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Abstract.  A new method is proposed for random vibration anaylsis of hysteretic systems subjected to non-
stationary random excitations. With the Bouc-Wen model, motion equations of hysteretic systems are first 
transformed into quasi-linear equations by applying the concept of equivalent excitations and decoupling of 
the real and hysteretic displacements, and the derived equation system can be solved by either the precise 
time integration or the Newmark-β integration method. Combining the numerical solution of the auxiliary 
differential equation for hysteretic displacements, an explicit iteration algorithm is then developed for the 
dynamic response analysis of hysteretic systems. Because the computational cost for a large number of 
deterministic analyses of hysteretic systems can be significantly reduced, Monte-Carlo simulation using the 
explicit iteration algorithm is now viable, and statistical characteristics of the non-stationary random 
responses of a hysteretic system can be obtained. Numerical examples are presented to show the accuracy 
and efficiency of the present approach. 
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1. Introduction 
 

The random vibration analysis of nonlinear hysteretic systems is an important research topic in 

the field of random vibration. In reality, many structures are subjected to strong loads (such as 

earthquake) and may work in an inelastic state with significant hysteretic behaviors. Hystereticity 

is a special attribute of structural components subjected to dynamic loadings, characterized by 

degradation in stiffness (or strength or both) and energy dissipation. 

The existing hysteretic models can be classified into two types (Mettupalayam and Andrei 

2000): one type is the polygonal hysteretic model which uses piecewise linear model to express 

the restoring force; and the other is the smooth hysteretic model which uses a smooth curve to 

represent the hysteretic behavior. The polygonal hysteretic type contains the bilinear model 

(Caughey 1960) and the Taketa model (Taketa and Sozen 1970), and the Ramberg-Osgood model 
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(Jennings 1965), the Bouc-Wen model (Wen 1976) and Ozdemir’s model (Ozdemir 1976) are 

examples of the smooth hysteretic model. While various polygonal hysteretic restoring force 

models are often used in the deterministic dynamical analysis, various smooth hysteretic models, 

particularly the Bouc-Wen model, are widely used in nonlinear random vibration analysis. This is 

because they can be used to represent behaviours of a large class of hysteretic systems through 

adjusting the related parameters, and are convenient to use for the solution of problems described 

with differential equation of motion. Different applications of the Bouc-Wen model can be found 

in the literature, e.g. Ma et al (2004), Ikhouane et al. (2007a, b), Ismail et al. (2009), Zhu and Lu 

(2011), Sivaselvan (2013). 

For the random vibration analysis of hysteretic systems, different methods have been proposed 

and investigated, such as the Fokker-Planck-Kolmogorov (FPK) equation method (Wen 1976, 

Naess and Moe 1996), the stochastic average method (Roberts 1978, Zhu and Lei 1988, Wang et 

al. 2009, Zeng and Li 2013), the moment equation method (Iyengar and Dash 1978) and so on. 

But many of the available methods are limited to systems with a few degrees of freedom (DOFs). 

For systems with more DOFs, one has to use methods such as the equivalent linearization method 

(Roberts and Spanos 2003). Using the Bouc-Wen model, Wen (1980) proposed a method of 

equivalent linearization for smooth hysteretic systems under random excitation. He obtained the 

solution of linearized equation of motion in closed form and analyzed the stationary and non-

stationary responses of a single-degree-of-freedom (SDOF) hysteretic system; later, this method 

was extended to systems with multiple DOFs (Baber and Wen 1982) and hysteretic structural 

systems under two-dimensional non-stationary earthquake excitations (Park et al. 1986). The 

random vibration problem of hysteretic systems always comes down to solving the order-expanded 

Lyapunov equation after linearization. When the number of DOFs increases, the amount of 

calculation increases sharply. In addition, the application of the method proposed by Wen is 

limited to hysteretic systems subjected to white noise or filtered white noise processes. In order to 

overcome the above shortcomings, Lin and other researchers (Wang and Lin 2000) solved the 

equivalent linearized equation of motion of hysteretic systems by pseudo-excitation method, 

obtaining the stationary responses of multi-degree-of-freedom (MDOF) hysteretic systems. This 

method avoids solving the order-expanded Lyapunov equation, and therefore, is not limited to 

white noise or filtered white noise excitations, broadening the application of the equivalent 

linearization method. Later, the pseudo-excitation method is further developed to determine the 

non-stationary random responses of hysteretic systems by Ma et al. (2011). As numerical 

integrations in both time and frequency domains are required in the pseudo-excitation method for 

non-stationary random excitations, the amount of calculations is still large. Another major 

drawback of the equivalent linearization method is that the approach makes use of the hypothesis 

of Gaussian behavior for the response ( Hurtado and Barbat 2000) and only the first- and second-

order moments of the responses can be predicted, which are insufficient to define the probability 

distribution of a non-Gaussian response (Zhu and Cai 2002). 

