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Abstract.  In this paper, different feedback control strategies are presented for active seismic control using 
proportional–integral–derivative (PID) type controllers. The parameters of PID controller are found by using 
an numerical algorithm considering time delay, maximum allowed control force and time domain analyses 
of shear buildings under different earthquake excitations. The numerical algorithm scans combinations of 
different controller parameters such as proportional gain (Kp), integral time (Ti) and derivative time (Td) in 
order to minimize a defined response of the structure. The controllers for displacement, velocity and 
acceleration feedback control strategies are tuned for structures with active control at the first story and all 
stories. The performance and robustness of different feedback controls on time and frequency responses of 
structures are evaluated. All feedback controls are generally robust for the changing properties of the 
structure, but acceleration feedback control is the best one for efficiency and stability of control system. 
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1. Introduction 
 

Structural control strategies have various types, such as active, passive, hybrid and semi-active 

systems. Passive systems play a great role for reducing undesirable vibrations with their 

mechanical component. By using high technology materials, the importance of passive systems in 

structural control became more popular than before, especially for retrofitting of existing structures. 

Passive control systems such as base isolation systems, passive tuned mass dampers, diagonal steel 

braces, friction dampers and viscoelastic dampers have been widely used for the seismic protection 

and retrofit applications.  

Optimization of the passive devices is needed for the best performance of the system and 

several approaches have been proposed for base isolation systems (Suresh et al. 2010 and Ozbulut 

and Hurlebaus 2011), tuned mass dampers (Sadek et al. 1997, Hadi and Arfiadi 1998, Bekdas and 

Nigdeli 2011 and Nigdeli and Bekdas 2013), diagonal steel braces (Aydın and Boduroglu 2008) 

and dampers (Takewaki 2000, Aydın et al. 2007, Takewaki 2009, Amini and Ghaderi 2013 and 

Murakami et al. 2013). When structures subjected to unstable excitations like earthquakes, passive 

systems may be insufficient. Especially, near fault sources produce earthquakes with long velocity  
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pulses. For a more effective seismic protection, control force must be varied automatically with 
time.  

Active control systems can produce time varying forces with actuators driven by automatic 
control devices. Thus, active controlled structures can be stabilized immediately even during high 
impact earthquakes. Apart from all these, active control systems have some disadvantages. 
Because of using several control equipment such as computer, actuators and sensors, they may be 
expensive. During earthquakes, electrical source of the structures may fail. In order to carry out the 
control process, large external power supply may be needed. Semi-active systems need less energy 
than active ones and can run with a battery, but their capacity may be lesser. Hybrid systems are 
the combination of both active and passive systems. Hybrid systems can be also used as passive 
control systems without any energy. Switch of active control systems are always on while semi-
active or hybrid systems can be switched off when the system is not under an excitation. Another 
disadvantage of active control systems is time delay resulting from equipment. Delay of the 
control signals must be considered in the design of active control systems. Stability problem can 
be occurred for active control systems. This situation must be checked in tuning process. The 
robustness of the active control systems for changing behavior of the controlled system must be 
evaluated.           

The idea of active control of structure dates back to 1968 (Zuk 1968). Then, several approaches 
have been done after the first introduction of active structural control was done by Yao (1972). 
Active control of structures is still an active research area for new approaches and further 
investigations.  

Roorda (1975) proposed an active tendon control systems for masts and towers subjected to 
forces caused by turbulent wind conditions by modeled structure as a uniform cantilever beam. 
Yang and Giannopoulos (1978) developed active tendon controlled structures modeled as 
cantilever beams by using the transfer matrix technique. Frame structures, which were subjected to 
a steady state disturbance, were controlled with active tendons by Abdel-Rohman and Leipholz 
(1979). Unloaded cables were used for generating control force at this study. Yang and Samali 
(1983) controlled tall structures excited by a random wind flow which is stationary in time and 
nonhomogenous in space. They obtained significant reduction of acceleration response by using 
either an active mass damper or an active tendon control system. Abdel-Rohman and Leipholz 
(1983) used active prestressed cable in order to reduce wind response of tall structures. A single 
continuous cable was implemented to all floors with pulleys in order to apply a single horizontal 
control force at the top of the building. They showed that active tendon control was more effective 
than active mass damper in reducing wind source vibrations but control force needed for 
application was more than active mass damper. A pole-placement method (Abdel-Rohman and 
Leipholz 1978) was considered as control algorithm. Samali et al. (1985) numerically analyzed 
active tendon controlled torsionally irregular structures under randomly generated earthquake. A 
closed-loop control law was used and building responses were obtained with Monte Carlo 
simulation. Chung et al. 1988) applied active tendon control system to single degree of freedom 
experimental model under base motion generated by a large-scale simulator. Chung et al. (1989) 
sustained experimental studies with 1:4 scaled three story frame building. Lόpez-Almansa and 
Rodellar (1989), numerically analyzed active tendon controlled frame and shear wall buildings. 
Reinhorn et al. (1989) tested 1:4 scale models with active tendons and active tuned mass dampers 
for aseismic protection.  

