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Abstract.    A simple damper optimization method is proposed to find optimal damper allocation for shear 
buildings under both target added damping ratio and interstorey drift ratio (IDR). The damping coefficients 
of added dampers are considered as design variables. The cost, which is defined as the sum of damping 
coefficient of added dampers, is minimized under a target added damping ratio and the upper and the lower 
constraint of the design variables. In the first stage of proposed algorithm, Simulated Annealing, Nelder 
Mead and Differential Evolution numerical algorithms are used to solve the proposed optimization problem. 
The candidate optimal design obtained in the first stage is tested in terms of the IDRs using linear time 
history analyses for a design earthquake in the second stage. If all IDRs are below the allowable level, 
iteration of the algorithm is stopped; otherwise, the iteration continues increasing the target damping ratio. 
By this way, a structural response IDR is also taken into consideration using a snap-back test. In this study, 
the effects of the selection of upper limit for added dampers, the storey mass distribution and the storey 
stiffness distribution are all investigated in terms of damper distributions, cost function, added damping ratio 
and IDRs for 6-storey shear building models. The results of the proposed method are compared with two 
existing methods in the literature. Optimal designs are also compared with uniform designs according to 
both IDRs and added damping ratios. The numerical results show that the proposed damper optimization 
method is easy to apply and is efficient to find optimal damper distribution for a target damping ratio and 
allowable IDR value. 
 

Keywords:    optimal dampers; target damping ratio; added dampers; optimal passive control; interstorey 
drift ratio 
 
 
1. Introduction 
 

Damping within a structural system can have various significances for different engineering 
disciplines. Damping can mean only a reference note on a seismic or wind spectral plot, 5% 
damped spectra being the most known parameter among the civil engineering community. To the 
structural engineers, damping means changes in overall stress within a structure subjected to shock 
and vibration, with frequent arguments considering whether a structure will have 2%, 3%, 4%, but 
not more than 5% structural damping.  

The proper regulation of damping is one of many different ways that have been proposed for 
supporting a structure subjected to vibration disturbances in order to achieve an optimal 
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performance. Conventional methods would suggest that the structure should passively decrease or 
absorb the effects of transient inputs through a combination of strength, flexibility, deformation 
capacity and energy absorption. The degree of damping in a conventional building structure is 
considerably low. Furthermore, the forces on structural elements can exceed the yield points 
during strong motions such as an earthquake excitation. Therefore, most of the energy dissipated is 
absorbed by the structure itself through local damages.  

The concept of supplemental dampers within a structure suggests that part of the input energy 
will be absorbed, not by the structure itself, but rather by supplemental damping elements. The 
usage of the added dampers can increase the damping level of buildings ranging from 20% to 40%. 
A supplemental damper is an element which can be added to a system to provide a capacity to 
outstand forces resulting from vibration, therefore bringing out a mean of energy dissipation. 
Application of supplemental dampers has transitioned from protection related structures to 
commercial applications on building structures and bridges exposed to seismic or wind loads. 
Fluid damping technology has been proven to be thoroughly reliable and robust for 
implementation to structures. A fluid viscous damper is one of the commonly known passive 
dampers. Fluid viscous devices that use a cylindrical piston immersed in a viscous fluid are 
extensively used in aerospace and military applications; and recently have been adapted for 
building applications (Constantinou and Symans 1992). The primary characteristics of these 
devices for structural applications are linear viscous response achieved over a broad frequency 
range, insensitivity to temperature and compactness in comparison to stroke and output force. The 
damper absorbs energy through movement of the piston in the highly viscous fluid. If the fluid is 
purely viscous, then the output force of the damper is directly proportional to the velocity of the 
piston. 

When this type of passive dampers began to be used in buildings, it was essential to ascertain 
the appropriate location and number of dampers within the structure. However, there have been a 
limited numbers of studies about damper allocation in structures. The results of reducing the 
seismic response of multi-storey shear buildings with first storey damping were presented by an 
optimization study (Constantinou and Tadjbakhsh 1983). In their study, they remarked that 
flexibility of structure actually affected the optimal damping of system; and suitable objective 
functions were proposed for both short and high buildings. Ashour and Hanson (1987) conducted 
an interesting study on the optimal placement of visco-elastic dampers in relation to seismic 
excitation. An evaluation of the effect of added visco-elastic dampers on reducing the earthquake 
response of multi-storey steel frame structures was presented by Zhang et al.(1989). The seismic 
responses of simple building structures were examined in a study carried out by Hahn and 
Sathiavageeswaran (1992) to assess the effects of different distributions and magnitudes of 
damping derived from added visco-elastic dampers. A simple optimal design procedure was 
proposed by which dimension and number of visco-elastic dampers could be determined and the 
results of the proposed method were also supported by experimental measurements (Zhang and 
Soong 1992). Cao and Mlejnek (1995) developed a finite element perturbation method, which 
provided a simple tool for the prediction of damping in a wide frequency range without the need 
for repeated analyses. An algorithm was introduced to find the optimum sets of storey stiffness 
coefficients and damping coefficients of the dampers of an elastic planar shear building with 
viscous dampers (Tsuji and Nakamura 1996).  

