from the first line of this equation that there is no overshoot in displacement for 

PFM while it has a tendency to overshoot linearly in   in the velocity equation due to the initial 

displacement term except for 1p  . 

To confirm the overshoot behavior of PFM, the discrete displacement and velocity responses 

are obtained from PFM with 1p  and . The free vibration to the initial conditions 10 d  and 

00 v  is considered. A time step of 10t T   is used. Numerical solutions are shown in Fig. 5. 

In addition, the results obtained from AAM are also plotted in the figure for comparison. The 

velocity term is normalized by the initial natural frequency of the system in order to have the same 

unit as displacement. Fig. 5 shows that the curves are overlapped together for AAM and PFM with 

1p  and exhibit no overshoot both in displacement and velocity. On the other hand, there is 

almost no overshooting in displacement for PFM with 5.0p  while a significant overshoot in 

velocity is found. These numerical results are consistent with analytical results. 

 
 

6. Implementation details 
 

It is of great interest to apply PFM to perform some dynamic analyses to confirm its favorable 

numerical properties. Consequently, the implementation details of PFM for a multiple degree of 

freedom system are presented next. The general formulation for PFM can be written as 
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where M , 
0

C  and K  are the mass, viscous damping and stiffness matrices; 
i

d , 
i

v , 
i

a  and 
i

f  

are nodal vectors of displacement, velocity, acceleration and external force, respectively; and the 

coefficient matrices of 
0

B  to 
3

B  are found to be 
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 (18) 

where 0K  is introduced to represent the initial stiffness matrix and the stiffness matrix K  in the 

first line of Eq. (17) is generally different from the initial tangent stiffness 0K  for a nonlinear 

system. 

 It is important to note that the coefficients matrices 
0

B  to 
3

B  must be determined by using the 

initial structural properties of M , 
0

C  and 0K  as well as the step size before performing the time 

integration. The second line of Eq. (17) reveals that PFM is a two-step method. Hence, it seems 

that a different starting procedure is needed. However, the term 
0 1i

B d  in the second line of Eq. 

(17) will disappear if 1p   is adopted. This implies that the starting procedure can be simply 

achieved by using 1p   to complete the computation of the first time step. Subsequently, any 

appropriate p  value can be chosen to conduct the whole step-by-step integration procedure. The 

computation details for the ( 1)i th   time step is described next after computing the i th  time 

step. At first, the displacement vector 
1i

d  can be directly calculated by using the second line of Eq. 

(17) without any nonlinear iterations since the coefficients matrices 
0

B  to 
3

B  are already know. 

In general, its computing procedure can be alternatively transformed into solving the following 

equation:  
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    (19) 

168



 

 

 

 

 

 

Numerical dissipation for explicit, unconditionally stable time integration methods 

In general, Eq. (19) consists of a set of equations and must be solved to obtain the next step 

displacement vector. This equation is often solved by a direction elimination method, which is 

usually made up of a triangulation and a substitution. It should be mentioned that the triangulation 

is required to be conducted only once since it is invariant for a complete step-by-step integration 

procedure. It is recognized that a triangulation will consume much more computational efforts than 

a substitution in a direct elimination method. Since the triangulation is needed to be performed 

only once in the solution of a nonlinear system for a complete step-by-step integration procedure, 

thus PFM will involve commensurate computational efforts per time step when compared to an 

explicit method, such as the well-known Newmark explicit method. In fact, the additional 

computational efforts are to perform the triangulation of the matrix in the left hand side of Eq. (19). 

 After obtaining the current displacement vector, the assumed fore-displacement relations can 

be applied to determine the corresponding restoring force vector. In general, 
1 1i i 
R Kd  is often 

used to represent the restoring force vector. Next, the velocity vector can be further evaluated from 

the substitution of the first line into the third line of Eq. (17) and is found to be 

 
 

 
 

 
 

1

1 0

1 1

3

2 1

3 1 3 2 1 2 1

2 1 2 1 1 1 1 1

i

i i i i i i

p
t

p

p p p p p p
t t

p p p p p p





 

 
   

 
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v M C

M v a f f R R

     (20) 

Finally, the acceleration vector can be calculated by using the equations of motion, i.e., the first 

line of Eq. (17). 

 
 
7. Numerical examples 
 

Some numerical examples are examined in this section to confirm the numerical properties of 

PFM for both linear elastic and nonlinear systems. In these numerical investigations, the numerical 

properties of accuracy, unconditional stability and numerical dissipation are addressed. In addition, 

the computational efficiency of PFM is also explored in contrast to NEM and AAM. For brevity, 

PFM1 and PFM2 are introduced to represent the use of PFM with 1p   and 0.5, respectively.  