Parallel algorithms for structural control have been proposed by Saleh and Adeli (1994), Saleh 
and Adeli (1996), Saleh and Adeli (1997), Adeli and Saleh (1997), Adeli and Saleh (1998) and 
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Saleh and Adeli (1998). In discrete-time formulation, a modified instantaneous control algorithm 
considering time delay is developed by Chung et al. (1997). A multi-step acceleration feedback 
control algorithm was proposed for active tendon control of structures by Chung et al. (1998). 
Predictive control algorithms for active structural control were proposed by Chung (1999) and Mei 
et al. (2002). Optimum placements of active and passive control systems were investigated for 
three dimensional structures by Arfiadi and Hadi (2000). Several active control algorithms have 
been proposed by Bakioglu and Aldemir (2001), Aldemir et al. (2001), Kim and Adeli (2004), 
Adeli and Kim (2004), Kim and Adeli (2005a), Min et al. (2005) and Chang and Lin (2009). A 
hybrid structural control system by the combination of a passive supplementary damper with a 
semi-active tuned liquid column damper was developed (Kim and Adeli 2005b, Kim and Adeli 
2005c). An energy based technique was proposed for linear quadratic regulator (LQR) controllers 
by Alavinasab and Moharrami (2006). Several control algorithms employing fuzzy logic (Nomura 
et al. 2007) and neural networks (Jiang and Adeli 2008a, Jiang and Adeli 2008b and Lin et al. 
2012) have also been used in active control algorithms. Active tendon controlled torsionally 
irregular structure was investigated by Lin et al. (2010) by considering soil-structure interaction. 
Optimal control was obtained according to minimization of a performance index defined as a 
simple integral type quadratic functional by Aldemir (2010). A direct adaptive control method was 
developed by Bitaraf et al. (2012) for control of an undamaged and a damaged structure. A 
decentralized control strategy was proposed by Lei et al. (2012). In order to consider the 
mechanical energy of the system, control and the seismic energy, Aldemir et al. (2012) developed 
a new performance index. A novel multi-objective genetic algorithm was developed for 
optimization of active control systems for vibration control of 3-dimensional buildings by Cha et 
al. (2013). Nigdeli and Boduroglu (2013) investigated active tendon control of torsionally irregular 
structures subjected to near fault effects by using a numerical algorithm for tuning of Proportional 
Integral Derivation (PID) type controllers. 

In this paper, seismic structures were actively controlled by using different feedback control 
strategies. Proportional–integral–derivative (PID) type controllers were used and the parameters of 
PID controller were tuned by using a numerical algorithm considering several performance 
indexes. These indexes are time delay of the control signal, maximum allowed control force and 
time domain analyses of shear buildings under different earthquake excitations. The controller 
parameters for displacement, velocity and acceleration feedback control strategies were tuned for 
multi-story structures with different control schemes. The performance and robustness of different 
feedback controls on time and frequency responses are investigated and compared. 
 
 
2. Equations of motion of multi-story structures 
 

Equations of motions of a multiple degrees of freedom (MDOF) structures can be written as 

gx1MXKXCXM                                 (1) 

where M, C and K are mass, damping and stiffness matrices. In Eq. (1), X , gx  and 1  
represents displacement vector of structure (dot on the top defines its derivative with respect to 
time), ground acceleration and vector of ones. Active tendon control applications given in Fig. 1 
were investigated in this study.  

In the first case, structure is controlled only from the first story. In cases II and III, active 
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tendons are positioned for all floors. Alternatively in Case III, tendons lies from ground to floor 
level.  

Tendon have reaction forces at upper floors in Case II. Because of this, the structure can only 
benefit from resultant forces shown in Fig. 2. In the other cases, all reaction forces are supported 
by the ground.  

Case III is a more suitable case than Case II in performance, but it can only applied in special 
conditions, because all actuators are on the base and long cables lies from bottom to all stories. For 
example, Case III is suitable for structures constructed by using tunnel formwork (structure with 
shear walls and slabs). Active tendon control systems can be merged to a shear wall and cables can 
lie from a hole on the slabs. In frames structures, the dimension of a column may not be sufficient 
to connect all cables because all cables cannot be in same line and cables may past through a beam 
of the structure. In Case III, the vertical component of the control force which may be harmful for 
vertical supports of structure and has no positive benefit on structural control, is more than other 
cases for Case III due to change of tendon angles with respect to ground. 

