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Abstract.  We study seismically induced, anti-plane strain wave motion in a non-homogeneous geological 
region containing tunnels. Two different scenarios are considered: (a) The first models two tunnels in a finite 
geological region embedded within a laterally inhomogeneous, layered geological profile containing a 
seismic source. For this case, labelled as the first boundary-value problem (BVP 1), an efficient hybrid 
technique comprising the finite difference method (FDM) and the boundary element method (BEM) is 
developed and applied. Since the later method is based on the frequency-dependent fundamental solution of 
elastodynamics, the hybrid technique is defined in the frequency domain. Then, an inverse fast Fourier 
transformation (FFT) is used to recover time histories; (b) The second models a finite region with two 
tunnels, is embedded in a homogeneous half-plane, and is subjected to incident, time-harmonic SH-waves. 
This case, labelled as the second boundary-value problem (BVP 2), considers complex soil properties such 
as anisotropy, continuous inhomogeneity and poroelasticity. The computational approach is now the BEM 
alone, since solution of the surrounding half plane by the FDM is unnecessary. In sum, the hybrid 
FDM-BEM technique is able to quantify dependence of the signals that develop at the free surface to the 
following key parameters: seismic source properties and heterogeneous structure of the wave path (the FDM 
component) and near-surface geological deposits containing discontinuities in the form of tunnels (the BEM 
component). Finally, the hybrid technique is used for evaluating the seismic wave field that develops within 
a key geological cross-section of the Metro construction project in Thessaloniki, Greece, which includes the 
important Roman-era historical monument of Rotunda dating from the 3rd century A.D. 
 

Keywords:  SH-waves; anisotropy; inhomogeneity; poroelasticity; tunnels; local site effects; seismic 

response; hybrid FDM-BEM 

 
 
1. Introduction 
 

A BEM formulation based on a new type of fundamental solution derived by the Radon 

transform (Rangelov et al. 2005) is interfaced with the FDM (Moczo et al. 2007) and used to 

synthesize seismic signals in complex geological regions for design purposes. The particular soil 

deposit considered herein is a cross-section containing two underground Metro tunnels in the 
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centre of the town of Thessaloniki, Greece, a short distance from an important Roman monument 

complex known as the Rotunda (see Fig.1 for the general setting). Fig. 2 depicts a larger 2D, 

north-south cross-section reaching to the sea (modelled by the FDM), while Fig. 3 shows the 

immediate area (modelled by the BEM) surrounding the two Metro tunnels and including the 

Rotunda.  

It becomes obvious that the local soil material profile exhibiting inhomogeneity, anisotropy and 

poroelasticity plays an important role for site effects, since we are dealing with debris-type 

deposits in an urban centre accumulating for over two millennia. Obviously, the seismic wave 

fields that develop at the free surface are the result of a complex interplay of geometric and 

material factors, even for the simple model of SH-wave propagation, and cannot be estimated 

without recourse to numerical modelling techniques (Raptakis et al. 2004a, 2004b, Moczo and 

Bard 1993, Smerzini et al. 2009, Goto et al. 2010). 

 

 

 

(a) 

(b) (c) 

Fig. 1 (a) The Thessaloniki, Greece, Metro line (9 km under construction) with the 'Syntrivani' Metro station 

area; (b) the 'Syntrivani' Metro station area with a reconstruction of the Roman-era Rotunda 

monument complex and (c) the Arch of Galerius as it appears today 
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Fig. 2 Two dimensional, N-S cross-section through the 'Syntrivani' Metro station area from the hills 

directly above (OBS) through the Rotunda monument complex (ROT) and to the White Tower 

monument (LEP) by the sea, depicting the 'BEM box' and the local soil stratigraphy with mean 

shear wave Vs (m/s) and quality factor Q values for the main soil formations A-G (after Raptakis et 

al. 2004a) 
 

 

Fig. 3 2D cross-section of the immediate Syntrivani Metro station area with the two buried Metro tunnels 

and the Rotunda monument complex showing four observation points 
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A considerable amount of work has been reported in the literature on the mathematical 

modelling, quantification and ultimate prediction of site response in the event of an earthquake. It 

remains impossible, however, to have an accurate evaluation of the seismic response at a given 

location for future earthquakes without a detailed description of site effects. More specifically, 

earthquakes are triggered from a source mechanism that releases energy in the form of seismic 

waves.  These waves filter through geological media on their way to the free surface and are 

greatly affected by the material properties and structure of the soil layers, including local 

topography. As result, the spatial and temporal variation of seismic signals differs considerably for 

nearby stations in the same locality and even for the same earthquake (EERI 2003). On the other 

hand, seismic design codes (CEN 2004) allude to the importance of site effects by focusing on a 

detailed categorization of the local soil deposits. To date, it has been proven diffcult to incorporate 

site effects in seismic design codes because of the sheer complexity of the problem. This partially 

reflects in the relative paucity of numerical models capable of handling irregular site geometry and 

complex soil deposits. In order to place the problem in its proper perspective, a brief review of the 

literature on the influence of soil properties (e.g., anisotropy, poroelasticity, inhomogeneity) on the 

local seismic wave field is given below. We focus on numerical techniques and primarily on the 

BEM (Dineva and Manolis 2001, Alvarez-Rubio et al. 2005, Luzon et al. 2002, Gatmiri et al. 2009, 

Wuttke et al. 2011, Buchon and Sanchez-Sesma 2007), which appears to be suitable for 

investigating the effect of local site conditions and the repercussions this has on the development 

of free surface wave fields. More specifically, the BEM is an attractive candidate for modelling 

wave motion in non-homogeneous geological deposits because of certain advantages, namely: (a) 

the integral equation formulation used is equivalent to the original governing equations and 

boundary conditions. This fact, coupled with the use of fundamental solutions for these governing 

equations, guarantees a high level of accuracy; (b) these same fundamental solutions obey the 

Sommerfeld radiation condition and thus infinitely extended boundaries are automatically 

accounted for without resorting to special types of viscous boundaries; (c) since only surfaces need 

to modelled, there is reduction of the problem dimensionality, with a corresponding reduction in 

the size of the system matrices as compared with domain-type numerical methods; (d) selective 

solution at internal points in the domain of interest is possible once the BVP has been solved, 

which obviates the large scale volume discretization previously mentioned; (e) flexibility in 

modelling surface relief, in contrast to semi-analytical methods and to the FDM, see Moczo et al. 

1997; (f) concurrent recovery of both displacements and tractions at a comparable accuracy level. 

 

1.1 Seismic wave propagation in anisotropic media 
 

Following fundamental work on anisotropic elasticity (Lekhnitskii 1963), BEM formulations 

were first presented in Rizzo and Shippy (1970) and Snyder and Cruse (1975). The difficulty with 

such formulations stems from the complexity in deriving fundamental solutions for anisotropy, 

especially in the case of dynamic problems. These solutions are in integral form, with the 

integration path defined either over a finite domain (Wang and Achenbach 1995) or an infinite one 

(Dravinski and Niu 2002). In terms of application examples, Saez and Domınguez (1999) used the 

conventional BEM formulation for wave diffraction problems in 3D transversally isotropic solids. 

Alternative BEM formulations were applied to wave diffraction in 2D anisotropic solids by 

Kobayashi et al. (1986) and Wang et al. (1996). Also, Ahmad et al. (2001) presented a BEM 

formulation based on Green’s functions in the form of infinite integrals for the analysis of dynamic 

soil-structure-interaction (SSI) problems in 2D anisotropic domains. Also, an internal stress 
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calculation scheme was established for a time domain BEM formulation used in wave propagation 

in anisotropic media by Liu and Zhang (2003). Finally, Denda et al. (2003) proposed a 

frequency-domain BEM for solution of eigenvalue problems involving 2D anisotropic solids with 

simple geometry. In more recent work (Rangelov et al. 2005), the Radon transformation has been 

used for recovering fundamental solutions, the advantage being a reduction of the governing 

partial differential equations to ordinary ones. The inverse Radon transformation must then be 

applied to the transformed solution and requires evaluation of a line integral over a unit circle, 

which is a much simpler task compared the integration paths previously mentioned. 