Some of the optimal damper procedures based on active control theories were developed to 
determine damper allocations (Gürgöze and Müller 1992, Gluck et al.1996, Agrawal and Yang 
2000a, Agrawal and Yang 2000b, Loh et al.2000, Hwang et al.1995, Yang et al.2002, Lavan et 
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al.2008, Cimellaro et al.2009a). An analytical procedure for redesign of buildings, which are 
assumed linear, is proposed which optimizes simultaneously both the structure and the structural 
control system trying to reduce the structural mass (Cimellaro et al., 2009b). An analytical 
procedure was proposed for the redesign of structural systems with an arbitrary damping system 
(viscous and/or hysteretic, proportional and/or non-proportional). In this procedure the target 
transfer functions and the ratios of absolute values of the transfer functions calculated at the 
fundamental natural frequency of a structural system were taken as controlled quantities together 
with the undamped fundamental natural frequency (Takewaki 1997a). Takewaki (1997b) devised 
an efficient method based on minimizing the sum of amplitudes of the transfer functions of 
interstorey drifts evaluated at the undamped fundamental natural frequency of a structural system 
together with a constraint on the sum of damping coefficient of the dampers to obtain the optimal 
damper placement. The effects of variations support member stiffness of dampers upon the 
optimal damper allocation problem were investigated (Takewaki and Yoshitomi 1998); and 
Takewaki (1998) also presented a systematic procedure to find the optimal damper positioning to 
minimize the tip deflection of a cantilever beam. A control strategy of seismic response of 
multi-storey building frames using optimally placed visco-elastic dampers was investigated using 
spectral analysis for narrow and broad band stationary random ground motions (Shukla and Datta 
1999). An efficient procedure, with the steepest direction search algorithm, was devised to find the 
optimal damper distribution in a three dimensional shear building model (Takewaki 1999a). A 
procedure for obtaining the optimal stiffness and damping distributions based upon the optimality 
criteria was presented by Takewaki (1999b). Different from the conventional critical excitation 
methods, a new stochastic response index was maximized as an objective function to find the 
optimal placement of the dampers (Takewaki 1999c). An optimal damper placement method was 
proposed to minimize the dynamic compliance of a planar building frame (Takewaki 2000a). An 
incremental inverse problem approach was adopted by Takewaki (2000b) to achieve the 
stiffness-damping simultaneous optimization of structural system. A gradient-based method was 
presented to obtain the required amount of viscous and visco-elastic damping (Singh and Moreschi 
2001). Recently, several applications of genetic algorithms to optimal damper problems of 
structural control have appeared (Singh and Moreschi 2002, Bishop and Striz 2004, Wongprasert 
and Symans 2004, Dargush and Sant 2005, Trombetti and Silvestri 2007, Lavan and Dargush 
2009). Uetani et al. (2003) presented an application of optimum design to practical building 
frames with both viscous dampers and hysteretic dampers. 

A simplified and practical sequential search algorithm (SSSA) for the optimization of damper 
configurations was proposed (Lopez-Garcia and Soong 2002). A simultaneous optimization 
procedure was presented to install both visco-elastic dampers and supporting braces in a structure 
(Park et. al. 2004). Lavan and Levy (2005) investigated a method for the optimal design of added 
viscous damping for a set of realistic ground motion records and a constraint on an energy based 
global damage index for regular as well as irregular yielding shear frames. Levy and Lavan (2006) 
investigated fully stressed design of added dampers; they also proposed a simple iterative use of 
Lyapunov's solution for the linear optimal design of passive devices in framed structures (Lavan 
and Levy 2009). Lavan and Levy (2006) presented an optimal peripheral drift control of 3D 
irregular framed structures using supplemental viscous dampers. 

For planar building frames, a new objective function considering base shear force transfer 
function was defined; and the optimal damper’s both location and size were determined (Aydin et 
al.2007). Cimellaro (2007) defined top absolute acceleration as an objective function to find 
optimal damper placement and compared this with other methods previously proposed by 
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Takewaki (1997b) and Aydin et al.(2007). A gradient based evolutionary optimization procedure 
was proposed for determining the optimal allocation of added visco-elastic dampers and their 
supporting members to minimize the transfer function of the sum of interstorey drifts (Fujita et 
al.2010a). A new optimal damper placement method using penalty function and first order 
optimization theory in long span suspension bridges was presented by Wang et al.(2010). A 
historical review was presented on the development of smart or optimal building structural control 
with passive dampers and some possibilities of structural rehabilitation (Takewaki et al.2011, 
Takewaki 2009). A gradient-based evolutionary optimization methodology is presented for finding 
the optimal design of viscous dampers to minimize an objective function defined for a linear 
multi-storey structure (Fujita et al.2010b). An optimal damper method was investigated to find 
optimal seismic design of added viscous dampers in yielding plane frames and the total added 
damping is minimized for allowable values of local performance indices under the excitation of a 
set of ground motions in both regular and irregular structures (Lavan and Levy 2010). 
Applications for the seismic design of building structures equipped with viscous dampers were 
carried out (Silvestri and Trombetti 2007, Silvestri et al.2011). Optimal location and 
characteristics of TADAS dampers in moment resisting buildings was studied (Yousefzadeh et 
al.2011). Some basic methodologies were also compared with respect to some structural response 
and usability measures in practice (Whittle 2012). A new objective function for finding optimal 
size and location of the added viscous dampers was proposed based on the elastic base moment in 
planar steel building frames (Aydin 2012). Mousavi and Ghorbani-Tanha (2012) developed a 
systematic procedure for optimal placement and characteristics of different linear 
velocity-dependent dampers according to modal damping ratios. A practical optimal design 
method, which was formulated to minimize the maximum interstorey drift or maximum top storey 
acceleration under design earthquakes for non-linear oil dampers, was proposed (Adachi et 
al.2013). Recently, some meta-heuristic algorithms were proposed to find optimal location and 
sizes of the added dampers (Sonmez et al.2013, Amini and Ghaderi 2013).  