As can be seen from the above, there are no satisfactory methods currently available for the 

random vibration analysis of hysteretic systems under non-stationary excitations, and the 

development of efficient numerical algorithms remains as a difficult problem in the field of 

random vibration of nonlinear systems. As it is extremely difficult to obtain the analytical solution 

for most MDOF hysteretic systems, the statistical properties of the responses are usually calculated 

by the Monte-Carlo simulation (MCS) method, which involves a large number of samples. As 
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each sample test is equivalent to a deterministic dynamical analysis, the key to MCS is how to 

improve the efficiency of the deterministic dynamical analysis of hysteretic systems in a sample 

test. For the deterministic analysis of hysteretic systems, Newmark-β method, Wilson-θ method 

and so on are often used. As the global stiffness matrix is updated within each time step and 

repetitive inverse calculations of the stiffness matrix are inevitable, the computational efficiency is 

very low. If these conventional numerical methods are used for sample tests in MCS, the amount 

of calculations is considerable, and for large-scale nonlinear system problems, the computational 

cost will be too high for the method to be feasible. 

For the non-stationary random vibration problems of large-scale linear systems, the authors 

have recently proposed a class of time-domain explicit MCS method (Su and Xu 2010, Su et al. 

2011). The method is based on explicit expressions of time-domain dynamical responses, and is 

highly efficient for the non-stationary random vibration problems of linear systems. In this paper, 

the concept of the explicit solution is extended to the study of non-stationary vibration problems of 

hysteretic systems. By defining equivalent excitation and decoupling the real and hysteretic 

displacements, nonlinear governing equations of hysteretic systems are first transformed into the 

form of quasi-linear equations, which can be solved by either the precise time integration or 

Newmark-β integration method. Combining the numerical solution of the auxiliary differential 

equation for hysteretic displacements, an explicit iteration expression is then proposed for the 

dynamic response analysis of hysteretic systems. Using the above explicit iteration expression, the 

computational cost for deterministic analysis of hysteretic systems in each sample analysis can be 

greatly reduced. Therefore, MCS can now be conducted to obtain the statistical properties of the 

non-stationary random response of a hysteretic system. 

 
 
2. Model of computation 
 

2.1 Restoring force model for hysteretic systems 
 

The restoring force of a SDOF hysteretic system can be expressed as (Wen 1976) 

 ( , ) (1 )f y z ky kz     (1) 

where y  and z  are the real displacement and the hysteretic displacement, respectively;   denotes 

the ratio of post-yield to pre-yield stiffness; k  is the initial stiffness. As can be seen from Eq. (1), 

the hysteretic restoring force consists of two parts, the elastic force ky  and the hysteretic force 

(1 )kz . In the Bouc-Wen model, the hysteretic displacement z  is governed by the following 

nonlinear differential equation (Wen 1976) 

 1| | | | | |z Ay y z z y z      (2) 

where  ,  , A  and   are four parameters;   and   determine the hysteresis shape; A  

determines the amplitude of the hysteretic force;   determines the smoothness from the elastic 

zone to plastic zone. By adjusting these parameters, one may obtain softening or hardening 

hysteretic restoring force models with different capacities of energy dissipation. 
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2.2 Motion equations of hysteretic systems 
 

Consider the n-storey shear structure shown in Fig. 1, in which im , ic , ik , iF  and iu  

( 1,2, , )i n  are the mass, the damping, the initial linear stiffness, the horizontal load and the 

horizontal displacement of the i-th floor, respectively. Introducing 0 0u  , we can define the 

relative displacement of the i-th floor as 1i i iy u u   ( 1,2, , )i n . Further, denoting the 

hysteretic displacement associated with iy  as iz , the hysteretic restoring force ( , )i i if y z  and 

governing equation for iz  can be expressed in the forms of Eq. (1) and Eq. (2), namely 

 
1

( , ) (1 )

| | | | | |i i

i i i i i i i i i

i i i i i i i i i i

f y z k y k z

z A y y z z y z
 

 

 

   


   
 ( 1,2, , )i n  (3) 

where i  is the stiffness reduction ratio at the i-th floor; iA , i , i  and i  are the parameters of 

the hysteretic displacement of the i-th floor. 