 

1.2 Seismic wave propagation in continuously inhomogeneous media 
 

The mathematical background behind wave motion in a continuously inhomogeneous media 

involves solution of partial differential equations with variable coefficients. In general, these 

equations do not possess explicit and easy to calculate fundamental solutions, which prevents 

reduction of the physical boundary-value problem (BVP) to a system of boundary integral 

equations that can subsequently be solved by numerical quadrature techniques. As far as work in 

this direction is concerned, we mention the work of Vrettos (1991) on the propagation 

characteristics of elastic waves (P-, S-, and Rayleigh waves) through soil deposits with vertical 

inhomogeneities of various types, such as the bounded exponential shear modulus and the general 

power law shear modulus. Manolis and Shaw 1996) derived Green functions for 2D and 3D 

continua using algebraic transformations that are valid for certain restricted classes of 

inhomogeneous materials. The present authors have produced results on wave scattering by 

cavities and cracks in both continuously inhomogeneous isotropic (Manolis et al. 2004, 2007, 

2009, Dineva et al. 2006, 2007) and anisotropic (Dineva et al. 2005) solids using the BEM. These 

results were based on the use of closed-form fundamental solutions for restricted classes of 

inhomogeneous materials that were obtained by an appropriate functional transformation on the 

displacement vector, followed by application of the Radon transform. 

 

1.3 Seismic wave propagation in poroelastic media 
 

Poroelasticity accounts for the interaction between two phases, namely solid and fluid, that 

comprise a geological continuum. Since Biot’s (1956) pioneering contribution, the problem of 

wave propagation in two-phase materials has been extensively studied by many researchers. Biot 

(1956) assumed linear elastic material behavior for the porous solid skeleton and Darcy flow 

through the pores, while the interaction between deformable skeleton and fluid is described by a 

system of coupled partial differential equations in terms of solid displacements and fluid pressure. 

The BEM has seen rather limited application to dynamic poroelasticity (Kaynia and Banerjee 1992, 

Manolis and Beskos 1989, Kattis et al. 2003, Gatmiri and Jabbari 2005, Schanz and Pryl 2004, 

Aznarez et al. 2006), the reason being that fundamental solutions have a complicated mathematical 

form that is difficult to integrate with existing software. Also, use of Biot's equations for the 

synthesis of ground motions in porous geological media is still limited, due to the complexity of 

the underlying BVP.  

In sum, the following conclusions regarding site effects in complex geological media can be 

drawn: (a) There is a certain paucity of work on the development of specialized BEM codes for 

generation of synthetic seismograms accounting for the salient mechanical properties of a 

geological deposit such as anisotropy, inhomogeneity and poroelasticity, the reason being 
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difficulties in deriving appropriate fundamental solutions of the corresponding governing 

differential equations; (b) most of the research work to date does not concurrently take into 

consideration the dependence of the elastic wave signal to seismic source characteristics, wave 

path structure and material inhomogeneities, local geological conditions such as layering, 

discontinuities, surface relief, plus the presence of underground structures. This results in the 

absence of research results addressing a combination of different mechanical effects so as to 

reproduce a complex geological medium. The above observations act as motivation for the current 

work, where we develop and verify an efficient BEM code that intakes data produced by an 

independent FDM software package to generate seismic signals in a geological cross-section 

which contains two excavated cavities housing the underground Metro line for the Thessaloniki, 

Greece urban area. This particular cross section, labelled as the 'BEM box', is part of a much larger 

cross-section running north from the hills overlooking Thessaloniki south to the sea, which in turn 

is modelled by the FDM and excited by seismic wave pulses, see Fig. 2. The importance of the 

localized 'BEM box' stems from the fact  that it accounts for complex material behaviour and 

geometry in the generation of free-surface ground motions that can be used as input to study the 

response of an important Roman monument complex situated almost directly above the Metro line 

tunnels. 

Briefly, the paper is structured as follows. First, the BVP definition is given in Section 2. Next, 

Section 3 presents the hybrid FDM-BEM formulation. The handling of water-saturated soil 

deposits by an equivalent viscoelastic model is then discussed in Section 4, while Section 5 

presents results from verification-type studies.  These include the replacement of the 'BEM box' 

by a large finite element method (FEM) mesh so as to prove the generality of the proposed hybrid 

numerical scheme in Section 6, which also gives results concerning the Metro area cross-section 

subjected to two types of excitation: (a) a monochromatic SH-wave with frequency   and 

incidence angle  ; (b) a complex SH-wave train depending on the area's seismic source 

characteristics, defined at bedrock and travelling upwards to the local finite region boundary. 

Finally, a set of conclusions summarizes our work. 

 

 

2. Problem description  
 

Consider a finite region 1V  (labeled the 'BEM box') embedded in a wider geological profile 

0V , see  Fig. 4. The surface of the 'BEM box' comprises the free surface 1S  plus the interface 

boundary   between 1V  and 0V . Two circular cylindrical cavities are located inside this finite 

region with cross-section surfaces 21, , their top at depth d from the free surface, and separated 

by center-to-center distance e. We introduce a Cartesian coordinate system Ox1x2x3 and consider 

anti-plane wave motion, i.e., the only non-zero field variables are the displacement ),(3 xu  and 

traction )(),(),( 33 xxx ii nt   , where 2,1),( ini   x  is the outward pointing normal vector at 

),( 21 xx  x and ),(3  xi are the shear stresses. Two BVP can now be defined:  

(a) BVP 1 comprises the finite region with tunnels (i.e., the finite 'BEM box' 1V ) that is a part of 

the larger geological cross-section of Fig. 2. Here, the dynamic load developing along boundary 

 is due to the complex seismic wave train emanating from bedrock and propagating upwards 

through the Thessaloniki geological deposits. This model encompasses three parts, namely the 

seismic source signal, the inhomogeneous wave path region and the finite-sized region. The 

solution technique here is hybrid comprising both FDM and BEM, with the former used to model 
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wave propagation from bedrock to boundary   of the finite region. The latter method uses the 

aforementioned wave field on   as input and proceeds to solve for the seismic motions inside 

the 'BEM box'.  

(b) BVP 2 comprises finite region 1V  with tunnels embedded in the homogeneous half-plane 

0V . It is subjected to an incident, time-harmonic SH-wave polarized along the Ox3-axis and 

propagating in the x3 = 0 plane at an incident angle  with respect to the Ox1-axis. In this case, we 

consider complex mechanical properties for soil, namely anisotropy, inhomogeneity and 

poroelasticity, while the method of solution is the BEM. More specifically, we consider a 

monoclinic anisotropic material. This assumption is necessary, because uncoupling between plane 

and anti-plane strain motions for anisotropic materials is possible only if at least one elastic 

symmetry plane exists (Lekhnitskii 1963). Furthermore, if the Cartesian coordinate axes coincide 

with the principal directions of material symmetry, we then have the transversely isotropic case 

with two stiffness parameters c44, c55. If the solid is transversely isotropic, but the axis of material 

symmetry is along the Ox3-axis, then conditions c45 = 0, c44 = c55 =  hold, where   is the soil 

shear modulus, while the plane x3 = 0 is isotropic and characterized by two material parameters, 

namely  and density  . 
 
 

 

Fig. 4 Idealization (not to scale) of the finite-sized, local region V1 ('BEM box') containing two buried 

Metro tunnels with surfaces Γ1 , Γ2 and embedded in either the Thessaloniki geological deposit 

(BVP 1) or a homogenous half-plane V0 (BVP 2) 
 
 

2.1 BVP 1 statement 
  

The geometry here is that of Fig. 2 and comprises the laterally inhomogeneous soil strata of 

region 0V  resting on bedrock where seismic waves emanate, plus the embedded, finite-sized 
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homogeneous elastic isotropic region 1V  (the 'BEM box') with two tunnels and material 

properties 1 , 1 . The size of the 'BEM box' is chosen so that wave backscattering into the 

surrounding geological strata is negligible. The objective here is to obtain synthetic seismograms 

at receiver points along the free surface of the local region 1V , taking into consideration: (a) the 

seismic source properties; (b) the laterally inhomogeneous wave path from bedrock to interface 

 ; (c) the presence of the tunnels. 