In the literature, different structural responses, either as an objective function or a constraint, 
were chosen to find the optimal damper placement for various damper optimization methods. 
Some of them were based on active control theory. While formulations of some studies were 
established on the frequency domain, the others were based on the time domain. While some 
damper optimization methods are based on indirect optimization methods, some of them use direct 
optimization methods. There is variability in the solution of the optimal damper distribution 
problem. The formulations and their solutions on damper optimization must be simple and easy to 
use as well as the methods cover the structural response. Material cost is one of the most common 
performance functions in the structural optimization. The supplemental dampers are also both 
technological and expensive tools. Especially, the use of these supplemental dampers in large scale 
structures brings on the cost issue. It needs to define cost function of the dampers. Ideally, a 
damper cost optimization problem should be formulated in terms of its life-cycle cost which 
includes the costs of materials, fabrication, erection, maintenance and disassembling of the 
structure at the end of its life cycle.  

In this study, a cost function, which is the sum of damping coefficients of the added dampers, is 
minimized to find optimal damping coefficients of the added dampers under a specified added 
damping ratio and considering both lower and upper bounds of each damping coefficient of the 
added dampers. Differential Evolution, Nelder Mead and Simulated Annealing are used to solve 
the simple numerical minimization problem in this study. After the numerical minimization step in 
the proposed algorithm, a snap-back test is satisfied to attain the allowable level of the IDRs under 
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a design earthquake. Moreover, in the numerical examples, the effects of the choice of upper limit 
of each added damper, the effects of the storey mass and stiffness distribution above the optimal 
damper designs are investigated. In cases of different storey mass and storey stiffness distribution, 
the total damping coefficient obtained from the proposed method are taken as an equality 
constraint in order to find optimal damper distribution applying other existing methods available in 
the literature (Takewaki 2000a, Cimellaro 2007). The results of the proposed method are compared 
to the results of these methods. Moreover, the optimal designs are also compared to uniform 
designs with respect to damping ratio and IDRs. Optimal designs give better results compared to 
uniform designs in terms of IDRs. In addition to this, while optimal damper design focuses on 
particular storeys, the total damping obtained from optimal design is distributed to all storeys in a 
uniform design. This aspect also increases the labour cost in addition to material cost in a uniform 
design. 
 
 
2. Formulation of problem  
 

Consider an n-storey shear building model such as linear manufactured viscous dampers that 
are added to each storey. Two ends of the viscous dampers have different velocity since one end is 
attached to one building storey and the other end to a different storey. These devices produce 
damping forces in proportion to relative velocity between each one of the ends. These elements 
achieve the energy dissipation during an external vibration such as a wind and an earthquake 
excitation. The damping force of a linear viscous damper is given as 

ucF adad                                  (1) 

where adc , u  denote the damping coefficient of manufactured viscous damper and relative 
velocity between each one of the ends of damper, respectively. This type of manufactured damper 
is considered to add to each one of storeys in a shear building. After the dampers are inserted to the 
structure subjected to earthquake vibration, the equation of motion can be written as  

ሷ࢛ࡹ  ሺݐሻ  ሺ  ሶ࢛ሻࢊࢇ ሺݐሻ  ሻݐሺ࢛ࡷ ൌ െ࢘ࡹüሺݐሻ                 (2) 

where M, C and K present mass, structural damping and stiffness matrices, respectively. 
ሷ࢛ ሺݐሻ, ሶ࢛ ሺݐሻ and ࢛ሺݐሻ are acceleration, velocity and displacement vectors, respectively. The r 
denotes influence vector that all elements is equal to one. üሺݐሻ is defined as ground acceleration. 
The structural damping matrix, C can be calculated in proportion to only mass matrix, only 
stiffness matrix or linear combination of mass and stiffness matrices. It is given as 