Thus, the equations of motion can be expressed as 

 
1 1 1 1 1( , ) ( , )  ( 1,2, , 1)

( , )

i i i i i i i i i i i i i

n n n n n n n n

m u c y c y f y z f y z F i n

m u c y f y z F

           


   
 (4) 

Substituting Eq. (3) into Eq. (4), we can obtain the following equations in matrix form 

 
e h   MU CU K U K Z F  (5) 

   Z AU ΦB ΨD  (6) 

where U , Z  and F  are the horizontal displacement vector, the hysteretic displacement vector 

and the horizontal load vector, respectively, and are expressed as 

 

1

2

n

u

u

u

 
 
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  
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1
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n

z

z

z

 
 
 

  
 
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Z , 

1

2

n

F

F

F

 
 
 

  
 
  

F  (7) 

M , C , eK  and hK  are the mass matrix, the damping matrix, the elastic stiffness matrix and the 

hysteretic stiffness matrix, respectively, and are expressed as 
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Fig. 1 An n-storey shear structure 
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C K, (8) 

A , Φ  and Ψ  are the following matrices containing the parameters for hysteretic displacements 
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Ψ  (9) 

and B  and D  are the following vectors containing the horizontal velocities and the hysteretic 

displacements 
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3. Explicit iteration method for vibration analysis of hysteretic systems 
 

3.1 Decoupling of variables 
 

The equations of hysteretic systems given by Eqs. (5) and (6) involve the nodal displacement 

vector and the hysteretic displacement vector. Obviously, Eq. (5) is the dynamic equilibrium 

equation for the nodes and Eq. (6) is the auxiliary differential equation for the hysteretic 

displacements. Strictly speaking, to determine variations of the two sets of variables with time, the 

second-order differential equation system and the first-order auxiliary differential equation system 

must be solved simultaneously, because the two sets of variables are coupled. However, as the two 

equation systems have very special forms, it is possible to solve them in a more efficient manner, 

as illustrated below. 

Moving the term dependent on the hysteretic displacement vector in Eq. (5) to the right-hand 

side of the equation, one can obtain the following second-order quasi-linear equilibrium equation 

about the nodal displacement vector 

 
e  MU CU K U F  (11) 

where the term on the right-hand side is 

 
h( )  F F Z F K Z=  (12) 

which can be treated as an equivalent dynamic loading vector and includes the hysteretic effect. 

Similarly, Eq. (6) can also be expressed in the following form 

 Z g  (13) 

where the term on the right-hand side is 

 = ( , ) ( , ) ( , )  g g U Z AU ΦB U Z ΨD U Z  (14) 

For a given hysteretic displacement vector Z , Eq. (11) can be seen as a linear second-order 

differential equation about U. Similarly, for a given g, Eq. (13) can be seen as a linear first-order 

differential equation about Z . In order to improve the solution efficiency, the following 

decoupling technique is proposed. Firstly, the coupled problem is transformed into two separate 

problems which can be solved independently for just one set of variables. Then an iterative 

algorithm with repeated solution of the two separate problems is employed to get converged 

solution of the original problem. The following sections will discuss about solution methods of the 

quasi-linear problems expressed by Eqs. (11) and (13). Then, the alternating iteration solution 

algorithm will be presented. 

 
3.2 Solution of quasi-linear motion equations 
 
When the correlation between the hysteretic displacement vector Z  and the nodal 

displacement vector U  is neglected, Eq. (11) can be regarded as a second-order dynamic equation 
of the nodal displacement vector U . In such a case, it can be solved by many time-domain 
integration methods. Two of such methods will be discussed in this section, namely, the precise 
integration and the Newmark-β integration methods, and based on them two recursion formulas 
are obtained. 
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3.2.1 Recursion formula based on precise integration method 
The second-order dynamic equation in Eq. (11) can be expressed in terms of state vector V  as 

  V HV R  (15) 

where 
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

1

1

e

1

M
W

CMKM

I
H

FWR,
U

U
V

0

0

~


 (16) 

in which 0  is the zero matrix and I  is the unit matrix. 