If each tendon is loaded with a pre-stressed force (R), in dynamic state, while one of the 
crosswise tendons is being loaded by tensile force, the other one is being unloaded because of 
compressive force. A tendon cannot carry compressive force. Thus, absolute value of control force 
must be smaller than pre-stress force in order to maintain desired control force with respect to the 
actuator displacement. According to this definition, equations of motion for actively controlled 
structures are given in Eq. (2), Eq. (3) and Eq. (4) for cases I, II and III, respectively. In these 
equations, kc, α and ui represent stiffness of tendons, tendon angles with respect to ground (in Case 
III; α, β and θ) and actuator displacement or control signal for i = 1-3, respectively.  

 
 

   
Fig. 1 Active tendon cases for multi-story structures 
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Fig. 2 Reaction forces for Case II 
 
 
3. Active control of multi-story structures 
 

Active control concept was verified with multiple degree of freedom (MDOF) structural model 
for different feedback control strategies. The controllers were tuned for all feedback strategies and 
orientation of active tendons. Proportional Integral Derivation (PID) type controllers were used for 
all feedback controls. Motions of active tendon controlled structures were modeled at Matlab 
Simulink (The MatWorks Inc. 2010) for time history analyses. Runge-Kutta method with 1e-3 step 
size was used in order to conduct numerical simulations. Time delay factor was also considered in 
the tuning process. Time delay was assumed as 20 ms at this study. A transport delay block was 
implemented after the generation of control signals at Matlab Simulink.    

Proportional Integral Derivation (PID) type controllers were used to generate control signal 
data, u(t) that is also the displacement of the activators. These types of controllers use feedback 
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strategy according to a defined error signal. The controller have three specific actions to tune. 
These actions are P, I and D actions. P-action is important for increasing the speed of control 
response, D-action is effective on damping and I-action is proposed for eliminating steady-state 
error (De Cock et al. 1997).  

Equation of the PID controller is written as  










  dt

tde
Tdtte

T
teKtu d

i
p

)(
)(

1
)()(                        (5) 

in which Kp (Proportional gain), Ti (Integral time) and Td (Derivation time) are the coefficients of 
the controller. These coefficients representing PID actions were found by applying the proposed 
methodology. By using Eq. (5), error signal, e(t) (undesired response defined according to 
feedback) can be transformed into control signal. In control, displacement, velocity and 
acceleration of first story of the structure were taken as control signal for displacement, velocity 
and acceleration feedback controls, respectively. Control signal were generated according to 
responses respect to the ground, thus dominant effect of the excitations were prevented.  

Classical PID tuning methods such as Ziegler-Nichols tuning method (Ziegler and Nichols 
1942) may not be insufficient for randomly changing vibrations. Guclu (2006) investigated sliding 
mode and PID control of structural systems. Coefficients of PID actions were obtained by using 
Ziegler-Nichols tuning method but the results shows that PID controlled system is not so effective 
according to sliding mode control.  

Nigdeli and Boduroglu (2013) proposed an iterative numeric algorithm for tuning of PID 
parameters. The time history analyses were conducted for impulsive motions resulting from near 
fault seismic sources.  

In present study, a similar numerical algorithm is proposed for different feedback control 
strategies. In tuning process, time history analyses were done for five different earthquake records. 
The numerical algorithm presented in Nigdeli and Boduroglu (2013) considers only a single 
excitation for the tuning process. Also, differently from this numerical algorithm, a control force 
limit was considered during the tuning process in addition to time delay consideration. If the 
control force limit is exceeded for a set of PID controller parameters, this set of parameters are 
directly eliminated. The methodology is summarized in Fig. 3.  

The excitations used in tuning must represent the seismic characteristic of the region. Thus, an 
optimum solution for a region can be found. A region may also suffer from earthquakes with 
different characteristics. For example, a near fault region may also be affected by earthquakes with 
epicenter far away from the region. 

The information of earthquake records downloaded by Pacific Earthquake Engineering 
Research Center (PEER) database are given in Table 1. This table also includes peak ground  
 
 

Table 1 Earthquake records used in tuning process 

Earthquake Date Station Component PGA (g) PGV (cm/s) PGD (cm)
Kobe 1995 0 KJMA KJM000 0.821 81.3 17.68 

Imperial Valley 1940 117 El Centro Array #9 I-ELC180 0.313 29.8 13.32 
Erzincan 1992 95 Erzincan ERZ-NS 0.515 83.9 27.35 

Northridge 1994 24514 Sylmar SYL360 0.843 129.6 32.68 
Loma Prieta 1989 16 LGPC LGP000 0.563 94.8 41.18 
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acceleration (PGA), peak ground velocity (PGV) and peak ground displacement (PGD) values of 
the excitations. Except Imperial Valley (El Centro) excitation, near fault ground motion records 
were used in the tuning process.       