The governing equation describing seismic wave propagation is  

      
3 , 3 0i i u    in   

1 x (0, )BQ V T                    (1) 

All symbols in Eq. (1) have been previously defined, except for dots which symbolize time 

derivatives. The various soil layers have different material properties (see Fig. 2) and T is the 

duration of the seismic pulses emanating from bedrock, which for a real earthquake event would 

depend on the seismic source located in 0V with known geophysical characteristics. In order to 

dispense with time variable t, the Fourier transform is applied to Eq. (1) so as to solve this BVP in 

the frequency domain. The resulting partial differential equation is now of the elliptic type with 

known fundamental solution for use in the BEM formulation applied to the 'BEM box'. Thus, BVP 

1 is solved for a sufficient large frequency spectrum and the inverse fast Fourier transformation 

(FFT) is applied in order to recover time-dependency in the free surface seismic signal. The 

following boundary conditions must be satisfied, see Figs. 2 and 3: (a) zero tractions at the free 

surface; (b) displacement compatibility and traction equilibrium conditions at the interfaces 

between layers; (c) traction-free boundary conditions hold along the tunnel perimeters; (d) the 

seismic bed is modeled as a homogeneous half-plane with compatibility and equilibrium 

conditions imposed at the interface with the overburden soil deposits; (e) incoming waves are 

excluded from entering the inhomogeneous part of the half-plane from the seismic bed in the 

absence of an embedded seismic source (Sommerfeld radiation condition). Finally, solution of 

BVP 1 is accomplished by the hybrid FDM-BEM described below and yields the total 

displacement field, which satisfies a Hölder continuity condition across all boundaries defining 

space-time region BQ , plus the governing equation and the boundary conditions discussed above. 

 

2.2 BVP 2 statement 
 

Consider the aforementioned region 1V  embedded within a homogeneous, anisotropic 

half-plane. We assumed a transversely isotropic material throughout, and denote the stiffness 

parameters and the density in 1V  as      2
1

2
1
552

1
44 ,, xxcxc  , while those of the half-plane as 

.,, 5544 cc  Furthermore, we assume all material parameters in 1V  to vary proportionally 

according to the quadratic function    
2

2 2 1h x ax  , i.e.,    2
0
442

1
44 xhcxc  ,    2

0

552

1

55 xhcxc  , 

and    2
0

2
1 xhx   , where a is the inhomogeneity parameter controlling the material gradient, 

while 00
55

0
44 ,, cc are the references values. This assumption is made because it allows recovery 

of fundamental solution by transform methods in closed-form (Manolis and Shaw 1996), a 

necessary step for the construction of BEM formulations. 

The set of equations governing SH-wave motion comprise  

 

(a) The constitutive law 
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   1 1

13 44 2 13 23 55 2 23,c x e c x e                         (2) 

(b) The kinematic relations  

2,1,,33  iue ii                             (3)                                                     

(c) The dynamic equilibrium equation in the absence of body forces  

         03

2

2

1

,3  uxii                           (4) 

In the above, 3ie is the strain tensor, subscript commas denote partial differentiation and the 

summation convention over repeated indices is implied. Furthermore, we will use the notation 

      2;0;1 2

1

552

1

442  jiforxcjiforjiforxcxCij          (5) 

Diffraction problems in semi-infinite domains are formulated by decomposition of the total 

displacement and traction  3 3,u t  fields in two parts, namely the incoming free field motion 

 3 3,f fu t  plus the scattered (by the various heterogeneities) motion  3 3,sc scu t . Inside region 1V , 

the total wave field is the sum of waves scattered by all existing boundaries, namely the tunnels 

surfaces, the horizontal free surface and the interface boundary  . Thus, the total wave field 

inside 1V  is scuu 33  ; sctt 33  , while outside 1V  the total wave field is 
fsc uuu 333  ; 

fsc ttt 333  . The free field motion is known and comprises incoming and reflected SH-waves from 

the homogeneous half-plane in the absence of defects. As incoming waves enter the finite 

geological region 1V , a scattered wave field is produced in the outer region as follows:  

3 3 3

sc fu u u    and  
3 3 3

sc ft t t      for    1Vx                  (6) 

Summing up, the boundary conditions are: 

(a) On the surface 1S  of the half-plane:               

 3 , 0t  x                               (7) 

(b) On the tunnels surfaces 1 2,  :           

     3 , 0t  x                               (8) 

(c) On the interface boundary   between finite region 1V and half-plane: 

   1313 VuVu sc  xx  ;    1313 VtVt sc  xx                 (9) 

with  3 3,sc scu t  given by Eq. (6). Finally, the Sommerfeld radiation condition is satisfied at 

infinity.  

The free-field wave motion  3 3,f fu t  of an SH-wave at any point  1 2,x xx  interior to the 

transversely isotropic homogeneous half-plane is computed as follows: 

      3 1 2 0 1 2 0 1 2, , exp cos sin exp cos sininu x x u ik x x u ik x x                   (10) 
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    ,, ,33 xx
in

jij
in
i uC                          (11) 

     3 3, ,in in

i it n  x x x                         (12) 

In the above, the wave number and the apparent wave velocity are respectively given as 

SHk C ,    /sincos 2
44

2
55 ccCSH  , see Zhang and Gross (1998). 

Summing up, the unknowns in BVP 2 are the total displacements on the free surfaces of the 

half-plane plus the total displacements along the tunnel perimeters 
1 and 

2 . After all unknowns 

are determined, it is possible to reconstruct the wave field at any point inside or outside local 

region 1V  by use of integral representation formulae. More specifically, BVP 2 is solved by the 

non-hypersingular, traction-based BEM described in the next section. 
 

 

3. Hybrid FDM-BEM  
 

When modelling seismic wave propagation, the three basic components of the problem are the 

source, the travel path and the receiving site. In reference to this breakdown, two types of models 

exist in the literature:  

(a) All-in-one, source–path-site unified computational tool, demanding a large amount of 

computer memory and time, especially when source–receiver distances are measured in the tens of 

km; 

(b) Hybrid approaches based on a two-step procedure which combines the source and path 

effects computed by one method with the local site effects evaluated by another method. The wave 

field computed by the former method is used as input to the latter method, with the two methods 

appropriately connected so as to keep the formal wave-injection boundary perfectly permeable to 

the waves scattered by the local site.   

The hybrid two-step technique originated by Alterman and Karal (1968) as a domain coupling 

algorithm. The same philosophy can be traced back to the work of Bielak and Christiano (1984), 

later expounded in Bielak et al. (2003). This algorithm was further extended by: (a) Fäh (1992) 

and co-workers (Fäh et al. 1990, 1993, 1994), where the modal summation and finite difference 

techniques were used as the first and second steps, respectively; (b) By Oprsal et al. (1998a, b); 

Oprsal and Zahradnik (2002); Galis et al. (2008); Zahradnik and Moczo (1996); and Moczo et al. 

(1997), who combine (in three steps) the discrete wave number method for local region 

computations, finite elements for the surface topography and finite differences for any localized 

geological structure with a flat free surface embedded in the background medium; (c) the term 

‘‘wave injection’’ was introduced in Robertson and Chapman (2008) and Oprsal et al. (2009) as 

denoting efficient seismic modelling that requires various methods to be combined, with each 

applied to just a single task for which it is best suited. This way, the advantages of the individual 

methods are enhanced, while their limitations are reduced. The main disadvantage of hybrid 

multi-step techniques is that in subsequent steps past the first, any interaction between the 

backscattering waves from the local heterogeneity with the incoming wave fields emanating from 

the deeper layers of the geological profile is neglected. In practice, the hybrid method concept can 

be applied when the local heterogeneity (the tunnels in our case) are located deep inside the local 

region (the 'BEM box' in our case)  and the backscattering from the heterogeneous part dampens 

out before reaching the external boundary of the 'BEM box'. This is the idea behind the 'excitation 
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box' idea proposed by many authors who used a two-step hybrid approach. More specifically, the 

second step utilizes information obtained from the first step as a boundary conditions and 

considers wave propagation only in the 'excitation box' containing the local heterogeneities. 

 

3.1 FDM-BEM coupling 
 

The key point in FDM-BEM coupling is in the representation of the total wave field as the sum 

of free field and scattered parts, i.e., fsc uuu 333  and fsc ttt 333  . Inside region 1V  containing 

the tunnel cavities, we have that total and scattered wave fields coincide, i.e. scuu 33  and sctt 33  , 

while outside region 1V  the scattered wave field is expressed as the difference between total and 

free fields, i.e., fsc uuu 33  and fsc ttt 33  . The boundary conditions along the interface 

boundary   couples the scattered wave fields inside and outside region 1V , satisfying the 

'welded contact' condition.  

In the first step of the present hybrid technique, the FDM is applied to the seismic wave 

propagation problem for the geological configuration shown in Fig. 2, but in the absence of the 

two cavities. The time-dependent FDM solution for the seismic field along the interface boundary 

 is transformed to the frequency domain and stored for use as a boundary condition in the 

realization of the second step. Next, BEM modelling of seismic wave propagation inside region 

1V  with two cavities constitutes the second step. The size of the 'BEM box' is evaluated separately 

during this numerical realization so as to damped out any backscattering effects within the 'BEM 

box' itself.  