If R  is treated as a given vector, the solution of Eq. (15) can be expressed as 

 ( )

0
( ) (0) ( )d

t
t tt e e     

H H
V V R  (17) 

where teH  is an exponential matrix. From the above equation, the response iV  at time it  can be 

expressed by the response 1iV  at the previous time step 1it   as 

 
1 1

( ) ( )

1 1d d
i i

i i

i i

t t
t t

i i i
t t

e e
  

 

 

     
H H

V TV R TV WF  ( 1,2, , )i l  (18) 

where T  denotes the exponential matrix 

 te  H
T  (19) 

with 1i it t t     being the time step. The exponential matrix T  can be calculated using different 

algorithms (Moler and Loan 2003). In this study, the precise computation method proposed by 

Zhong and Williams (1994) is adopted to calculate the exponential matrix. 

Assume that the equivalent excitation vector F  can be discretized and characterized by a series 

of vectors 
0 ,F 1,F ,

lF  with l  being the total number of the time steps, and let F  be a linear 

function of time from time 1it   to it . The solution given by Eq. (18) can be further expressed in the 

following form 

 
 1 1

1 1

1 1

-1 i 1

/  

        ( ) / ( 1,2, , )

i i i i

i i

t

t i l

 

 

 



     
 

      

iV TV H H W F F WF

TH WF H W F F
 (20) 

Note that 1
H  can be expressed as  
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1 1

1 e e

 


  

  
 

K C K M
H

I 0
 (21) 

and let 

 
2 1

1

2 1

2

( ) /

( ) /

t

t

 

 

   


    

Q T H W TH W

Q T H W H W

I +

I
 (22) 

where 2 1 1  H H H . Eq. (20) can then be written as 

 
1 1 1 2i i- i i  V TV Q F Q F  ( 1,2, , )i l  (23) 

Substituting Eq. (12) into Eq. (23), we have 

 1 1 1 h 1 2 3( )i i- i i i i     V TV Q F K Z Q F Q Z  ( 1,2, , )i l  (24) 

where 3 2 h=Q Q K . 

The recursion formula given by Eq. (24) can be used to calculate the displacements and 

velocities at a time when the load vector iF , the hysteretic displacement vector iZ  at the present 

moment and the state vector 1i -V , the load vector 1iF , the hysteretic displacement vector 1iZ  at 

the previous moment are given. 

The coefficient matrices T , 1Q  and 2Q  in Eqs. (23) and (24), involve the precise computation 

of the exponential matrix. When the number of DOFs is larger, the amount of calculation of the 

exponential matrix increases sharply (Zhong and Williams 1994). Hence, to avoid the amount of 

calculation required for the exponential matrix, the quasi-linear motion equation shown by Eq. (11) 

may be solved by Newmark-β integration scheme (Bathe 1996). 

 
3.2.2 Recursion formula based on Newmark-β integration method 

The Newmark-β method is an extension of the linear acceleration method and uses the 

following assumptions 

 
1 1[(1 ) ]i i i i t      U U U U  (25) 

 2

1 1 1

1
[(1 2 ) 2 ]

2
i i i i it t         U U U U U  (26) 

where   and   are two parameters that can be determined to obtain integration accuracy and 

stability. In this paper, 0.5 =  and 0.25=  are used and the Newmark-β method will be 

unconditionally stable. From Eqs. (25) and (26), the acceleration and velocity at time it  can be 

expressed as 

 
0 1 1 1 2 1( )i i i i ia a a     U U U U U  (27) 

 
43 1 1 5 1( )i i i i ia a a     U U U U U  (28) 

where 
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a a a
t t

t
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t

  
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  


      


     

 

， ，

， ，

 (29) 

The motion equation shown by Eq. (11) at time it  then can be expressed as 

 
ei i i i  MU CU K U F  (30) 

By substituting Eqs. (27) and (28) into Eq. (30), one obtains 

 1ˆ ˆ
i i

U K P  (31) 

where 

 0 3
ˆ a a  K K M Ce  (32) 

 0 1 1 1 2 1 3 1 4 1 5 1
ˆ ( ) ( )i i i i i i i ia a a a a a           P F M U U U C U U U  (33) 

Obviously, the displacement responses of the structure at the present time can be obtained by Eq. 

(31) when the responses at the previous time and the load for the current time are known. Then the 

velocity and acceleration responses at the present time can be calculated by Eqs. (28) and (27), 

respectively. 