In methodology, the range of PID controller parameters are defined according to several trial 
because stability problem can occur for several combination of controller parameters. Stability 
error may prevent the iteration process. The algorithm iteratively scans neighboring values for 
controller parameters and save a desired response of structure. If maximum control force value is 
exceeding the desired value, relevant combination of parameters are eliminating. A range is also 
needed for minimizing the duration of the process.      

 
 

  
Fig. 3 Flowchart of the methodology 

 

 

4. Numerical examples 
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Define range of PID controller parameters by trials  

Iteratively change Kp

Iteratively change Td

Iteratively change Ti

Dynamic Analyses

Store desired peek response for different Ti values (Kp and Td constant) 

Store desired peek response for different Ti and Td values (Kp constant) 

Store desired peek response for all combinations

End
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The properties of three story structure are given in Table 2. Controller parameter were found for 
different cases and feedback controls. For cases II and III, resultant control forces were taken as 
the same for all floors. Also, resultant control forces are tuned as equal for Case II and III. Thus, Td 
and Ti are the same for all control systems, but proportional gain (Kp) is different. Proportional 
gain (Kp) is 3 and 2 times of the value of third floor controller for Case II in the first and second 
floor, respectively. For Case III, Kp is 1.4 and 1.9 times of the first floor controller in the second 
and third floor, respectively. In tuning process, the objective is to minimize the maximum value of 
first story displacement without exceeding 5 kN (10 kN for Case I) control force for a story.  

 
 

Table 2 Properties of three story structure (Chung et al. 1989) 

Symbol Definitions Numerical value 

M (kg) 
Mass matrix of the MDOF 

structure 
൥
981 0 0
0 981 0
0 0 981

൩ 

K (N/m) 
Stiffness matrix of the MDOF 

structure 
൥

2741700 -1641600 369100
-1641600 3022200 -1624800
369100 -1624800 1333600

൩

C (Ns/m) 
Damping matrix of the MDOF 

structure 
൥
382.8 -57.3 61.7
-57.3 456.9 -2.6
61.7 -2.6 437.5

൩ 

α, β and θ (º) 
Angles of tendons respect to 

ground 36, 55 and 65 

kc (N/m) Stiffness of tendons 372100 

T1, T2 and T3 (s) Periods of the MDOF structure 0.45, 0.15 and 0.09 

 
 
4.1 Displacement feedback control 
 
In displacement feedback control; Kd, Td and Ti were found as -0.014, 0.75 s and 0.03 s, 

respectively for Case I. For other cases, Kd, Td and Ti are equal to -0.011 (for the smallest one as 
described in section 4), 0.9 s and 0.022 s, respectively. The maximum responses are given in 
Table 3 for all cases. Also, maximum responses of uncontrolled structures are given in Table 3. 

The maximum displacements and velocities are respect to the ground, but total acceleration 
values are given in tables. Maximum control forces are the resultant horizontal force on tendons. 
For uncontrolled structure, maximum responses occur under Kobe excitation.      

In Case I, active control is effective on reducing all type of responses for all stories. Although 
the most critical excitation is Kobe for uncontrolled structure, the most critical one is Northridge in 
this feedback. Under Kobe excitation, maximum displacements, velocities and accelerations are 
reduced up to 34%, 38% and 35%, respectively for Case I and displacement feedback control.  

The maximum reductions of displacements are between 20% and 65 % for Cases II-III and 
displacement feedback control. Reductions are between 45%-70% and 6%-67% for velocity and 
acceleration, respectively. Generally, the reduction percentages are nearly equal to each other for 
all stories, but reduction percentages may vary according to excitation.  

In Fig. 4, time history plots of first and top story displacements for Kobe excitation are 
illustrated. The benefit of active control can be clearly seen for peak responses and steady state 
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Table 3 Maximum responses of controlled structure for displacement feedback control 

 
Excitation 

Displacement 
(cm) 

Velocity (m/s) 
Acceleration 

(m/s2) 
Control 

force (N) 
 Story 1 2 3 1 2 3 1 2 3  

U
nc

on
tr

ol
le

d Kobe 8.17 18.0 23.0 1.17 2.47 3.11 22.3 35.1 46.8 - 
Imperial Valley 2.87 5.9 7.2 0.37 0.72 1.00 10.2 15.2 15.4 - 

Erzincan 1.81 3.7 4.7 0.23 0.47 0.63 6.0 7.6 9.2 - 
Loma Prieta 6.32 13.0 16.1 0.71 1.58 2.18 19.0 29.4 29.5 - 
Northridge 6.29 13.4 17.0 0.83 1.90 2.51 20.8 28.2 32.1 - 