 
7.1 Example 1 --- An elastoplastic system 

 
A single degree of freedom system subject to an earthquake record is considered. The lumped 

mass and the stiffness for the system are taken to be 
410 kg  and 

610 N / m , respectively. Thus, the 

initial natural frequency of the system is found to be 10 rad/sec  before it deforms into an inelastic 

range. An elastoplastic behavior is assumed for the system during vibration. In addition, the 

yielding strength is assumed to be 
45 10 N  for both tension and compression. The undamped 

system is excited by the ground acceleration record of CHY028 with a peak ground acceleration of  
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Fig. 6 Responses to CHY028 and corresponding hysteretic loops 

 

 

0.5g. It should be mentioned that CHY028 is a near-fault ground motion record collected by the 

Central Weather Bureau under the Taiwan Strong Motion Instrumentation Program during the 

main shock of Chi-Chi earthquake. 

Fig. 6 shows the displacement response time histories and their corresponding hysteretic loops. 

Numerical solutions obtained from NEM with a time step of 0.005t  sec  are considered as 

reference solutions for comparisons. Both NEM and PFM1 with the time step of 0.02t  sec , 

which corresponds to 
0

/ 0.03t T  , are used to perform the step-by-step integration. In Fig. 6a, 

the displacement responses obtained from NEM and PFM1 are very close to the reference 

solutions. A slight difference between the results obtained from NEM and PFM1 and the reference 

solutions might be due to the fact that the yielding point is not exactly captured. Fig. 6b reveals 

that the system experiences highly nonlinear hysteretic behaviors. Thus, it is confirmed that PFM1 

can be used to solve a highly nonlinear system.  

 
7.2 Example 2 --- Free vibration responses of 5-story building 
 
Fig. 7 shows an idealized 5-story shear building and its structural properties. Although the mass 

is distributed throughout the building, it is idealized as concentrated at the floor levels. The beams 

and floor systems are assumed to be rigid in flexure and the axial deformation of the beams and 

columns are neglected. The stiffness of each story consists of a linear part and a nonlinear part. 

The linear part is a constant stiffness and the nonlinear part is assumed to be a function of the story 

drift. The explicit expression of the stiffness for each story can be written in the form of 

  
1/5

0 11 , 1 ~ 5j i i i i ik k p u u i  
    
  

                           (21) 
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where 
ij

k


 is the instantaneous stiffness for the i th  story at the end of the j th  time step and 

i
k

0
 is the initial stiffness for the i th  story at the start of the motion; 1i iu u   is the story drift 

for the i th  story and 
i

p  is a given constant corresponding to this story drift. The initial natural 

frequencies and the 1
st
, 4

th
 and 5

th
 modal shapes of the building are also shown in Fig. 7. As a 

result, the equation of motion can be expressed as: 

1 2 2
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(22) 

where the values of 1m  to 5m  are given in Fig. 7 and 
1jk 
 to 

5jk 
 are defined in Eq. (21) with the 

specified values of  0 1k   to 0 5k   in Fig. 7. A linear elastic system and a nonlinear system are 

simulated by specifying appropriate 
i

p  values, which are given as below: 

 
1 5

1 2 5

a linear elastic LS          ~ 0.0                                    

NS         1.0, ~ 0.5             

system

a linear elastic sys tem

p p

p p p



   
          (23) 

To confirm the effectiveness of the numerical dissipation, two initial conditions are considered. 
One is made up of the pure first mode only, i.e., 

1 1
(0) /10v , and the other consists of the 1

st
, 

4
th
 and 5

th
 modes with equal weight, i.e., 

2 1 4 5
(0) ( ) /10    v . The free vibration response 

to 
1
(0)v  is obtained from NEM with the time step of 0.0002t  sec . Meanwhile, the free 

vibration responses to 
2
(0)v  are computed by AAM, PFM1 and PFM2 with a time step of 

0.01t  sec  for LS and NS. 
Numerical results are plotted in Figs. 8 and 9 for LS and NS, respectively. In each figure, the 

top plot displays the displacement response for the 1
st
 story while that for the 5

th
 story is plotted in  

 

 

 

Fig. 7 A 5-story shear-beam type building 
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Fig. 8 Free vibration responses of LS 

 

 

Fig. 9 Free vibration responses of NS 

 

Table 1 Numerical damping ratio for each mode if using PFM2 

System 1i (1
st 

mode) 1i (2
nd 

mode) 1i (3
nd 

mode) 1i (4
th 

mode) 1i (5
th 

mode) 

LS 0.00% 4.21% 11.14% 17.65% 19.77% 

NS 0.00% 4.90% 13.41% 21.00% 23.77% 

 