 

3.2 FDM computational technique for wave motion in geological cross-sections 
 

We use here the SH-wave FDM of Moczo (1989) for 2D problems, which was later refined by 

Moczo et al. (1996) so as to allow for a detailed representation of all irregularities in the geologic 

structure of a given cross-section. More specifically, this FDM permits modelling of non-flat 

free-surfaces if they are constrained to pass through existing grid nodes. This restriction does not 

apply to any other irregular interfaces present in the model. In this case, the model follows the 

precise irregular shapes of the subsurface topography, while appropriate material parameter values 

are averaged out and assigned to neighbouring nodes.  

In setting up the FDM mesh, we use here a constant grid step of 2.0 m in both horizontal and 

vertical directions. Also, the maximum frequency for which the simulation results do not present 

numerical instability is 10 Hz. The grid model is bounded laterally and at the bottom with 

transparent, Reynolds type non-reflecting boundaries that are placed in order to avoid undesirable 

artificial reflections. Wave attenuation is taken into account using three relaxation mechanisms 

(Moczo and Bard 1993) at frequency values chosen so as to insure a constant Q in the spectrum of 

interest for the computations, which is from 0.1 to 10 Hz. 

The seismic excitation at bedrock that gives rise to a vertically upwards propagating, planar 

Gabor pulse described by the following equation:  

      2exp( )cos( ); ( )P S P Ss t t t t t          
                (13)

 

Numerical values for the parameters appearing in the above equation are  
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(a)                                (b) 

Fig. 5 Gabor pulse used as seismic input at bedrock: (a) time and (b) frequency variation of the unit 

displacement amplitude 

 
 

sec25.0;0.0;150;23.02  Spp t.Hzf     , while Fig. 5 depicts both time variation 

and frequency spectrum of the normalized Gabor pulse amplitude. 

 

3.3 BEM computational technique for wave motion inside the 'BEM box'  
 

The BEM is now applied for solving the BVP comprising Eq. (4) plus the boundary conditions 

given in Eqs. (7)-(9). Note that the free-field motion ( ff tu 33 , ) input for the seismic field along 

interface boundary  comes from the FDM solution (as the first step) under the assumption that 

there are no cavities. 

Both the conventional displacement-based and non-hypersingular, traction-based BEM 

formulations are used here. Although both BEM formulations give equivalent solutions for 

continuous regions with smooth surface discontinuities such as cavities, the latter one is preferred 

over the former because it is more general in that discontinuities such as cracks can be handled 

(Manolis et al. 2012, Rangelov et al. 2003). After decomposition of the total wave field in free and 

scattered parts, the following system of boundary integral equations describes wave motion inside 

the region 1V : 

(a) For   121, Vxx x  and   21121,  Sxxx , we use the non-hypersingular, 

traction-based BEM formulation as 
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(14) 

(b) For   21, xxx , we use the displacement-based BEM formulation as 

   

           
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(15) 
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In the above, c( x ) is the jump term that depends on the surface geometry at the collocation 

point; x  = (x1, x2) and y = (y1, y2) are the position vectors for the observation and source points; 
*
,32

*
3

*
3 )(),,,( lili uxCu    yx  and y)yx  yx (),,(),,( *

3
*

3 ii nP    are fundamental solutions of Eq. 

(4) for the displacement, the stresses and the traction, respectively. Both Eqs. (14) and (15) can be 

formulated for the inhomogeneous medium described in BVP 2, with the homogeneous case 

derived as default when the inhomogeneity parameter is zero, i.e. 0a and   12 xh . 

The general fundamental solution for a quadratically-varying (with respect to depth) 

inhomogeneous and anisotropic material under anti-plane loading was recently derived by the 

authors in closed-form using the Radon transform (Manolis et al. 2012). Thus, ),,(*
3 xu is 

defined as the solution at receiver point x  for a unit point load )(P at the source   as 

 
   2

3, 2 3

* * ( )i i x u P      ξ x ξ
   

(16) 

where  is the Dirac delta function. The first step in the derivation is an algebraic transformation 

for the displacement as *
32

2/1*
3 )( Uxhu  , Manolis and Shaw (1996). This way, Eq. (16) transforms 

into a differential equation with constant coefficients for the intermediate fundamental solution 
*
3U . Secondly, after applying the Radon transform, an ordinary differential equation is obtained 

and solved with respect to the fundamental solution in the Radon space. The third step is to apply 

the inverse Radon transform and recover the fundamental solution for original displacement in the 

form 

 
       1/2 1/2

3 3

* *, ,u h U h x ξ x x ξ ξ
   

(17) 

From here, the corresponding stresses and tractions can be obtained using the constitutive law. 

The asymptotic forms of all fundamental solutions for small arguments, i.e., when the receiver and 

source points coincide, are given in Manolis et al. (2012).  

In terms of numerical implementation, we start with a discretization of all surfaces using 

quadratic (i.e., three node) boundary elements (BE) and apply nodal collocation to the system of 

boundary integral equations (14)-(15). Following evaluation of all surface integrals and imposition 

of the boundary conditions, an algebraic system of equations is obtained and used for solving the 

unknowns of the BVP in terms of the boundary data. More specifically, the shifted point scheme is 

applied to a given BE (this is necessary for the traction-based BEM), whereby the odd-numbered 

nodes and the corners are not directly used as collocation points, but are moved slightly inside the 

element itself to avoid singularities (Rangelov et al. 2003). The singular integrals converge in the 

Cauchy principal value (CPV) sense, because Hölder continuity requirements are fulfilled by the 

parabolic interpolation functions of the BE. Since the displacement fundamental solution is an 

integral over the unit circle, the integrals we are dealing with are two-dimensional. More 

specifically, two types of integrals appear, namely regular and singular, with the latter subdivided 

into weak (ln r type of singularity) and strong (1/r type of singularity). The regular integrals are 

evaluated numerically by quasi-Monte Carlo method (QMCM), while the singular ones are solved 

partially analytically as CPV integrals, and partially by the QMCM. 

The proposed BEM methodology outlined above is suitable for the following cases involving 

elastic materials: (a) inhomogeneous, transversely isotropic case c44  c55, a  0; (b) homogeneous, 

transversely isotropic case c44  c55, a = 0; (c) inhomogeneous isotropic case c44=c55= 0, a ; (d) 
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homogeneous isotropic case c44=c55= 0, a . In BVP 2, we address cases (a)-(c), while in BVP 1, 

we address case (d). 

 
 
4. Bardet's dynamic poroelasticity model 
 

Consider an elastic, homogeneous and isotropic material, i.e., case (d) above. The 

correspondence principle of viscoelasticity (Christiensen 1971) allows for solution of viscoelastic 

media by a re-definition of the elastic parameters when time-harmonic conditions are assumed to 

hold. More specifically, for the Kelvin-Voigt viscoelastic model, the wave numbers are re-defined 

as )1(/);1(/ 222222
SSSPPP iCkiCk     , where SP CC ; are the real parts of the P- and 

S-wave velocities, respectively, while SP  ; are the corresponding attenuation coefficients 

representing a small amount of hysteretic damping. In the low frequency range, i.e., 1 , the 

wave numbers simplify as   

   1 0.5 ; 1 0.5P P P S S Sk C k C      
   

(18) 

 Bardet (1992) introduced an isomorphism by equating the wave numbers in Biot’s poroelastic 

model with the above viscoelastic ones. By substituting the plane wave solution for the 

displacements in Biot’s wave equation without body forces, a characteristic equation for the wave 

numbers can be obtained. Thus, the following equivalence relations result by equating the Biot and 

Kelvin-Voight wave numbers: 

;( 2 ) sat S satC P Q R Cp      
   

(19) 

;

2 2

2

n nQ R f fsat sat
P S

b P Q R bsat sat

  
 

 



 

 

   
      
       

(20) 

The poroelastic material parameters appearing above are related as follows: 

    22 13 1
; ;

1 1 1

dry g g

dry g

dry g g f dry g g f

n n K K n KQ
P K Q K R

R n K K n K K n K K n K K





 
   

      
   

  2 213 1 2 2 3
; ;

2 1 3 1 2 1
dry dry sat dry dry

Q Q
N K K K

R R

  
 

  


     

      
(21) 

In here, n=VP /V is the porosity of the solid skeleton, and V is a representative volume of the 

solid-fluid system, which comprises an elastic isotropic solid skeleton with the pore volume VP 

containing a fluid. We distinguish three components of the two-phase material, namely (a) dry rock 

(or soil), (b) solid grain and (c) fluid. The 'dry rock' approximation is for an air-filled solid skeleton, 

while the 'solid grain' characteristics refer to dry rock material. The elastic bulk modulus and the 

density of these three components respectively are ,,;,;)1(, ffgggdrydry KKnK       while 
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the solid-fluid system density is .)1( fgfdry
sat nnn     Next, the shear strength of 

the porous material is provided by the solid skeleton and is not affected by the presence of the 

fluid, since fluids sustain dilatational deformations only. Thus, both dry and saturated soil are 

described by the same shear modulus, namely .)1(2/)21(3 drySATDRY K   

Furthermore,  is Poisson’s ratio for the dry skeleton, kgnb f
ˆ/

2  is the viscous dissipation 

coefficient, g is the acceleration of gravity and k̂  is the soil permeability.    