For a well-posed MDOF formulation, the mass matrix is nonsingular, and thus the acceleration 

at the present time can also be obtained from Eq. (30) as 

 1

e( )i i i i

  U M F CU K U                                             (34) 

Similarly, we have 

 1

1 1 1 e 1( )i i i i



     U M F CU K U  (35) 

Substituting Eq. (35) into Eq. (33) and then Eq. (31), one obtains 

 
11 1 12 1 1 1 2i i i i i     U H U H U R F R F  (36) 

where 

 

1 1

11 1 3

1 1

12 2 3

1 1

1 3

1

2

1 0 3

2 1 4

3 2 5

ˆ ( )

ˆ ( )

ˆ

ˆ

a a

a a

a a

 

 

 



 


  


 


 
 

 


  


H K S S M K

H K S S M C

R K S M

R K

S M C

S M C

S M C

e

 (37) 
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Substituting Eq. (36) into Eq. (28) and considering Eq. (35), one obtains 

 
21 1 22 1 3 1 4i i i i i     U H U H U R F R F  (38) 

where 

 

1

21 3 11 5

1

22 3 12 4 5

1

3 3 1 5

4 3 2

( )a a

a a a

a a

a







  


   


  
 

H H M K

H H M C

R R M

R R

eI

I
 (39) 

Combining Eqs. (36) and (38) and making use of Eq. (12), one can derive the following 

recursion formula 

 1 1 1 h 1 2 3( )   ( 1,2, , )i i- i i i i i l      V TV Q F K Z Q F Q Z  (40) 

where l  is the total number of the time steps and 

 

11 12

21 22

1 2

1 2 3 2 h

3 4

,

, =

i

i

i

   
    

   


    
     

   

U H H
V T

U H H

R R
Q Q Q Q K

R R
，

 (41) 

Obviously, Eq. (40) has the same format as Eq. (24). The only difference is that the coefficient 

matrices T , 1Q  and 2Q  are now given by Eq. (41) instead of Eqs. (19) and (22). Thus, the 

calculation of the exponential matrix is avoided, and a better computational efficiency can be 

achieved. 

 
3.3 Solution of quasi-linear hysteretic displacement equations 

 
As pointed out in section 3.1, Eq. (13) can be treated as a simple first-order linear differential 

equation about Z  if the right-hand side vector g  is regarded as a known vector. Further, assume 

that ( , )g U Z  changes with time linearly within time interval 1[ , ]i it t . Then one can easily obtain 

the following recursion formula for Z , namely 

 1 1( ) / 2i i i i t    Z Z g g  ( 1,2, , )i l  (42) 

where 
1 1 1( , )i i i  g g U Z  and ( , )i i ig g U Z  with 

iZ  being an estimated trial value of iZ . 

 

 
3.4 Iteration algorithm 

 
So far, we have derived recursion formulas for the state vector V  and the hysteretic 

displacement vector Z , i.e. Eqs. (24), (40) and (42). However, these formulas cannot be used 

directly to calculate responses at the present time ( iV  and iZ ) even when responses at the previous 
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time ( -1iV  and 1iZ ) are known, because the two unknown vectors are interdependent and the 

expression for one vector uses the result for the other. Hence, the recursion formulas for the two 

vectors should be used with due consideration of the interdependency and the following iterative 

solution procedure can be employed 

a) Assign an initial value to 
iZ  (the converged result for the previous time 1iZ  may be used 

as the initial value); 

b) Substitute 
iZ  into the right-hand side of Eq. (24) [or Eq. (40)] and calculate 

T T T[ ]i i iV U U ; 

c) Substitute 
iU  and 

iZ  into the right-hand side of Eq. (42) and get a new iZ ; 

d) Set the new =i iZ Z  and repeat steps b) and c) until results for iV  and iZ  converge. 

The above procedure can be expressed by the following iterative scheme 

(0)

1

( ) ( 1)

1 1 1 h 1 2 3

( ) ( ) ( 1)

1 1 1

Initial value:           

The -th iteration:   ( )

     ( =1,2, )         [ ( , ) ( , )] / 2

i i

j j

i i- i i i i

j j j

i i i i i i

j

j t





 



  




     


    

Z Z

V TV Q F K Z Q F Q Z

Z Z g U Z g U Z

 ( 1,2, , )i l  (43) 

Further, to achieve better solution efficiency, the above iterative scheme can be changed to the 

following form 

(0)

1

(0)

1 1 1 h 1 2

(0)

1 1 1

( ) (0)

3

Initial value:            

                                ( )

                                ( / 2) ( , )

The -th iteration:   

i i

i i- i i i

i i i i

j

i i

t

j



 



  



   

  

 

Z Z

V TV Q F K Z Q F

Z Z g U Z

V V Q Z
( 1)

( ) (0) ( ) ( 1)       ( =1,2, )       ( / 2) ( , )

j

i

j j j

i i i ij t



 








   Z Z g U Z

 ( 1,2, , )i l      (44) 

With an error tolerance   defined for checking convergence, the iteration for a time step 

terminates when 

( ) ( 1)

( )

|| ||

|| ||

j j

i i

j

i





V V

V
 is satisfied, in which the symbol || ||  denotes the Euclidean 

norm. Then set ( )j

i iV V  and ( )j

i iZ Z . 