C
A

S
E

 I
 

Kobe 5.56 12.0 15.2 0.72 1.54 2.01 16.2 25.0 30.4 7205.2 
Imperial Valley 1.91 4.0 4.9 0.26 0.52 0.65 7.7 11.5 10.1 2662.0 

Erzincan 1.67 3.6 4.5 0.15 0.33 0.42 5.1 7.4 8.7 1705.6 
Loma Prieta 4.79 10.5 13.2 0.59 1.34 1.72 13.3 23.6 25.0 5669.9 
Northridge 5.60 12.2 15.4 0.70 1.69 2.29 16.3 28.6 29.5 6963.7 

C
A

S
E

 I
I-

II
I Kobe 3.21 6.5 8.1 0.35 0.76 1.02 12.7 15.7 15.6 3146.1 

Imperial Valley 1.07 2.1 2.6 0.16 0.31 0.43 6.2 6.4 6.4 1852.4 
Erzincan 1.40 3.0 3.8 0.12 0.26 0.31 5.2 7.1 8.3 1285.8 

Loma Prieta 2.36 4.9 6.1 0.29 0.60 0.80 11.1 13.0 14.1 2816.4 
Northridge 3.52 7.6 9.7 0.54 1.06 1.32 11.8 19.7 23.9 4989.7 

 

Fig. 4 First and top story displacement plots for displacement feedback control (Kobe excitation) 
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response of controlled structure. A better steady state response is obtained for Case II-III in 
comparison to Case I. First story acceleration transfer function plot for displacement feedback 
control is given in Fig. 5. For Case I, a reduction for peak values is not provided.  
 
 

 
Fig. 5 First story acceleration transfer function plot for displacement feedback control 

 
 
4.2 Velocity feedback control 
 
Controller parameters; Kd, Td and Ti were found as -0.009 s, 0.06 s and 0.05 s, respectively for 

Case I. For the other cases, Kd, Td and Ti are equal to -0.0017 s (for the smallest one as described in 
section 4), 0.36 s and 0.01 s, respectively. The maximum responses are shown in Table 4.  

 
 

Table 4 Maximum responses of controlled structure for velocity feedback control 

 
Excitation 

Displacement 
(cm) 

Velocity (m/s) 
Acceleration 

(m/s2) 
Control 

force (N)
 Story 1 2 3 1 2 3 1 2 3  

U
nc

on
tr

ol
le

d Kobe 8.17 18.0 23.0 1.17 2.47 3.11 22.3 35.1 46.8 - 
Imperial Valley 2.87 5.9 7.2 0.37 0.72 1.00 10.2 15.2 15.4 - 

Erzincan 1.81 3.7 4.7 0.23 0.47 0.63 6.0 7.6 9.2 - 
Loma Prieta 6.32 13.0 16.1 0.71 1.58 2.18 19.0 29.4 29.5 - 
Northridge 6.29 13.4 17.0 0.83 1.90 2.51 20.8 28.2 32.1 - 

C
A

S
E

 I
 

Kobe 5.15 11.4 14.6 0.65 1.50 1.96 15.6 24.3 29.4 9577.9 
Imperial Valley 1.54 3.4 4.4 0.20 0.45 0.59 4.8 8.1 8.4 3493.4 

Erzincan 1.51 3.4 4.4 0.14 0.31 0.41 4.8 7.0 8.9 3056.8 
Loma Prieta 4.39 10.0 12.9 0.59 1.29 1.67 11.0 20.8 26.4 8082.3 
Northridge 5.15 11.7 15.1 0.70 1.67 2.20 12.5 25.1 30.4 9223.9 

C
A

S
E

 I
I-

II
I Kobe 4.17 8.8 11.2 0.51 1.10 1.40 14.7 21.7 25.4 4042.3 

Imperial Valley 1.04 2.2 2.9 0.16 0.32 0.41 3.7 5.2 7.3 1914.2 
Erzincan 1.19 2.6 3.3 0.12 0.25 0.30 5.1 6.8 8.3 1756.1 

Loma Prieta 3.15 7.0 9.1 0.49 0.93 1.16 10.1 16.3 22.5 3798.6 

Northridge 4.28 9.5 12.1 0.64 1.43 1.83 11.2 23.0 27.7 3737.0 
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Also for velocity feedback control, Northridge excitation is the most critical one for the 
responses of active controlled structure. Velocity feedback control is more effective than 
displacement feedback control for Case I, but opposite can be said for the other cases. Due to high 
peak ground velocity of Erzincan excitation, a better benefit than displacement feedback control is 
seen. In Case I, the reduction percentages of responses are vary between 8-46, 12-47 and 3-53 for 
displacement, velocity and acceleration, respectively. These reductions for the other cases are 
between 29-64, 23-59 and 11-66 for displacement, velocity and acceleration, respectively. 