 ൌ  (3)                                 ࡹߙ

 ൌ  (4)                                 ࡷߚ

 ൌ ࡹߙ  (5)                             ࡷߚ

where ߙ	 and ߚ are generally calculated in terms of first normal mode of vibration in Eqs. (3) 
and (4). In general, ߙ	 and ߚ in Rayleigh damping matrix, given in Eq. (5), are determined by 
using the first and second normal modes of vibration. While this is called as proportional damping 
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matrix, Cad is the non-proportional damping matrix that should be designed optimally to minimize 
an objective. The matrix, Cad can be decomposed into corresponding added viscous dampers and is 
written as  

ࢊࢇ ൌ ܿଵ  ܿଶ ⋯ ܿ(6)                        

where ܿ	ሺ݅ ൌ 1,… , ݊ሻ  corresponds to the damping coefficient of ith added damper; and 
ሺ݅	 ൌ 1,… , ݊ሻ denotes the location matrix of the ith added damper. Moreover, the location matrix 
is also equal to the partial differential of Cad with respect to ith added damping coefficient of 
dampers as 

 ൌ
డೌ
డ

                                (7) 

As an example; for values of ݅ ൌ 1	and	2  

ଵ  ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
1 0 … 0 0 … 0 0
0 0 … 0 0 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 0 0 … 0 0
0 0 … 0 0 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 0 0 … 0 0
0 0 … 0 0 … 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

௫

ଶ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
1 െ1 … 0 0 … 0 0
െ1 1 … 0 0 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 0 0 … 0 0
0 0 … 0 0 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 0 0 … 0 0
0 0 … 0 0 … 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

௫

 (8) 

In the fundamental mode, the damping ratio is calculated as follows 

ଵ߱ଵߞ2 ൌ
ࣘ
ሻࣘࢊࢇାሺࢀ
ࣘ
ࣘࡹࢀ

ൌ 
ࣘ
ࣘࢀ

ࣘ
ࣘࡹࢀ


ࣘ
ࣘࢊࢇࢀ
ࣘ
ࣘࡹࢀ

                    (9) 

where ߞଵ denotes damping ratio after dampers are inserted to the structure, ࣘ is the normalized 
fundamental mode vector and ߱ଵ  is the undamped natural circular frequency of the model 
structure. The first term on the right side of Eq. (9) covers proportional damping matrix, and 
therefore there are no couplings between first mode and any of the other modes. This situation is 
expressed as 

                 
ࣘ
ࣘࢀ

ࣘ
ࣘࡹࢀ

ൌ ቄ2ߞ௦߱ଵ ݅ ൌ 1
0 ݅ ് 1

               (10) 

where ߞ௦ denotes structural damping ratio for the fundamental mode. The second term on the 
right side of Eq. (9) include non-proportional damping matrix. However, only for purposes of a 
simplified design it is convenient to assume that 

    
ࣘ
ࣘࢊࢇࢀ
ࣘ
ࣘࡹࢀ

ൌ ቄ2ߞௗ߱ଵ ݅ ൌ 1
0 ݅ ് 1

            (11) 

where ߞௗ denotes added damping ratio for the fundamental mode. The Eq. (9) can be rewritten 
using Eqs. (10) and (11) as follows  

ଵ߱ଵߞ2      ൌ 2ሺߞ௦   ௗሻ߱ଵ               (12)ߞ
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and; therefore 
ଵߞ ൌ ௦ߞ   ௗ                               (13)ߞ

Structural damping ratio ߞ௦ is generally assumed to be constant as 0.02 in steel structures or 
0.05 in RC structures. The parameter ߞଵ denotes the desired value of the damping ratio when the 
dampers are inserted to the structure. The parameter ߞௗ, which occurs due to the effects of the 
added dampers, is the added damping ratio. The desired ߞௗ is determined from Eq. (13), if the 
structural damping ratio and the desired total damping ratio are known. Therefore, the desired 
added damping ratio is calculated as 

ௗߞ ൌ  ௦                               (14)ߞଵെߞ

The Eq. (9) can be rewritten for only added damping ratio as  

ௗ߱ଵߞ2 ൌ
ࣘ
ࣘࢊࢇࢀ
ࣘ
ࣘࡹࢀ

ൌ ܿଵ
ࣘ
ࣘࢀ

ࣘ
ࣘࡹࢀ

 ܿଶ
ࣘ
ࣘࢀ

ࣘ
ࣘࡹࢀ

 ⋯ ܿ
ࣘ
ࣘࢀ

ࣘ
ࣘࡹࢀ

           (15)       

where the coefficients ሺߤሻ	of the ci can be written as follows 

ߤ     ൌ
ࣘ
ࣘࢀ

ࣘ
ࣘࡹࢀ

                (16) 

The formula of the desired added damping ratio for fundamental mode is written as below 
using Eqs. (15) and (16)  

ௗߞ ൌ
ଵ

ଶఠభ
ሺߤଵܿଵ  ଶܿଶߤ  ⋯ ܿሻߤ ൌ

ଵ

ଶఠభ
∑ ܿߤ

ୀଵ              (17) 

 
 
3. Definition of optimal damper problem for shear buildings 

 
The aim of an optimal design is to minimize or maximize an objective or multiple objectives. 