As can be seen from Eq. (44), while an iteration loop is required for each time step, the main 

calculations are multiplications of matrices and vectors based on the explicit expressions derived 

earlier. Therefore, the above algorithm may be regarded as a kind of explicit iteration method. 

Once the matrices T , 1Q , 2Q  and 3Q  are formed, they remain the same throughout the solution 

process. Only the multiplication of 3Q  and 
( 1)j

i


Z

 as well as the term ( ) ( 1)( / 2) ( , )j j

i it  g U Z  are to 

be calculated repeatedly during the iteration in each time step. Hence, the above explicit iteration 

algorithm has a much higher computational efficiency compared with the other numerical 

integration methods which involve updating the effective stiffness matrix and calculating its 

inverse repeatedly for each time step. 
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4. Explicit iteration MCS method 
 

The MCS method, also known as the random simulation method, is an important method, 

which, with the rapid development of computer technology, has been one of the main methods for 

the random vibration analysis of hysteretic systems. In this method, a large number of excitation 

samples are obtained for the given power spectral density function or correlation function of 

excitations through numerical simulation. Then Eqs. (5) and (6) are solved for each excitation 

sample, and different kinds of statistics (such as the mean and variance of the responses) can be 

obtained from the numerical results of different samples. As the process is equivalent to one 

nonlinear deterministic time-domain analysis for each sample, the computational cost involved 

may be extremely high. Thus it may not be practical for large scale problems if a conventional 

analysis method is used for each sample. On the other hand, by using the explicit iteration method 

for hysteretic systems presented in section 3, the computational cost for each sample analysis can 

be reduced significantly. To distinguish from the conventional MCS method using conventional 

analysis procedures, the proposed method will be called the explicit iteration MCS method. Using 

the proposed method, the probability distribution of the responses can also be determined, in 

addition to the mean and variance of the responses. For example, we can obtain the evolutionary 

probability density function, i.e., the time-variant probability density function, of the non-

stationary random responses of the system. Hence, more statistical information about the structural 

responses can also be obtained. 

Supposing the sample size is N  and the k-th sample of the excitation is ( )kF t , one can obtain 

the following explicit iteration form for the k-th sample analysis based on Eq. (44) 

(0)

, , 1

(0)

, , 1 1 , 1 h , 1 2 ,

(0)

, , 1 , 1 , 1
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

   

V V Q Z

Z Z g U Z

 
( 1,2, , ;

1,2, , )

i l

k N




 (45) 

where 
( )

,

j

k iV  and 
( )

,

j

k iZ  are the j-th iteration value at time it  for the systems under the k-th excitation 

sample. 

As can be seen from Eq. (45), the matrices T , 1Q , 2Q  and 3Q  remain the same for all the time 

steps and all the samples. In other words, these matrices are to be calculated only once in the 

whole MCS process. Therefore the computational efficiency can be greatly improved. 

 
 
5. Numerical examples 
 

The shear hysteretic system shown in Fig. 1 is to be analyzed. The system has 100 DOFs, 

namely n = 100, and is subjected to non-stationary random seismic excitation 
( )g tX

. The 

equations of motion for the system are expressed by Eqs. (5) and (6), with the following excitation 

vector 
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 (t)X(t) gMEF   (46) 

where E  is an excitation direction vector with all its components being unity in this case. The 

lumped masses of the system are 6000kgim   for 1 50i   and 5000kgim   for 51 100i  . 

The initial linear stiffness values are 78 10 kN/mik    for 1 50i   and 77.5 10 kN/mik    for 

51 100i  . Rayleigh damping model is adopted to define the damping matrix C  for the initial 

linear system and the critical damping ratio of 0.05  is assumed for the first mode and the 100th 

mode of the initial linear system. The stiffness reduction ratios for all floors are all 0.2 , i.e. 

0.2i   for 1 100i  . The parameters of the hysteretic displacement of each floor are 1iA  , 
1400mi
 , 1=300mi   and 1i   for 1 100i  . 