Time history plots of first and top story displacements for Kobe excitation are shown in Fig. 6 
for velocity feedback control. Displacement feedback control is better on steady state response 
than velocity feedback control for Cases II and III. In velocity feedback control, a reduction for 
peak values of transfer function plot is provided as seen in Fig. 7. Case I has a better frequency 
response than the other cases.   

Near fault ground motions are significant with their high peak ground velocities. For that 
reason, generating a control signal according to velocities which is the derivative of displacements 
and integration of accelerations, a successful control is achieved. Velocity is also a variable of the 
total energy. 

 
 

 

Fig. 6 First and top story displacement plots for velocity feedback control (Kobe excitation) 
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Fig. 7 First story acceleration transfer function plot for velocity feedback control 

 
 
4.3 Acceleration feedback control 
 
Controller parameters for acceleration feedback control and Case I are -0.00019 s2, 0.001 s and 

0.015 s for Kd, Td and Ti, respectively. Kd, Td and Ti are -0.0001 s2, 0.0005 s and 0.01 s for the other 
cases, respectively. The maximum responses are obtained as seen in Table 5.  

 
 

Table 5 Maximum responses of controlled structure for acceleration feedback control 

 Excitation 
Displacement 

(cm) 
Velocity (m/s) 

Acceleration 
(m/s2) 

Control 
force (N)

 Story 1 2 3 1 2 3 1 2 3  

U
nc

on
tr

ol
le

d Kobe 8.17 18.0 23.0 1.17 2.47 3.11 22.3 35.1 46.8 - 
Imperial Valley 2.87 5.9 7.2 0.37 0.72 1.00 10.2 15.2 15.4 - 

Erzincan 1.81 3.7 4.7 0.23 0.47 0.63 6.0 7.6 9.2 - 
Loma Prieta 6.32 13.0 16.1 0.71 1.58 2.18 19.0 29.4 29.5 - 
Northridge 6.29 13.4 17.0 0.83 1.90 2.51 20.8 28.2 32.1 - 

C
A

S
E

 I
 

Kobe 5.10 10.8 13.6 0.60 1.33 1.72 14.7 21.9 25.4 9276.8 
Imperial Valley 1.67 3.5 4.4 0.19 0.43 0.58 5.4 8.0 8.6 3044.6 

Erzincan 1.67 3.5 4.5 0.13 0.29 0.37 4.9 7.0 8.6 2137.2 
Loma Prieta 4.16 8.9 11.3 0.51 1.12 1.48 10.7 18.0 22.0 7847.9 
Northridge 5.21 11.2 14.3 0.64 1.51 2.02 12.9 23.7 27.5 9960.3 

C
A

S
E

 I
I-

II
I Kobe 2.82 5.8 7.2 0.30 0.67 0.88 11.3 12.9 12.9 3659.4 

Imperial Valley 0.93 1.9 2.4 0.12 0.25 0.39 4.6 5.6 5.2 1608.7 
Erzincan 1.44 3.0 3.8 0.09 0.22 0.31 5.1 6.5 7.8 1163.0 

Loma Prieta 1.96 4.0 5.0 0.23 0.50 0.69 8.7 9.9 11.7 2909.3 
Northridge 3.04 6.5 8.2 0.39 0.85 1.05 9.0 15.9 19.1 4845.3 

 
 
Similar to the other feedbacks, Northridge excitation is the most critical one for active 

controlled structure. Generally, best reductions are obtained in this feedback with a perfect steady 
state response as seen in Fig. 8.  
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Fig. 8 First and top story displacement plots for acceleration feedback control (Kobe excitation) 
 
 
In Case I, the reduction percentages are between 16-42, 19-49 and 14-47 for displacement, 

velocity and acceleration, respectively and for the other cases, reduction percentages are between 
20-69, 53-74 and 40-73 for displacement, velocity and acceleration, respectively. Cases II-III has 
the best frequency response as seen in Fig. 9. 

 
 

 
Fig. 9 First story acceleration transfer function plot for acceleration feedback control 

0 5 10 15 20 25 30 35
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

time (s)

x 1 (
m

)

 

 

Uncontrolled

Case I

0 5 10 15 20 25 30 35
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

time (s)

x 1 (
m

)

 

 

Uncontrolled

Case II-III

0 5 10 15 20 25 30 35
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

time (s)

x 3 (
m

)

 

 

Uncontrolled

Case I

0 5 10 15 20 25 30 35
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

time (s)

x 3 (
m

)

 

 

Uncontrolled

Case II-III

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20
-40

-30

-20

-10

0

10

20

30

40

frequency (Hz)

tr
an

sf
er

 f
un

c.
 (

dB
)

 

 

Uncontrolled

Case I
Case II-III

229



 
 
 
 
 
 

Sinan Melih Nigdeli 

4.4 Robustness of the control system  
 
Control systems may lose their efficacy if period (or frequency) of the structure change. In 

order to investigate this, mass or stiffness of the structure may be changed by an amount.  
The robustness of the control systems were evaluated for all feedbacks and cases. The total 

mass of the structure was changes between 70% and 130% with 5% differences in order to see any 
stability problem or a performance lost. In Table 6, maximum displacements for the most critical 
excitation are given. Also, maximum control forces are given in Table 7.  