Some objective functions appeared such as top displacements, maximum interstorey drifts, sum of 
interstorey drifts, base shears, top absolute accelerations, overturning moments, a defined damage 
index, and combinations of some structural performance functions in the previously mentioned 
literature. Various objective functions can be used in order to solve optimal damper problem and 
the importance of various cost functions can increase for different types of structures. While the 
decrease in displacements or inter-storey drifts is important for a displacement-based design, some 
internal forces and accelerations can be important for a forced-based design. In other words, a 
defined structural damage index and an energy index may be important for various structures.  

In this study, design variables are considered as the damping coefficients of the added dampers. 
Optimal damper problem is based on minimization of total cost of the dampers that is expressed as 
the sum of damping coefficients of the added dampers which is given as  

Min. ݂ ൌ ∑ ܿ

ୀଵ                            (18) 

The cost function to be minimized in Eq. (18) indicates the total damping coefficient of the 
added dampers. Eq. (17) can be rewritten as an equality constraint in terms of the added damping 
ratio  
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ௗߞ ൌ
ଵ

ଶఠభ
ሺߤଵܿଵ  ଶܿଶߤ  ⋯ ܿሻߤ ൌ

ଵ

ଶఠభ
∑ ܿߤ

ୀଵ              (19) 

where ߞௗ is a fixed damping ratio that can be given as a desired damping ratio. The fundamental 
natural circular frequency and ߤ is known parameter from the vibration characteristics of the 
structure. Both objective function and equality constraint are the linear function of the design 
parameters.  

In practice, building design codes and guides do not assign a specific method for optimal 
damper design. However, in the NEHRP (2003) a technique for obtaining a total damping value is 
provided to achieve a required effective damping ratio. Another way of determining the total 
damping is to calculate a specified value to satisfy a response in linear elastic region for a design 
earthquake (Whittle et al.2012). The desired effective damping ratio can be converted into a total 
damping coefficient which corresponds to the sum of damping coefficients of added dampers.  

Taking into account the inequality constraints on the upper and lower bounds of the damping 
coefficients of each added damper gives the following 

0  ܿ  ܿ̅  (i =1,2,…,n)                      (20) 

where ܿ̅ is the upper bound of damping coefficient of the damper in ith storey. In practical 
applications, a damper capacity and size which corresponds to the upper bound of the added 
damper should be restricted because of commercial and manufacturing limitations. 
 
 
4. Numerical minimization methods 

 
There are many optimization tools for solving the proposed damper optimization problem in 

the literature. The solution of the proposed optimization problem is easy; because the objective 
function and the constraint functions are simple and are linear functions of the design variables. In 
this optimal damper problem, the numerical minimization module in Mathematica 5.0 (Wolfram 
Research 2003) is used to calculate the optimal damper coefficients under the mentioned 
constraints to minimize the total damping cost. The three various numerical minimization methods 
such as Differential Evolution, Nelder Mead and Simulated Annealing, which are well known in 
the optimization literature, are used to solve the optimization problem. These methods present the 
good agreement between them according to the numerical results in this problem. The aim of using 
these three optimization methods is to verify the results obtained from a method with the other 
methods. The used optimization methods in the numerical minimization module of the 
Mathematica 5.0 (Wolfram Research 2003) are expressed in the following paragraph. 

Differential Evolution is a genetic algorithm that maintains a population of specimens, x1,...,xn, 
represented as vectors of real numbers (“genes”). Every iteration, each xi chooses random integers 
a, b, and c and constructs the mate ݕ ൌ ݔ  ݔሺߛ  ሺݔ െ  ሻሻ, where  is the value of Scalingݔ
Factor. Then xi is mated with ݕ according to the value of Cross Probability, giving us the child 
  in the population. Search Points isݔ  for the position ofݖ . At this point xi competes againstݖ
Min[10*d, 50], where d is the number of variables. Differential Evolution is quite robust, but 
generally slower than other methods due to the relatively large set of points it maintains.  

Nelder Mead method is an implementation of the Nelder-Mead simplex algorithm. For 
simplicity, we assume here that minimization is being done. We start with the highest vertex, h, of 
a simplex, and reflect it across the centroid, c, of the remaining points to a new point, a, such that 
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‖ିౙ‖

‖ିౙ‖
 equals the Reflect Ratio. If a is lower than all other vertices, we expand reflection by 

finding the point b such that 
‖ౘି‖

‖ିౙ‖
 equals the Expand Ratio. Then the lower of a and b 

replaces h in the simplex and the process starts over. If a is lower than the highest vertex but not 
lower than the lowest vertex, a replaces h and the process starts over. Finally, if a is the highest 

vertex, we construct b so that 
‖ౙିౘ‖

‖ౙି‖
 equals the Contract Ratio. If b is lower than h, we replace 

h with b and start over; otherwise, we move each of the simplex vertices, i, toward the lowest 

vertex l, giving new vertices, ν୧
ᇱ, where 

ฮି
ᇲฮ

‖ିౢ‖
 matches the value of Shrink Ratio, and start over.  