Morochnik and Bardet (1996) obtained the above approximate expressions for a frequency 

range satisfying the condition .1)/( bsat  Since permeability values for most soils is small 

(e.g., for sand 
46 1010ˆ  k m/sec), this condition is easily fulfilled for the frequency range of 

0.52.0  Hz considered important in earthquake engineering. The proposed isomorphic model can 

also account for soil stiffening, in as much as the pore pressure induced by seismic loads helps in 

resisting compressive loads. This can be ascertained by inspecting Eq. (19) for the longitudinal 

wave velocities, while Eq. (21) shows an increase in the wave length value for SAT  as compared 

to that for DRY . The isomorphic model also predicts changes in the damping mechanism for 

poroelastic materials. This is evident in Eqs. (19)-(21), where the phase velocities and the 

attenuation coefficients of the propagating waves depend on porosity, the bulk modulus of the dry 

skeleton, the solid grain and the fluid component, and the soil hydraulic conductivity.   

Limitations of the Bardet model are: (a) it is valid in the low frequency range, (b) it cannot 

account for the second (slow) longitudinal wave that dampens out very fast; (c) it is impossible to 

account for boundary conditions involving pore fluid pressure, since we have a single phase 

material; (d) the consolidation process due to fluid-skeleton interaction is a time-dependent 

deformation process that cannot be modelled by viscoelasticity. The main advantage is mechanical 

simplicity, which allows for approximate solutions of BVP in fluid-saturated media by BEM. 

 

 
5. Verification studies 

 
5.1 Verification of the BEM numerical scheme  
 

Consider first the case of a homogeneous, elastic and isotropic soil region 1V  with material 

constants 00 , embedded in the half plane 0V with the same material properties, as shown in 

Fig. 4. The incoming SH-wave moving from the far field (i.e., the half plane) into the finite region  

1V  has normalized unit amplitude, vertical incidence ( 2/  ) and propagates with 

non-dimensional frequency .5.0/2/  SHSH cCc  Two circular cylindrical cavities are 

placed in 1V  with radius c, depth of embedment d  and center-to-center distance ce 4 . The 

coordinates of the centers of the first (left) and second (right) cavity are at ),2(1 dccO   and 

),2(2 dccO  , respectively. We truncate the finite square region 1V  to size cb 30 so that 

waves reflected across the common boundary  only weakly influence the cavities. For this 

external BVP, the BEM discretization utilizes a mesh that satisfies the following accuracy 

condition: ,10 BESH l  where  /2 SHSH C  is the SH-wave length and BEl is a typical BE 

length. Special attention is needed at high frequencies and for very soft soil layers, where the 

wavelength is small. It is clear that to reach high-numerical accuracy in these cases a very fine 
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BEM mesh is necessary. 

It is now possible to proceed with the BEM solution in two different ways:  

(a) Use of the half-plane Green’s function derived by the Radon transform, which obviates free 

surface discretization. Thus, only discretization of the perimeters of the cavities is necessary. 

(b) Use the full space fundamental solution, also derived by the Radon transform (in its general 

form for the inhomogeneous anisotropic cases), which however requires discretization of the free 

surface, of the interface boundary   and of the perimeters of the cavities. 

Here we use both approaches and plot the surface displacement amplitude along the free 

surface of the half-plane in Fig. 6(a), where the separation distance is ce 4 , the embedment 

depth is cd 5 and the SH-wave frequency is .5.0  Both solutions yield excellent accuracy 

when compared with the results of Lee (1977) that were obtained by a semi-analytical function 

expansion method for a single circular cavity in a half-plane subjected to time-harmonic SH-waves. 

This comparison is possible because the two cavities are placed at a large distance apart, so that 

their dynamic interaction is negligible. Also, modeling of an infinite half-plane is possible by 

truncation of the extended finite domain. Next, Fig. 6(b) compares both BEM solutions for surface 

displacement amplitudes at 4.0  versus cx /1  for the same scenario described previously, but 

now the cavities are at depth cd 2 and have a separation distance ce 5.0 . At this proximity, 

the dynamic cavity interaction effect is pronounced and must be taken into consideration. 

Excellent agreement is observed here between the results obtained by the two different BEM 

computational schemes, namely one using the Green’s function for half-plane and another using 

the fundamental solution for the full plane with a truncated surface mesh.   

 

5.2 Verification of Bardet's model for pressure wave propagation  
 

The second series of numerical examples utilizes Bardet’s viscoelastic isomorphism model to 

study wave motion in a poroelastic deposit embedded in the poroelastic half-plane. Both deposit 

and the surrounding half-plane have the same material properties. We have to considered P-wave 

propagation in this water-saturated continuum. Thus, the following two solutions are compared: (a) 

the first is obtained by Lin et al. (2001, 2005), where Biot’s model is used and results are 

presented for drained boundary conditions and for an inviscid pore fluid; (b) the second is obtained 

by the BEM for the aforementioned deposit embedded in the half-plane, with mechanical 

properties based on the Bardet model. The material examined is sandstone (Lin et al. 2001, 2005): 

with 36000gK MPa; 2650g kg/m
3
; 1000f  kg/m

3
; 2000fK  MPa. Also, the 

porosity, Poisson’ ratio and the solid stiffness ratio variation respectively are

.0.10,0.1,1.0/;25.0;3.0       
0  fKn   Fig. 7 plots these solutions for the horizontal and 

vertical surface displacement amplitudes versus incident angle of the time-harmonic P-wave.  

The plots show that both models yield very similar, nearly identical, results. This implies that the 

simpler, equivalent viscoelastic model can be used successfully to approximate poroelastic effects. 

Fig. 7 also shows the amplitude of the horizontal displacement decreasing with increasing solid 

stiffness, with the purely elastic medium response serving as an upper bound. The vertical 

displacement, however is practically unaffected by the presence of poroelasticity for the P-wave 

excitation. 
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5.3 Verification of the hybrid FDM-BEM scheme 
 

Verification of the hybrid FDM-BEM scheme is done by solution of BVP 1 defined for the 

geological cross-section shown in Fig. 2, but without the presence of tunnels. This problem is 

solved in frequency domain in the following two ways: (a) a pure FDM, which yields the  

 

 

 

(a) 

 

(b) 

Fig. 6 Surface displacement amplitude for a half-plane with two embedded circular cavities of radius c 

swept by an SH-wave with incident angle 2/  : (a) separation distance ce 4 , 

embedment depth cd 5  and frequency 5.0 ; (b) separation distance ce 5.0 , 

embedment depth cd 2  and frequency 4.0  
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(a) 

 

(b) 

Fig. 7 Displacement amplitudes (a) 1u  and (b) 2u  at the free surface of a homogeneous poroelastic 

half-space versus a P-wave incident wave angle P : Comparison of the Biot (1956)  and 

Bardet (1992) models with Cases 1, 2, 3 corresponding to 0.10,0.1,1.0/0
  fK  

 

 

displacement solution across the free surface of region 1V  (note the FDM solution is in time 

domain and an FFT is needed to recast results in the frequency domain) ; (b) the two-step hybrid 
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technique, with (i) application of the FDM for computation (and storage) of the wave field 

along the interface boundary  ; and (ii) recovery of this wave field and subsequent input as a 

BEM boundary condition to solve for the BVP comprising wave motion inside and outside region 

1V , but within the 'BEM box' bounds. Following the second step, displacements along the free 

surface of region 1V  are obtained and compared with the pure FDM results.  