 

the bottom plot. Only the first 0.5sec  displacement response time history is plotted in the bottom 

plot of each figure so that the effectiveness of numerical damping to suppress the 4
th
 and 5

th
 modal 

responses can be closely examined. It is manifested from Figs. 8a and 9a that the four curves are 

coincided together. This is because that the contribution from the 4
th
 and 5

th
 modes to the total 

response at the 1
st
 story is insignificant; and the time step of 0.01t  sec  is small enough for 
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Fig. 10 Elimination of high frequency responses for NS subject to earthquake record CHY028 

 

 

AAM, PFM1 and PFM2 to accurately integrate the 1
st
 mode. Figs. 8b and 9b reveal that the 

contribution from the 4
th
 and 5

th
 modes to the total response at the 5

th
 story is much more 

significant that for the 1
st
 mode. In addition, it is also seen that both AAM and PFM1 cannot 

remove the 4
th
 and 5

th
 modal responses while they are eliminated very rapidly if using PFM2. In 

fact, PFM2 can filter out the high frequency responses within about 0.1 sec  for both LS and NS. 

This is because it can provide very large numerical damping ratios for the 4
th
 and 5

th
 modes as 

shown in Table 1. The details for obtaining the numerical damping ratio for each mode for a 

nonlinear system for each time step can be found in the references (Chang 2009, 2010) and will 

not elaborated here again. Since the numerical damping ratio varies with the stiffness change for a 

nonlinear system, the value for NS is an average value while it is constant for LS. Comparing Figs. 

9 to 8, it is apparent that the period for NS is elongated for the 1
st
 mode in contrast to that of LS. 

Thus, NS is experienced stiffness softening.  

It is numerically illustrated that PFM can have favorable numerical dissipation. In fact, there is 

no numerical dissipation for PFM1 ( 1p  ) while PFM2 ( 0.5p  ) has desired numerical 

damping to suppress or eliminate the high frequency responses. The unconditional stability of 

PFM is also strongly indicated in step-by-step solution of both LS and NS since the product of the 

highest initial natural frequency and the step size is as large as 51.19 in this example.  

 
7.3 Example 3 --- Seismic responses of 5-story building 
 

 In this example, the 5-story building with the 
i

p  values defined in Eq. (23) for NS is also 

considered here. The building is also subjected to the earthquake record of CHY028 with a peak 

ground acceleration of 0.5g. In addition, the spurious oscillations due to the 5
th
 mode are assumed 

at the beginning of the motion. As a result, an initial displacement vector of 
5

(0) /10v  is 
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added in addition to the earthquake load. The top story responses are plotted in Fig. 10. The result 

obtained from AAM only subject to CHY028 is considered as a reference solution. On the other 

hand, AAM, PFM1 and PFM2 are also used to calculate the responses to both the earthquake load 

CHY028 and the initial displacement vector 
5

(0) /10v . All the computations are carried out 

by using a time step of 0.01t  sec .  

Numerical results for the top story responses are plotted in Fig. 10. It is clear that the results 

obtained from AAM and PFM1 are severely contaminated or even destroyed by the high 

frequency initial displacement vector while that obtained from PFM2 is almost coincided with the 

reference solution. This is because that PFM2 can have desired numerical dissipation to filter out 

the high frequency response while both AAM and PFM1 do not have any numerical dissipation. It 

is also interesting to find that the response obtained from AAM is less contaminated when 

compared to PFM1.  

 
7.4 Example 4 --- A fixed-fixed beam 
 

A fixed-fixed beam is loaded by a sinusoidal function at the center of the beam. The dimension 

and structural properties of the beam are the density of , Young’s 

modulus of , sectional modulus of , sectional area of 
26.0 10A    

2mm  and the length of . The beam was modelled by 10 beam 

elements where each node has only the vertical and rotational degrees of freedom, leading to a 

total of 18 degrees of freedom. A consistent mass matrix is used in the analysis and the material is 

taken as linearly elastic. For a nonlinear analysis, both the elastic stiffness matrix and geometric 

stiffness matrix are used in the formulation of the structural stiffness matrix. Hence, the natural 

frequencies of the beam vary due to the geometric nonlinearity. The natural frequencies of the first 

three modes are found to be 19.38, 53.44 and 104.83 / secrad  based on the elastic stiffness 

matrix only. The nonlinear system is subjected to the sinusoidal force of  51.0 10 sin 2   t N  at  

 

 
 

 

Fig. 11 Displacement responses at the center of a fixed-fixed beam 

36  1087 mm/kg. 
25  1002 mm/N.E  43 1027 mm.I 

mm.L  1054 3
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the center of the beam. Numerical results are plotted in Fig. 11. The numerical solution obtained 

from NEM with sec  is a reference solution. Meanwhile, AAM and PFM1 are also 

used to compute the responses by using the time steps of 0.005t   and 0.01 sec . Fig. 11a 

reveals that both AAM and PFM1 with 0.005t  sec  can provide pretty reliable solutions. 