 
 

Table 6 Maximum displacements for different mass of structure (m) 

Mass 
(%) 

Uncont. 
structure 

DFC 
Case I 

DFC 
Case II-III

VFC 
Case I 

VFC 
Case II-III

AFC 
Case I 

AFC 
Case II-III

70 0.0497 853.8048 0.0241 1.399E+63 2.83E+64 0.0396 0.0215 
75 0.0581 5.8213 0.0265 2.41E+27 1.259E+32 0.0423 0.0233 

80 0.0577 0.0592 0.0284 0.0441 203.8654 0.0449 0.0250 
85 0.0608 0.0507 0.0304 0.0466 0.0370 0.0473 0.0266 

90 0.0626 0.0533 0.0323 0.0488 0.0392 0.0494 0.0280 

95 0.0691 0.0549 0.0336 0.0504 0.0412 0.0509 0.0293 
100 0.0817 0.0560 0.0352 0.0515 0.0428 0.0521 0.0304 

105 0.0822 0.0584 0.0361 0.0545 0.0451 0.0535 0.0313 

110 0.0834 0.0621 0.0374 0.0568 0.0523 0.0551 0.0322 
115 0.0852 0.0651 0.0395 0.0604 0.0578 0.0571 0.0339 

120 0.0843 0.0666 0.0406 0.0628 0.0580 0.0588 0.0352 

125 0.0840 0.0671 0.0416 0.0639 0.0627 0.0594 0.0363 
130 0.0815 0.0663 0.0433 0.0639 0.0632 0.0590 0.0372 

 
Table 7 Maximum control forces for different mass of structure (N) 

Mass 
(%) 

DFC 
Case I 

DFC 
Case II-III 

VFC 
Case I 

VFC 
Case II-III 

AFC 
Case I 

AFC 
Case II-III 

70 9.489E+08 3568.094987 1.7512E+70 4.1547E+71 9461.48233 3532.412646
75 6281300 3652.76007 3.1928E+34 1.9610E+39 9854.797976 3780.301557

80 61170.06556 4129.001094 8688.258028 3399899884 10168.62276 4044.018781

85 7536.274835 4364.420584 8578.263875 4685.189855 10300.54856 4308.367235
90 7467.730179 4683.861646 8860.298441 4381.852333 10307.79504 4531.951541

95 6936.581632 4993.75192 9088.005509 4081.444244 10138.64734 4759.79686 

100 7205.213258 4989.70686 9577.875474 4042.344195 9960.339118 4845.308194
105 7250.904481 5323.0819 10220.6572 4508.828542 9934.731953 4951.784104

110 7711.436973 5213.869781 10739.95983 4942.887697 10525.16211 4950.794759

115 8228.272851 5266.181351 11054.77634 5142.133193 10956.01199 4960.498045
120 8390.906598 5270.260675 11500.43733 5583.565753 11163.82673 4905.603378

125 8259.632153 5190.572984 11641.95959 5656.835486 11233.86122 4810.598423

130 8127.445484 5149.165057 11555.8176 6733.739281 11146.10069 5057.703308

230



 
 
 
 
 
 

Effect of feedback on PID controlled active structures under earthquake excitations 

Although the performance of control system is a little reduced for the increase of mass of the 
structure (increase of the period), a stability problem is not seen. The minimum performance lost is 
seen for acceleration feedback control. Due to decrease of earthquake forces, the displacement of 
the structure is getting lower by the decrease of the mass. After -20% mass different, stability 
problem is observed for Case I of displacement and velocity feedback controls. Case II and III of 
velocity feedback control is stabile up to -15% while other control types are not an issue of a 
stability problem. In some mass differences, the maximum control force exceeds the limits used in 
tuning process. This situation is especially seen for velocity feedback control (up to 35%). 

The variation of stiffness of the structure was also evaluated. For different stiffness values, 
maximum displacements and control forces are given in Tables 8 and 9, respectively. For the 
variation of the stiffness values, a stability problem is not seen for all feedback controls. 
Additionally, only a feasible increase on the maximum control forces is seen.    
 