Detailed data on the mechanical properties of the geological cross-section are given in Raptakis 

et al. (2004a) and some basic information is shown in Fig. 2. The excitation is a vertically incident 

SH-wave with the displacement time variation given in Eq. (13), namely a Gabor pulse. Figs. 8 

and 9 compare the results obtained by both approaches that were outlined above, at two control 

points CL(870,26); CR(950, 28) (in m) along free surface 1S , near the left and right edges of the 

Metro station area cross-section in Fig. 3. We observe very good agreement between both sets of 

results, which demonstrates the high accuracy achieved by the proposed hybrid approach. In 

general, comparison studies between the pure FDM and hybrid techniques help establish accuracy 

bounds on the latter ones, given the possibility to define discretized areas common to both 

approaches. A similar type of verification study can be found in Fäh (1992), where a hybrid modal 

summation-finite difference method (MS-FDM) was verified against a background 1D model that 

was also solved by the analytical modal summation method (MSM). Another benchmark example 

was done by the Wuttke et al. (2011), which helped verify a hybrid computational tool comprising 

the wave number integration method (WNIM) and the BEM. In this particular example, the 

material inside 'BEM box' was assumed homogeneous, although it is not restriction since the type 

of BEM formulation desired is based on the type of fundamental solutions available. 

 

 

6. Case study for a Thessaloniki metro station 
 

In what follows, we present the results of a parametric study, which aims to reveal the complex 

character of the seismic wave fields that develop in real geological profiles. More specifically, we 

focus on a cross-section of the city centre of Thessaloniki, Greece, see Figs. 1 and 2. Within this 

large cross-section spanning 1.5 km from the foothills of Mount Hortiaitis to the north to the Gulf 

of Thermaikos to the south, we discern a smaller, fictitious box-like inclusion (the 'BEM box'). 

This inclusion contains the two parallel-running tunnels of the Thessaloniki Metro line, while the 

important historical Roman monument complex known as the Rotunda with the Arch of Galerius 

are located at the surface, almost directly above the tunnels. This finite geological region is for 

studying site effects, while its geometry is depicted in Figs. 3 and 4. Concurrently, we present 

numerical simulations when the two tunnels are located in a half-plane and subjected to 

time-harmonic SH-waves. In this last case, the surrounding half-plane is anisotropic, continuously 

inhomogeneous and/or poroelastic and assigned the same material properties as the finite-sized 

region. 

 

6.1 Two tunnels in the homogenous isotropic half-plane under SH-waves 
 

We start with the finite region 1V  modeled as a homogeneous, elastic and isotropic continuum 

with density 885,10  kg/m
3 
and shear modulus 800,2960   kN/m

2
.  In turn, the region is 

embedded in a homogeneous, isotropic half-plane with the same material properties. The region 

itself is a nearly rectangular box with dimensions 100 48 m (note the free surface has a gentle 
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(a) 

 

(b) 

Fig. 8 Displacement versus frequency at the left control point CL : (a) Real part and (b) imaginary part 

of the displacement as obtained by the FDM and the hybrid FDM-BEM 

 

 

slope of about 1%  from north to south). Next, we define the non-dimensional frequency of 

vibration as 2SH SHc C c    , where 400 /SHC m s  is the wave speed and SH  is 
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the corresponding wavelength of the incident SH-wave, while c  is a representative cavity 

dimension (e.g., the radius for a circular one). We introduce a coordinate system Ox1x2 centered at 

O(910, 24), see Figs. 3 and 4, and proceed to discretize all boundaries of the region. More 

specifically, we only use six BE per vertical outer boundary, while ten BE are used along each 

horizontal outer boundary and twelve BE are used per cavity perimeter. Note that the separation 

distance between the cavities is e = 6 m and that they are both placed at a depth d = 22 m from  

the free surface. The left cavity is situated at a distance of 40 m away from the left vertical 

 

 

 

(a) 

 

(b) 

Fig. 9 Displacement versus frequency at the right control point CR : (a) Real part and (b) imaginary 

part of the displacement as obtained by the FDM and the hybrid FDM-BEM 
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boundary, while the right cavity is 42 m from the right one. Finally, we define two control (or 

observation) points on the free surface, namely the midpoint A(910, 26) between the two cavities 

and the Rotunda monument position  R(940, 28). 

The first series of results are plotted in Fig. 10 as the displacement amplitude distribution along 

the free surface of the finite region 1V  at three values of non-dimensional frequency 

50;3.0;1.0 .   and for vertical SH-wave incidence. We observe that the displacement distribution 

becomes more oscillatory with increasing wave frequency, although the maximum magnitude 

values do not change appreciably. What is interesting at higher frequencies where the signal 

wavelength becomes comparable to the cavity dimension (say at about 10:1), is the appearance of 

displacement 'troughs' at precisely the cavity epicentres (i.e., the surface projection of the cavity 

centres). This seems to suggest an indirect way for locating the cavities from surface 

measurements. Next, the effect of incident SH-wave direction, namely 
000 30;60;90     is 

shown in Fig. 11, where the displacement amplitude is plotted versus non-dimensional frequency 

  at the two aforementioned control points A, R. Again the same picture emerges, which is quite 

clear for vertical wave incidence and less so for other angles of attack, namely the appearance of 

‘spikes’ at the control points for certain frequency bands, which progressively become larger in 

magnitude as the frequency increases. 
The second series of results in Figs. 12 and 13 plot the normalized displacement amplitude as a 

function of frequency   at observation points along the perimeter of both circular cavities. More 

specifically, these points are: (a) Left cavity mid-points )3,906(13);6,903(12);3,900(11 HHH   on 

the left vertical, upper horizontal and right vertical perimeters, respectively (see Fig. 3 coordinate 

system); (b) right cavity mid-points )6,915(22);3,912(21 HH  on the left vertical and upper 

horizontal perimeters, respectively. Figs. 12 and 13 are for the left and right cavity observation 

points, respectively, and for two SH-wave incidence angles of 6/;2/    . From these 

figures we deduce that the presence of two cavities produces noticeable interaction effects with the 

free surface, as manifested by the fact that we observe a six-fold increase for the two observation 

points on the upper side of the cavities (as compared to the lower sides), irrespective of SH-wave 

incidence angle. These values are to be contrasted with the cavity-to-cavity interaction 

phenomenon, where for observation points along the perimeter facing each other, we observe 

maximum amplification values of about four. In all cases, the maximum amplification values 

occur at the higher frequency range, where the incident SH-wave length becomes comparable to 

the cavity dimensions and to the depth of embedment. 

 

6.2 Two tunnels in the poroelastic half-plane under SH-waves 
 

The next series of numerical simulations focus on a water saturated soil finite region, where the 

dynamic response is recovered through use of the Bardet (1992) viscoelastic isomorphism. 

Following Lin et al. (2101), the soil's dry bulk modulus depends linearly on porosity as  

(1 / )( )dry cr cr g crK K n n K K   
   

(22) 

where 000,2crK MPa is the bulk modulus at critical porosity .36.0crn The values for 

poroelastic soil are approximated as follows: 

3 3 6ˆ36,000 ; 2,650 / ; 1,000 / ; 2000 ; 10g g f fK MPa kg m kg m K MPa k      
   

(23) 
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Fig.10 Displacement amplitude distribution for vertical SH-wave incidence along the free surface of the 

homogeneous isotropic half-plane with tunnels: (a) ,1.0  (b) 3.0 and (c) 5.0  
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Fig. 11 Displacement amplitude vs. frequency at control points A, R on the free surface of a 

homogeneous isotropic half-plane with tunnels for SH-wave incidence angles: (a) ,900   

(b) 060  and (c) 
030  
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(a) 

  

(b) 

  
(c) 

Fig. 12 Displacement amplitude vs. frequency   along the left cavity perimeter in the 

homogeneous isotropic half-plane at observation points (a) H11, (b) H12, (c) H13 and for 

two values of wave incidence 
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(a) 

  
(b) 

Fig. 13 Displacement amplitude vs. frequency   along the right cavity perimeter in the 

homogeneous isotropic half-plane at observation points (a) H21; (b) H22 and for two values 

of SH-wave incidence 

 

 

Fig. 14 compares results for the displacement amplitude along the free surface of the 

poroelastic inclusion at three different non-dimensional frequency values of 5.1;3.0;1.0    for 

the normally incident SH-wave. Two porosity values are considered, namely n = 0.1; n = 0.35. We 

note that the former value corresponds to a poroelastic material whose dynamic response is nearly 

identical to that an elastic solid, a fact that has been confirmed in past work by Knopoff et al. 