Whereas, both methods exhibit visible period distortion for using 0.01t  sec . It is also found 

that PFM1 shows a little more period distortion than for AAM. In general, PFM1 has comparable 

accuracy when compared to AAM, which is an energy conserving method (Simo et al. 1992; 

Gonzalez and Simo 1996). 

 

7.5 Example 5 --- Computational efficiency 
 
A large spring-mass system is considered for the study of the computational efficiency of PFM. 

This spring-mass system and its structural properties are shown in Fig. 12. The stiffness 
i

k  of each 

spring will decrease after the system deforms due to the nonlinear term of 
9

1
10

i i
u u


  . It is 

clear that the total number of the spring-mass system can be arbitrarily specified. Thus, in order to 

simulate a 500-DOF system and a 1000-DOF system, the cases of 500n   and 1000 are taken. It 

is found that the lowest natural frequency of the 500-DOF system is 31.38 rad/sec  before it 

deforms while that for 1000-DOF system is 15.70 rad/sec . On the other hand, the two systems 

have the same highest natural frequency and are found to be 20000.0 rad/sec . In this study, NEM, 

AAM and PFM2 are used to calculate the displacement responses. Both spring-mass systems are 

excited by the combinations of sine loads as shown in Fig. 12. 

Fig. 13 shows the displacement response time histories of the two systems. Since the highest 

natural frequency is as large as 20000.0 rad/sec  for both systems a time step must be chosen to be 

less than or equal to 0.0001t  sec  to satisfy the stability conditions for NEM. As a result, the 

numerical solutions obtained from this time step can be considered as “exact” solutions since this 

time step is much smaller than that required by accuracy consideration. Meanwhile, a comparable 

accuracy can be found for the numerical results obtained from AAM and PFM2 with a time step of

0.005t  sec  for the two systems. In addition, numerical experiments reveal that this time step 

seems to be the maximum time step to yield reliable solutions for both AAM and PFM2 in the 

solution of the 500-DOF and 1000-DOF systems. In general, it is computationally inefficient to 

use a conditionally stable method to solve an inertial problem, where the total response is 

dominated by low frequency modes and high frequency modes contribute insignificantly. In this 

example, the use of NEM is proposed to illustrate the importance of the unconditional stability for 

PFM2 since both NEM and PFM2 can have the explicitness for each time step. 

In order to evaluate the computational efficiency of PFM, the CPU time involved for each 

analysis is recorded and summarized in Table 1 for NEM, AAM and PFM2. The CPU time 

consumed by NEM is denoted by 
(NEM)CPU . Similarly, 

(AAM)CPU  and 
(PFM2)CPU  are used to 

represent the CPU time consumed by AAM and PFM2. The fourth column of Table 1 reveals that 

PFM2 involves much less computational efforts when compared to both NEM and AAM. This is 

also manifested from the fifth and sixth columns. Clearly, NEM is computationally inefficient to 

solve the inertial problems since it costs a large CPU time for each analysis. This is because that a 

very small time step, which is much small than accuracy consideration, is generally needed so that 

the upper stability limit can be satisfied. On the other hand, although a relatively large time step  

0010.t 
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Fig. 12 A n-degree-of-freedom spring-mass system 

 

 

Fig. 13 Displacement responses to spring-mass systems 

 

 

Table 2 Comparison of CPU time 

N-DOF CPU
(NEM)

 CPU
(AAM)

 CPU
(PFM2)

 
(NEM)

(PFM2)

CPU

CPU
 

(AAM)

(PFM2)

CPU

CPU
 

500 640.69 1733.47 32.94 0.051 0.019 

1000 2955.91 14224.70 140.81 0.048 0.0099 

 

 

can be applied for AAM based on accuracy consideration due to its unconditional stability, it still 

consumes many computational efforts as shown in the third column. This is because that an 

iteration procedure is needed in each time step for an implicit method and it is very time 
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consuming for a matrix of large order. Since PFM2 can integrate the unconditional stability and 

the explicitness of each time step, which involves no nonlinear iterations for each time step, it can 

save many computational efforts.  

 
 
8.  Conclusions 
 

In this paper, a parameter p  is applied to develop a new family of integration methods for 

structural dynamics. In general, numerical properties of the proposed family method are controlled 

by the parameter p . An appropriate selection of 1 / 2 1p   will lead to unconditional stability 

and favorable numerical dissipation, which can be continuously controlled by p  and it is possible 

to achieve zero numerical damping if 1p   is adopted. This numerical damping can be used to 

suppress or even eliminate the spurious participation of high frequency modes while the low 

frequency modes can be accurately integrated. Comparing to the currently available dissipative 

integration methods, the most important improvement of this family method is that it involves no 

nonlinear iterations for each time step in addition to unconditional stability and desired numerical 

dissipation. As a result, it is computationally very efficient for solving an inertial-type problem. 
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