Simulated Annealing is an implementation of a biased random-walk search method. It 
generates a random set of starting points, and for each starting point picks a random direction in 
which to move. If the move is a better point, it is accepted. If the move is not a better point, we 
calculate a probability  and compare it to a random value r ∈ (0, 1), and if ݎ ൏  we accept the ߩ
new point despite it not being an improvement. The probability  is given by ߩ ൌ ݁ሾ,∆,బሿ 
where b is the function defined by Boltzmann Exponent, i is the current iteration, ∆݂ is the 
change in objective function value, and ݂ is the value of the objective function from the previous 
iteration. For each starting point, this is repeated until the maximum number of iterations is 
reached, the method converges to a point, or the method stays at the same point consecutively for 
the number of iterations given by Level Iterations. The default value of Search Points is also 
Min[2*d, 50], where d is the number of variables. Simulated Annealing is generally a bit faster 
than Differential Evolution but may not do as well on some problems (Wolfram Research 2003). 
 
 
5. Proposed algorithm 

 
The procedure for the optimal placement of added dampers in a shear-building frame is given 

as follows: 
Step 1. Read the input data to construct the stiffness matrix (K), mass matrix (M), calculate the 

first natural circular frequency of the structure (ω1), the first mode vector and calculate the 
structural damping matrix (C). Choose a design earthquake for the linear time history analyses. 
Select an upper limit of the design variables, ܿ̅. 

Step 2. Iteration number=1 in the beginning of the algorithm. 

Step 3. Calculate a new target added damping ratio as ߞௗ
௪ ൌ ௗߞ

ௗ  0.01.  

Assume ߞௗ
ௗ ൌ 0 in the first iteration. ߞௗ is increased by 1% for each iteration in this study.  

Step 4. Minimize the cost function defined in Eq. (18) considering the constraints in Eqs. (19) - 
(20). Use the numerical minimization module of Mathematica 5.0 to solve the linear optimization 
problem with three different methods which are Differential Evolution, Nelder Mead and 
Simulated Annealing. Find a candidate optimal damper design.  

Step 5. Test the candidate optimal damper design obtained in Step 4 by performing the time 

history analysis and calculating the ith interstorey drift ratios as ܴܦܫାଵ ൌ
ሼఋశభሺ௧ሻିఋሺ௧ሻሽೌೖ

శభ
 for 

upper storeys and ܴܦܫଵ ൌ
ሼఋభሺ௧ሻሽೌೖ

భ
 for the first storey, where ߜሺݐሻ denotes the interstorey drift 
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of ith storey and hi is the ith storey height. If all IDRs calculated in this step is below the allowable 
level (assumed to be 1% in this study), stop the iteration. Otherwise, return to Step 3, increase the 
iteration number (as iteration number = iteration number+1) and continue for a new target added 
damping ratio. 

If all the design variables attain to the upper limit in Step 4 and any one of IDRs (calculated in 
Step 5) is not below the allowable level, optimization will not satisfy convergence in Step 4. In this 
case, one should return to Step 1 and to increase upper limit of the design variables, ܿ̅. 
 
 
6. Numerical examples 

 
6.1 The effects of upper limit of design variables on optimal damper problem and 

comparison with uniform designs 
 
Six-storey shear building model is considered here as a numerical example as shown in Fig. 1. 

Each one of storey masses is equal to 8.0 104 kg and each one of storey stiffnesses is equal to 2.0 
107 N/m. Structural damping in the fundamental mode is assumed to be 0.02 and damping matrix 
is proportional to mass matrix. The height of the storeys is taken as 3 m. The fundamental period 
of the model structure is calculated to be 1.65 s. Different upper values of damping coefficients are 
chosen in the optimization problem and the effects of various upper limits of the added dampers 
are investigated. The upper limit values, ܿ̅ are specified to be 0.8 106 Ns/m, 0.9 106 Ns/m, 1.0 106 
Ns/m, 2.0 106 Ns/m, 3.0 106 Ns/m and 4.0 106 Ns/m, respectively. El Centro (NS) earthquake 
record is chosen as the design earthquake in this example.  