The non-stationary seismic excitation )(tX g
  is assumed to be a uniformly modulated random 

process expressed as )()()( txtgtX g  , in which ( )x t  is a stationary random process with zero 

mean. The Kanai-Tajimi spectrum (Kanai 1957) is used for the power spectral density function of 

( )x t , namely 

 
4 2 2 2

02 2 2 2 2 2

4
( )

( ) 4

g g g

xx

g g g

S S
   


    




 
 (47) 

where 15.708rad/sg  , 0.6g  , 3 2 3

0 1.574 10 m / sS   ; and ( )g t  is the following modulation 

function 

 
2

2

1 1

1 2

( )

2 3

( / )   0

( ) 1           

  a t t

t t t t

g t t t t

e t t t 

  


  
  

 (48) 

with 1 6st  , 2 18st  , 3 30st   and 0.18a  . 

In this example, the proposed explicit iteration MCS method (based on precise integration and 

Newmark-β integration method respectively) and the conventional MCS method based on the 

Newmark-β time history method are used for random vibration analysis of the hysteretic system 

under non-stationary seismic excitation. The number of samples is 2,000N  . The duration of 

seismic excitation is set to be 30sT   with the size of time step being 0.008st  . The error 

tolerance for iteration convergence is set to be 510   for each sample analysis. 

One of the excitation samples is shown in Fig. 2. The horizontal displacement histories of 50m  

and 100m  under this excitation sample are shown in Figs. 3 and 4, from which it can be seen that 

the results of the three methods are in good agreement, proving the correctness and accuracy of the 

proposed method. Fig. 5 shows the number of iterations at each time step of the explicit iteration 

solution procedure for the given excitation sample. As can be seen from Fig. 5, the numbers of 

iterations are less than or equal to 3, showing fast convergence rate of the present method. For the 

given excitation sample, the solution times for the explicit iteration method based on precise 

integration and Newmark-β integration are 1.747s and 0.660s, respectively. The former solution 

scheme takes more time because the exponential matrix needs a larger amount of calculation. The 

time elapsed by the conventional Newmark-β time history method is 6.530s, which is 3.74 times 

and 9.89 times of the times for the explicit iteration method based on precise integration and 
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Fig. 2 A sample of excitation 

 

 
Fig. 3 Time history of displacement 

50u  

 

 
Fig. 4 Time history of displacement 100u  
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Fig. 5 Number of iterations for each time step of the explicit iteration method 

 

 
Fig. 6 Time history of standard deviation for displacement 

50u  

 

 
Fig. 7 Time history of standard deviation for displacement 100u  
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Table 1 Comparison of the elapsed time (Number of DOFs n = 100) 

Method 

A single sample 

analysis Random analysis 

CPU 

time (s) 
T2/T1 

Number of samples 
2,000N   

Number of samples 
10,000N   

CPU time (s) T2/T1 CPU time (s) T2/T1 

Proposed 

method 

（T1） 

Precise 

integration 
1.747 3.74 1,316 9.93 6,585 9.92 

Newmark-β 

integration 
0.660 9.89 1,317 9.92 6,580 9.92 

Traditional method（T2） 6.530 — 13,070 — 65,300 — 

 

  
Fig. 8 Evolutionary probability density function for 

 displacement 
50u  

Fig. 9 Evolutionary probability density function for  

displacement 
100u  

 
Table 2 Comparison of the elapsed time (Number of DOFs n = 1000) 

Method 

A single sample  

analysis 

Random analysis  

with N=1,000 

CPU time (s) T2/T1 CPU time (
310 s ) T2/T1 

Proposed 

method 

（T1） 

Precise  

integration 
250.3 5.51 107.7 12.9 

Newmark-β  

integration 
113.2 11.0 107.6 12.9 

Traditional method（T2） 1,380 — 1,384.0 — 

 

 

Newmark-β integration respectively (as shown in Table 1), indicating that the proposed method is 

far more efficient. 