(1957). As was the case with the verification study in Section 5, water saturation in the soil is 

responsible for the emergence of damping effects that result in a less pronounced, smoother 

displacement response as compared to dry soil. Porosity does not seem to play much of a role in 

water saturated soils, at least in the lower frequency range. The same is not true for dry soil, where 

high porosity values at higher frequencies result in a more pronounced displacement response, 

typical of a lighter, less stiff deposit. Next, in Fig. 15 we switch to plots involving fixed 
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observation points A  and R and allow the frequency   to vary. Again we observe the 

equivalent damping effect due to the presence of water. More specifically, in the dry case and for a 

high porosity value, we observe a sharp peak in the displacement amplitude at around 2 , 

where the ratio of cavity side length to SH-wave length is ./1/  SHc  In sum, poroelasticty as 

represented by Bardet's model shows a stiffening effect for water saturated soils since Lame's 

constant DRYSAT    and a damping effect is present that is frequency dependent. This last effect 

depends on the ratio fg KK  . If fg KK  , poroelasticity effects are negligible, but become 

noticeable as the stiffness of the dry skeleton decreases. 

 

6.3 Two tunnels in the homogeneous anisotropic half-plane under SH-waves 
 

The influence of the soil anisotropy is demonstrated in Fig. 16, where the displacement 

amplitude across the free surface is plotted at three dimensionless frequency values of 

.51;5.0;1.0 .    More specifically, the geological finite-sized inclusion remains homogeneous, 

but we introduce orthotropic material behaviour and utilize the following values for the soil 

material properties: 

 
9 3

5544 440.2968 10 ; ; 1.0;0.55; 1.5; 2.5; 1,855 /C Pa C mC m kg m    
   

(24) 

At low frequencies, we observe the effect of anisotropy on the displacements to be negligible, 

but as frequency increases the surface displacement frequency 'snapshot' becomes incoherent and 

diverges from the isotropic case m = 1. Obviously, the presence of different amounts of stiffness 

along the two principal directions produces dispersion phenomena that destroy the orderly and 

predictable wave motion hitherto observed in the isotropic and homogeneous material case. 

 

6.4 Two tunnels in the inhomogeneous isotropic half-plane under SH-waves 
 

In this final preliminary series of numerical results, the inhomogeneous, isotropic half-plane 

containing the embedded finite-size region with the two tunnels is swept by an incoming SH-wave. 

We first plot the shear modulus variability with depth in Fig. 17. The controlling parameter for this 

continuously inhomogeneous deposit is coefficient a in the dimensionless material function 
2

22 )1()(  axxh , which was introduced in Section 2 and corresponds to a quadratic variation of 

the shear modulus and of the density with respect to depth. Values for coefficient a are assigned by 

interpolation of soil strata stiffness from the geological profile in Fig. 2 and are listed in Table 1. 

Next, Fig. 18 investigates this material gradient effect on the displacement distribution along the 

free surface of the geological profile for three dimensionless frequency   values. The plots are 

parametric in terms of values for a = 0;      .0138.0;008.0;002.0  A comparison of all these 

results shows that material inhomogeneity is manifested in equal measure at all three frequencies 

examined, i.e., the response increases proportional by roughly  %25;15;5   %  % when compared to 

the homogenous material case of a = 0. These values correspond to a smooth drop in the shear 

modulus value from bottom to top of  %  %  % 5;30;80 , respectively, indicating a soil deposit 

that becomes weaker as it approaches the free surface. A consequence of this particular mechanical 

model is that the soil density suffers a similar drop, so macroscopically the shear wave velocity 

appears constant. 
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Fig. 14 Displacement amplitude along the traction-free horizontal surface of the poroelastic half-plane 

enclosing a finite geological region with tunnels for both dry and saturated soil cases and at three 

non-dimensional frequencies: (a) 0.1  ; (b) 0.3  and (c) 1.5  
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Fig. 15 Displacement amplitude versus frequency   at two observation points at the free surface of the 

poroelastic half-plane enclosing a finite geological region with tunnels: (a) point A and (b) 

point R  
 

 

6.5 Response of the Metro tunnels embedded in the 'BEM box' to a Gabor pulse 
 

In this set of results, we compute the frequency-dependent displacement amplitudes at 

observation points H11(900,3), H12(903,6), H13(906,3), H14(903,0) (in m) clockwise along the 

perimeter of the left cavity, and at observer points H21(912,3), H22(915,6), H23(918,3), 

H24(915,0), also clockwise along the perimeter of the right cavity, as marked in Figs. 3 and 4. 

These two sets of frequency plots are shown in Figs. 19 and 20, respectively. Normalization is by 

dividing with the maximum amplitude recorded at the ‘epicenter’ points along the free surface 

corresponding to these observer points, and in the absence of tunnels. The seismic source is the 

Gabor pulse given in Eq. (13), which is applied across the base of the Thessaloniki cross-section of 

Fig. 2. In essence, this is BVP 1 solved using the hybrid FDM-BEM as described in Section 3.  
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Fig. 16 Displacement amplitude along the free surface of a homogeneous orthotropic  half-plane 

enclosing a finite geological region with tunnels at different values of parameter 4455 / ccm   

and for three dimensionless frequency values: (a) 0.1  ; (b) 0.5  ; (c) 1.5  
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Fig. 17 Soil shear modulus )( 2x  variation with depth in the continously inhomogeneous, isotropic 

finite region embedded in the surrounding half-plane 

 
Table 1 Material properties of the local geological profile around the Metro tunnels 

Layer 
Cover depth 

d (m)  

Material density 

 (kg/m
3
)  

SH-wave speed 

SHC (m/s)  

Stiffness 

coefficient  

44C (kN/m
2
)  

Stiffness 

coefficient  

55C (kN/m
2
)  

1 30 1850 250 115,625 173,438 

2 0 2000 400 320,000 480,000 

3 -20 2100 600 756,000 1,134,000 

 

Given that the Gabor pulse is practically a white noise signal (i.e., all frequencies have the 

same excitation amplitude) in the smaller than 10 Hz frequency range, the soil response is 

basically a transfer function that clearly shows the first two resonant frequencies in the 'BEM box' 

with the tunnels, which are about 2.0 Hz and 4.8 Hz . This is true in nearly all sub-plots, where it 

should be noticed that the input to the 'BEM box' comes from surrounding soil strata that are not 

horizontal, and neither is the 'BEM box' centered. Thus, the left cavity receives a more pronounced 

input and the corresponding sub-plots show the resonant frequencies more clearly than those of the 

right cavity. 

Next, Fig. 21 demonstrates the influence of the tunnels on the signals that develops along the 

free surface, and in particular at the site where the Rotunda monument complex is located, see Fig. 

3. The frequency spectra at the relevant observation point R  clearly show the response peaks 

caused by the buried tunnels, especially at the resonant frequencies. This is in contrast to the case 

where cavities are absent, which yields a displacement spectrum is rather flat with low amplitude. 

The corresponding time histories at R  are produced by inverse FFT of the frequency spectra, 

using an envelope function (i.e., a taper) to suppress any spurious motion at the beginning 
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sec)0.1(  t and the end sec)0.14(  t  of the time spectrum. These are all plotted in Fig. 22 and 

yield the displacement time history at R  in the absence and presence of tunnels. Once again, we 

observe how the presence of shallow buried tunnels modifies the 'free-field' transient signals by 

introducing reverberations in the original recording that last well over sec,0.10  and at the same 

changes the maximum signal amplitude. We note in passing that the displacement time histories 

produced by the FDM in Fig. 22(a) at the deposit's surface are virtually indistinguishable from 

those produced by the hybrid FDM-BEM technique when cavities are absent in the 'BEM box'. 