 
Table 8 Maximum displacements for different stiffness of structure (m) 

Stiffness
(%) 

Uncont. 
structure 

DFC 
Case I 

DFC 
Case II-III

VFC 
Case I 

VFC 
Case II-III

AFC 
Case I 

AFC 
Case II-III

70 0.0889 0.0571 0.0401 0.0550 0.0558 0.0511 0.0353 
75 0.0794 0.0612 0.0383 0.0582 0.0551 0.0535 0.0341 
80 0.0800 0.0631 0.0378 0.0591 0.0526 0.0547 0.0331 
85 0.0803 0.0630 0.0370 0.0579 0.0530 0.0543 0.0321 
90 0.0811 0.0607 0.0358 0.0551 0.0492 0.0534 0.0309 
95 0.0806 0.0577 0.0351 0.0537 0.0441 0.0527 0.0304 

100 0.0817 0.0560 0.0352 0.0515 0.0428 0.0521 0.0304 
105 0.0711 0.0556 0.0347 0.0511 0.0421 0.0517 0.0303 
110 0.0633 0.0547 0.0346 0.0504 0.0412 0.0510 0.0301 
115 0.0624 0.0536 0.0338 0.0493 0.0401 0.0501 0.0297 
120 0.0604 0.0519 0.0334 0.0480 0.0390 0.0489 0.0293 
125 0.0607 0.0504 0.0327 0.0466 0.0386 0.0476 0.0289 
130 0.0644 0.0490 0.0320 0.0453 0.0375 0.0463 0.0284 
 

Table 9 Maximum control forces for different stiffness of structure (N) 

Stiffness 
(%) 

DFC 
Case I 

DFC 
Case II-III 

VFC 
Case I 

VFC 
Case II-III 

AFC 
Case I 

AFC 
Case II-III 

70 6565.74867 4628.783194 9952.253851 6265.029863 9237.401136 4503.018267
75 7217.907296 4777.004262 10507.59269 5859.690123 9807.519051 4376.851539
80 7619.057905 4984.652369 10782.92529 5222.628187 10262.12891 4326.670088
85 7800.917247 5135.354314 10607.98178 4970.666114 10380.14279 4562.185744
90 7439.697877 5083.775163 10440.33607 4696.92488 10165.67632 4691.264838
95 7129.497009 5252.808981 10062.25038 4409.779787 9737.67695 4812.963852
100 7205.213258 4989.70686 9577.875474 4042.344195 9960.339118 4845.308194
105 7039.124111 5109.319009 9213.608084 3913.405707 10272.01891 4941.739966
110 7660.356177 4765.069098 9100.074231 4041.938693 10585.74904 4892.467056
115 7631.656004 4858.717571 8938.352673 4052.105126 10788.62692 4888.683732
120 7862.226305 4578.897765 8705.604588 4010.764421 10889.05489 4770.167333
125 9393.461139 4555.754461 8448.374433 3964.942132 10936.68736 4684.361131
130 22585.89992 4385.707642 8379.791679 3905.709419 10880.01548 4586.517614
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5. Conclusions 
 

As a conclusion, all types of feedbacks are effective and generally robust for active control of 
seismic structures. When the efficiency of control system and robustness against the changing 
properties of the structure are evaluated, acceleration feedback control is the most useful one. In 
addition to that, an important performance index is the content of the base excitation. The best 
reductions for Erzincan earthquake is obtained for velocity feedback control. Erzincan excitation 
has a significant high PGV, although it has average PGA and PGV and has minimal effect on the 
structure used as numerical example. For that reason, type of excitation is an important factor for 
active control. The usage of excitations that characterizes the geophysical content of the region is 
effective on tuning and efficiency of controller system. Thus, a suitable feedback can be chosen. 

Other important factors in active control are time delay and control force limits. These 
performance indexes can be considered in the tuning process of the controller. For changing 
properties of structure, the maximum value of control force may exceed the limit. This situation 
may prevent the process of active control or time delay of the system may be getting longer and 
stability of the structure mat be lost. For that reason, limit of the control force must be taken as 
lower than the expected in tuning process and the robustness of the system must be evaluated.  

In this study, robustness of the structure is evaluated for the increase and decrease of the mass 
and stiffness. This situation will dramatically change the frequency content of the structure. All 
feedback controls are generally robust. Acceleration feedback control preserves its robustness and 
performance for ±30% mass and stiffness difference. Stability problems are only observes for the 
decrease of the mass for displacement and velocity feedback controls. The critical period of the 
structure in numerical example is 0.45 s. By the decrease of the mass, the period of the structure 
and seismic responses of structure are getting lower. For small periods, an acceleration spectrum of 
an earthquake may be very changeable according to soil conditions. In tuning of active controllers 
and dynamic analyses, a mass of structure is assumed according live and dead loads on the 
structure. Using the mass of a highly loaded structure in tuning of controllers may result with 
stability problems. 
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