The standard deviations of displacement components of 50u  and 100u  are shown in Figs. 6 and 

7, respectively. It can be seen that the results of the explicit iteration MCS method proposed in this 

paper and the conventional Newmark-β time history MCS method have the same accuracy, 

indicating the correctness of the proposed method once more. As for the computational efficiency, 

the times elapsed by the explicit iteration MCS method based on precise integration and 

Newmark-β integration schemes are 1,315s and 1,316s, respectively. The time elapsed by  the  
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Fig. 10 Restoring force of the first floor ( 0.8)i   

 

 
 

Fig. 11 Restoring force of the first floor ( 0.2)i   
 

 
Fig. 12 The first dynamic eigenvalue 
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Fig. 13 The second dynamic eigenvalue 

 

 
Fig. 14 The third dynamic eigenvalue 

 

Table 3 The first three dynamic eigenvalues at t =18.48s /s
-2 

Order Initial linear system 
Instantaneous equivalent linear 

system 
Reduction ratio 

1 3.7255 2.3803 36.11% 

2 30.2429 20.4566 32.36% 

3 87.5148 62.6411 28.42% 

 

 

traditional Newmark-β time history MCS method is 13,070s, which is about 10 times of the times 

elapsed by the other two methods (as shown in Table 1), indicating that the computational 

efficiency of the proposed method is much higher than the conventional method for the random 

analysis. In addition, as can be seen form Table 1, although the times elapsed by the proposed 

method based on the two integration schemes are considerably different for a single sample 
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analysis, they are almost the same for the random analysis. The reason is that although the 

exponential matrix of the precise integration scheme is more time-consuming, it needs to be 

calculated only once. Therefore, it has little influence on the time elapsed in the process of random 

analysis. 

Because of the high computational efficiency of the proposed method, we can further calculate 

the evolutionary probability density functions of the displacements of the hysteretic system. 

Statistical analyses of displacement components are carried out and the probability densities can 

be obtained for different time and different possible values of displacement. In this study, the 

number of excitation samples is increased to N = 10,000, and the evolutionary probability density 

functions of displacements 50u  and 100u  are determined, as shown in Figs. 8 and 9, respectively. 

The time elapsed by the proposed method is 6,580s. If the conventional Newmark-β time history 

MCS method is used for the same problem, the time elapsed is 65,300s, which is 9.92 times that of 

the proposed method (as shown in Table 1). This indicates that the proposed method still has a 

higher computational efficiency over the conventional method when the number of samples 

increases. 

In order to further demonstrate the computational efficiency of the proposed method, the 

number of DOFs of the hysteretic system in the above numerical example is increased to 1000, 

and the comparison of the time elapsed by the proposed method and the conventional method is 

shown in Table 2. As can be seen from Tables 1 and 2, the computational advantage of the 

proposed method is more significant for the larger model. 

Finally, the effect of the stiffness reduction ratio on the restoring force of the first floor is 

investigated. As for this numerical example, when the number of DOFs is 100 and the stiffness 

reduction ratio at each floor is set to be 0.8i   and 0.2i   ( 1,2 ,100)i   respectively, the 

changes of the restoring forces of the first floor under the excitation sample shown in Fig. 2 are 

shown in Figs. 10 and 11. The effect of the energy dissipation of the component is more 

significant when the stiffness reduction ratio is smaller. In addition, the first three dynamic 

eigenvalues, i.e., the squares of the circular frequencies, of the initial linear system ( 1i  ) and the 

instantaneous equivalent linear system (corresponding to the instantaneous stiffness of the 

hysteretic system, 0.2i  ) are shown in Figs. 12-14. The first three dynamic eigenvalues of the 

initial linear system and the instantaneous equivalent linear system at 18.48st   are listed in Table 

3. As can be seen from the above figures and Table 3, the nonlinearity is quite strong for this 

numerical example. In particular, the first three dynamic eigenvalues of the instantaneous 

equivalent linear system decrease by 36.11% , 32.36%  and 28.42%  compared with those of the 

initial linear system. Thus it can be seen that the proposed method is applicable not only to weakly 

nonlinear systems, but also to highly nonlinear systems. 

 

 
6. Conclusions 
 

The non-stationary random vibration analysis of hysteretic systems with multiple DOFs is one 

of the most difficult topics in the field of nonlinear random vibration. A new approach to this 

highly challenging problem is developed in this paper. With the Bouc-Wen model, two explicit 

iteration MCS methods based on precise integration and Newmark-β integration are proposed for 

the nonlinear random vibration analysis of hysteretic systems. The coefficient matrices used for 
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the solution need to be calculated just once and remains unchanged for different samples and time 

steps. Therefore, the solution efficiency can be improved greatly, effectively breaking the 

bottleneck in MCS. Numerical examples show that for a hysteretic system with hundreds of DOFs, 

the computational cost of the present approach is less than 10% of that of the conventional MCS 

based on the traditional time-domain integration scheme. The proposed method provides a solid 

foundation for the application of random vibration to large-scale nonlinear engineering problems. 
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