Proposed Algorithm presented in Section 5 is applied to find optimal damper designs for each 
one of the upper limit of added dampers, ܿ̅. The variation of cost function is plotted in the 
numerical minimization stage (Step 4) according to three different numerical minimization 
methods given in Fig. 2 which are plotted only for ܿ̅ ൌ 2.0	10	ܰݏ/݉. It can be seen in Fig. 2 
that the target added damping ratio is taken as 0.01 in Step 3 in the first iteration; and the candidate 
optimal values of the design variables are evaluated in Step 4. Then, the optimal design is tested in 
terms of peak IDRs in Step 5. Some of them satisfy an IDR value below 1% in the first iteration. 
The target added damping ratio is gradually increased to 1% iteration by iteration until all of the 
IDRs become less than the allowable level. All of the peak IDRs become less than the allowable 
level at the eighth iteration and the optimal design is reached at this iteration for ܿ̅ ൌ 2.0	10	ܰݏ/
݉. The minimum value of cost function and target added damping ratio in the last iteration are 
calculated as 2.86645 106 Ns/m and 0.08, respectively. The same procedure is achieved for other 
values of ܿ̅ such as 0.8 106 Ns/m, 0.9 106 Ns/m, 1.0 106 Ns/m, 3.0 106 Ns/m and 4.0 106 Ns/m, 
respectively. In cases of ܿ̅ ൌ 0.8	10	ܰݏ/݉, ܿ̅ ൌ 0.9	10	ܰݏ/݉ and ܿ̅ ൌ 1.0	10	ܰݏ/݉, the 
optimal designs, which satisfy the allowable level for all of the IDRs, are determined at the 
seventh iteration. The target added damping ratio is calculated as 0.07 at the last iteration in these 
cases. In cases of ܿ̅ ൌ 3.0	10	ܰݏ/݉ and ܿ̅ ൌ 4.0	10	ܰݏ/݉, the iteration number reach to 10 
and 12, respectively to provide the limit of IDR. These iteration numbers correspond to target 
damping ratios of 0.10 and 0.12, respectively. The calculated optimal values of the design 
variables, corresponding to cost value and target added damping ratio for different upper limits of 
damping coefficient in 6-storey building (T1=1.65 s) are shown in Table 1. The optimal 
distribution of the design variables according to storey level and corresponding uniform design are 
plotted in Fig. 6. The uniform designs are evaluated by uniformly distributing the total damping 
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Fig. 1 6-storey shear building model with supplemental dampers 
 

Table 1 The variation of optimal designs according to upper limit of damping coefficient of dampers for 
6-storey building (T1=1.65s) 

Upper limit of 
damping 

coefficient 
Ns/m (106) 

Optimal damping coefficient  
Ns/m (106) 

Minimum 
value of cost 

function 
Ns/m (106) 

Target  added 
damping ratio 

% 

cത୧ c1 c2 c3 c4 c5 c6 
c୧



୧ୀଵ

 
ad 

0.80 0.80 0.80 0.80 0.80 0.03 0.00 3.23 7 
0.90 0.90 0.90 0.90 0.24 0.00 0.00 2.94 7 
1.00 1.00 1.00 0.78 0.00 0.00 0.00 2.78 7 
2.00 2.00 0.87 0.00 0.00 0.00 0.00 2.87 8 
3.00 3.00 0.35 0.00 0.00 0.00 0.00 3.52 10 
4.00 4.00 0.17 0.00 0.00 0.00 0.00 4.17 12 

 
 

coefficient obtained from the proposed algorithm. Both Figs. 6 and 7 state that the obtained 
optimal designs for different upper limits of design variables give a better performance than the 
uniform design in terms of both damping ratios and peak IDRs. If Fig. 6(f) is examined according 
to the damping ratio and the optimal design is compared with the uniform design, the optimal 
design (ad=0.12) provides a better response than the uniform design (ad=0.0662) in terms of 
added damping ratio. While the optimal designs focus on the lower storeys, the uniform designs 
are allocated at all storeys in which case the labour cost increases when it is compared with the 
optimal case. The labour cost is not taken into consideration in this study, however it can be said 
that the placement of dampers to optimally specified storeys also provides advantages instead of 
the placement to all storey in terms of labour cost. The variations of the IDRs according to 
iteration number are plotted in Fig. 3 in cases of all upper limit values of added damping 
coefficients. As can be seen in Fig. 3, all of them fall below the allowable level at the end of the 
algorithm. Fig. 4 presents the variations of the peak absolute accelerations (Ai) of each storey with  
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Fig. 2 The variation of the cost function for each iteration of 6-storey shear building model (T1=1.65s) 
in the numerical minimization stages in case = ܿ̅ ൌ 2.0 10  ݉/ݏܰ
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respect to iteration number for all upper limit values. It can be seen in Fig. 4 that the peak absolute 
acceleration of each storey presents a downtrend according to the iteration number for different 
upper limits of design variables. The peak value of IDRs, their allowable levels (Fig. 5(a)) and the 
peak absolute accelerations (Fig. 5(b)) according to storey levels are plotted in Fig. 5 for the model 
building. All of the optimal designs give good performance in terms of the IDR and the absolute 
acceleration. If Fig. 5(a) is examined carefully, it is observed that all optimal designs exhibit close 
performance to each other in terms of IDR response. Designer can choose an optimal design 
among the optimal solution sets in cases of different selection of the upper limit for the dampers. 
When the optimal designs are examined in Table 1, it is observed that if a selection according to 
cost function is desired, the optimal design in case of ܿ̅ ൌ 1.0	10	ܰݏ/݉  gives the best 
performance among the optimal design sets. If a choice according to the added damping ratio is 
desired, the optimal design in case of ܿ̅ ൌ 4.0	10	ܰݏ/݉ gives the best performance among the 
optimal designs. The higher upper limit selection provides that the optimal dampers are placed to 
lower storeys. The decrease of the upper limit value for the damping coefficients provides the 
placement of the dampers to more storeys. 
 