 

6.6 Response of the Metro tunnels in the 'BEM' box to the 4/7/1978 M 5.1 aftershock 
 

In this final set of results, the seismic signal used as input is the July 4, 1978 M 5.1 aftershock 

(Petrovski and Naumovski 1979, Skarlatoudis et al. 2012) of the June 1978 M 6.5 earthquake 

sequence that caused major damage in the city centre of Thessaloniki, Greece. This aftershock was 

recorded at station SEK resting on outcrop rock at the northern end of the N-S cross-section of 

Fig. 2, close to station OBS . In order to use this record as input excitation, the original recording 

was (i) baseline corrected, (ii) band-pass filtered at corner frequencies of 0.5 Hz and 10 Hz, (iii) 

rotated from the original direction to a direction corresponding to the N-S cross-section so as to 

simulate transverse SH- motion and (iv) corrected by removing the free surface effect so as to 

recover the incidence wave field. Fig. 23 shows both the acceleration time history of this event and 

the corresponding Fourier spectrum, where it is observed that the frequency content lies primarily 

within the 0  5 Hz range. The displacement time history at the ‘BEM box’ interface was 

computed using double integration, as dictated by the complex convolution operation between the 

FDM synthetic transfer functions from the previous analysis using the Gabor pulse input with the 

event acceleration given in Fig. 23(a). Finally, the FFT of the displacement time history at the 

interface serves as input to the 'BEM-box' itself. 

 
Table 2 Error (as %) in the displacement amplitude at two observation points A, R on the free surface as 

obtained by the BEM and the FEM for the Thessaloniki 4/7/1978 M 5.1 aftershock 

Frequency 1.0 (Hz) 2.0 (Hz) 3.0 (Hz) 4.0 (Hz) 5.0 (Hz) 

A(910 m, 26 m) 0.01 0.05 0.50 0.65 2.61 

R(940 m, 28 m) 0.02 0.09 0.04 0.17 0.14 

 

 

In order to show the generality of the present hybrid method, we replace the BEM solution by 

the finite element method (FEM). More specifically, we used the commercial program ANSYS 

(2009) and the corresponding FEM mesh comprises 3508 solid eight-node finite elements, 

resulting in 7320 nodal points. By way of comparison, the basic 'BEM-box' surface discretization 

scheme employed by the BEM throughout this work required 89 quadratic BE resulting in 179 

nodal points (both meshes are shown in Fig. 24). In Table 2 we depict the displacement amplitude 

error (as a percentage) between the BEM and FEM results at surface observation points A(910,26) 

and R(940,28), for five discrete frequencies of 1; 2; 3; 4; 5 Hz. It can be observed that the 

maximum percent difference is 2.61% at R, the point close but not directly above the tunnels, and 

at the highest frequency value. This error was much smaller at other points that were examined 

along the free surface, indicating correct implementation of the hybrid method. 
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Fig. 18 Free surface displacement amplitude distribution for a quadratically inhomogeneous, isotropic 

geological finite region with tunnels embedded in the half-plane at different values of parameter 

a and for three dimensionless frequency values of: (a) 0.1  ; (b) 0.5  and (c) 1.5  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 19 Normalized displacement amplitude versus frequency at four points clockwise along the left 

Metro cavity perimeter for a Gabor pulse: (a) H11; (b) H12; (c) H13 and (d) H14 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 20 Normalized displacement amplitude versus frequency at four points clockwise along the right 

Metro cavity perimeter for a Gabor pulse: (a) H21; (b) H22; (c) H23; (d) H24 
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Fig. 21 Normalized frequency spectrum for the surface displacement at observation point R 

corresponding to the location of the Rotunda in the presence and absence of the Metro tunnels 

for a Gabor pulse 

 

 

 
Fig. 22 Displacement time histories at observation point R corresponding to the location of the Rotunda 

monument for a Gabor pulse in the: (top) absence and (btm) presence of buried Metro tunnels 
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Fig. 23 The Thessaloniki 4/7/1978 M 5.1 aftershock of the Thessaloniki June 1978 earthquake sequence: 

(top) acceleration time history and (btm) corresponding Fourier spectrum 

 

 

Next, Fig. 25 plots the surface displacement amplitudes at A, R as functions of frequency. We 

again observe the difference in the spectra between point A that is directly above the Metro tunnels 

and point R corresponding to the Rotunda monument location. Although in both cases there is a 

peak at around 2.7 Hz, this displacement peak is more pronounced in the former case, while in the 

latter case a secondary peak appears around 3.2 Hz. The results here are consistent with what was 

observed for the out-of-plane displacements in the case of the Gabor pulse given in the previously. 

We then continue with the acceleration time histories at R that are plotted in Fig. 26(a) in the 

absence of tunnels (FDM solution only) and in Fig. 26(b) where tunnels are present (hybrid 

FDM-BEM). As with the Gabor pulse excitation case, the latter time history reverberates a little 

longer than the former one, but with less pronounced magnitude. The next two plot in Fig. 26 is 

for absolute acceleration response spectrum corresponding to the presence and absence of the 

tunnels in the soil deposit. These types of spectra could serve as a design tool for earthquake 

engineering purposes, as they clearly show that the presence of underground tunnels in the vicinity 

of the site in question is responsible for modifying the seismic input to above ground construction. 

Nevertheless, in order to definitely conclude how the presence of tunnels affects the seismically- 

induced input to nearby structures and what the engineering implications are, a detailed parametric 

study conforming with the seismic hazard characteristics of the Thessaloniki area is required, 

which is beyond the scope of the present work. 
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(a) 

 
(b) 

Fig. 24 Discretization of the local soil region with the Metro tunnels by the (a) BEM and (b) FEM with 

input provided by the FDM for the Thessaloniki 4/7/1978 M 5.1 aftershock 

 

 

The final set of results have to do with the frequency dependence of the shear stresses 23 that 

develop at the four observation points H11- H14 along the perimeter of the left cavity (similar 

results were obtained by the BEM for the right cavity) for the Thessaloniki 1978 aftershock, see 

Fig. 27. We note here that higher values are recorded at observation points along the vertical faces, 
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and especially on the vertical face opposite to the right cavity, at a frequency value of about 2.7 Hz. 

By way of contrast, the stress spectrum is less pronounced and rather diffused in the 2.53.5 Hz  

range for the observation points at the top and bottom cavity faces, with the bottom face recording 

values that are about one-quarter less than the maximum ones. 

 

 

 

(a) 

 

(b) 

Fig. 25 Displacement amplitude zUU 3  (in m) versus frequency at observation points (a) A and (b) R 

at the free surface for the Thessaloniki 4/7/1978 M 5.1 aftershock 
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(a) 

 

(b) 

 

(c) 

Fig. 26 Acceleration time histories for the (a) FDM and (b) hybrid FDM-BEM solutions at observation 

points R in the absence and presence of tunnels and (c) the corresponding absolute normalized 

response spectra for the Thessaloniki 4/7/1978 M 5.1 aftershock 

 

 

7. Conclusions 

 

An efficient BEM model for coupling with a pre-existing FDM model was developed in this 

work to solve complex, 2D finite geological regions excited by SH-waves. More specifically, the 

BEM model is based on both displacement and traction formulations that employ recently 

obtained fundamental solutions derived by use of the Radon transform for continuously 

inhomogeneous and anisotropic elastic media. For saturated soils, Bardet's model is introduced as  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 27 Shear stress Z 23 (in kN/m
2
) vs. frequency at observation points (a) 11H , (b) 12H , (c) 

13H  and (d) 12H  c-w along the left cavity perimeter for the Thessaloniki 4/7/1978 M 5.1 

aftershock 

 

 

the computationally efficient viscoelastic isomorphism to Biot ś equations of dynamic 

poroelasticity, allowing wave field evaluations for an equivalent one-phase viscoelastic medium. 
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Thus, the BEM model is capable of representing complex material behavior, surface topography 

effects plus the presence of buried cylindrical cavities. Following accuracy and convergence tests 

on the BEM, numerical results were generated for a key cross-section of the Thessaloniki, Greece 

Metro construction project that includes the historical Roman monument known as the Rotunda 

complex. At first, the FDM was used to generate the wave field in the absence of the Metro 

tunnels, and this information was subsequently imparted to the localized 'BEM-box' region. For 

verification purposes, a dense FEM mesh replaced the aforementioned 'BEM-box' and yielded the 

same results as before. Finally, free surface displacement time histories, cavity perimeter stress 

time histories and acceleration spectra were computed for a wave pulse and for a recorded 

accelerogram from the Thessaloniki, Greece June 1978 M 6.5 earthquake sequence, both 

emanating from the bedrock interface. The signal variability observed locally due to the presence 

of buried tunnels has important design consequences for the built environment. It is also important 

in helping decide the exact placement of tunnels so as to minimize free surface vibration 

phenomena. Future improvements will included incorporation of geological discontinuities such as 

cracks, plus the modelling of P- and SV- waves. 
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