 

 
Fig. 3 The variation of IDRs for each iteration number in 6-storey shear building model (T1=1.65s) in 

case of different upper limit of the added dampers 
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Fig. 4 The variation of absolute accelerations for each iteration number in 6-storey shear building 

model (T1=1.65s) in case of different upper limit of the added dampers 
 

Fig. 5 Peak IDR and absolute acceleration values for optimal designs of 6-storey shear building model 
(T1=1.65s) in case of different upper limit of the added dampers 
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Fig. 6 Optimal and uniform designs for 6-storey shear building model (T1=1.65s) in case of different 

upper limit of the added dampers 
 
 
This example presents the effect of different upper limits for the design variables above the 

proposed optimal damper problem. While this method minimizes the total damping coefficient of 
added dampers, at the same time, it satisfies an allowable boundary for IDRs and also attains a 
target value for an added damping ratio. The effects above these structural responses of the upper 
limit value of design variables and the effects above distribution of the added dampers of this limit 
value are discussed in this section. 

 
6.2 The effects of mass distribution on the proposed optimal damper problem 
 
The effects of storey mass distribution on the proposed optimal damper design are investigated 

in this section. Three six-storey shear building models accompanied with three different mass 
distributions are considered as shown in Fig. 8 and Table 2. The total mass is equal for all of these 
three cases. While the storey mass values increase through the upper storeys in Case-M-1 (Fig. 
8(a)), they are chosen in decreasing mass quantity in Case-M-2 (Fig. 8(b)).  The other mass 
distribution model is selected as a uniformly distributed mass model as shown in Fig. 8(c). All 
storey stiffnesses are equal to k୧ ൌ 2.5	10N/m for all models. Structural damping in the 
fundamental mode is assumed to be 0.02 and structural damping matrix is selected to be  
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Fig. 7 Comparison of optimal and uniform designs in terms of IDRs 

 

Fig. 8 Different mass distribution models (a) Case-M-1 T1=1.93s (b) Case-M-2 T1=1.68s (c) Case-M-3 
T1=1.81s 
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Table 2 Different mass design and corresponding fundamental period and used upper limit of damping 
coefficient of added dampers 

Mass 
design case 

Mass kg (104) 
Fundamental 

period 
Upper limit of damping 
coefficient Ns/m (106)

m1 m2 m3 m4 m5 m6 T1 (s) cത୧ 
Case-M-1 8.0 9.6 11.2 12.8 14.4 16.0 1.93 6.0 

Case-M-2 16.0 14.4 12.8 11.2 9.6 8.0 1.68 6.0 

Case-M-3 12.0 12.0 12.0 12.0 12.0 12.0 1.81 6.0 

 

Fig. 9 Optimal damper distributions: (a) Case-M-1, (b) Case-M-2 and (c) Case-M-3 
 
 
proportional to mass matrix. The corresponding fundamental periods for model structures are 
calculated as T1=1.93s in Case-M-1, T1=1.68s in Case-M-2, T1=1.81s in Case-M-3. The upper 
limit value of added damping coefficients is fixed at cത ൌ 6.0	10Ns/m in the optimization stage 
for all models in this section.  

After the proposed optimization method is carried out to find the optimal design, the variation 
of optimal damping coefficients is plotted in Fig. 9. In order to make a comparison with some 
existing methods in literature (Takewaki 2000a, Cimellaro 2007), the total damping coefficient 
obtained from the proposed method is used to find optimal damper placement using two different 
methods. The sum of the damping coefficients, which is calculated according to the proposed 
method, is optimally distributed to minimize both the sum of the interstorey drifts (Takewaki 
2000a) and the top absolute acceleration (Cimellaro 2007). Optimal designs and corresponding 
target damping ratios can be seen in Fig. 9 and Table 3 for three different mass distribution models. 
As can be seen in Fig. 9(a) and Table 3, placement of a little optimal damper to the first storey is 
sufficient to attain the allowable level of IDRs in Case-M-1. The target added damping ratio (3%) 
and the minimum value of objective function (1.698 106 Ns/m) in Case-M-1 is lower than the other 
cases. While one optimal damper according to proposed method and Takewaki’s method (2000a) is 
placed to the first storey, a major part of the total damping coefficient is added to the first storey 
with a little portion to the second storey according to Cimellaro’s method (2007). The optimal 
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damper design is obtained for Case-M-2 and is plotted in Fig 9(b). Moreover, the optimal values of 
damping coefficients, corresponding target damping ratios and the minimum values of the cost 
function are presented in Table 3. The dampers are optimally distributed to the first three storeys in 
Case-M-2. The decrease trend of the storey mass causes a higher value than the others in terms of 
cost function value and the corresponding added damping ratio. The optimal allocations of the 
proposed method are compatible with the placement of Takawaki’s method in Case–M-2 as shown 
in Fig 9 (b), while it is different from the Cimellaro’s method in terms of the magnitude of optimal 
damping coefficient. Optimal damper design obtained in case of uniform mass design (Case-M-3) 
represents a distribution that is approximately between Case-M-1 and Case-M-2. Dampers are 
placed to the first-two storeys in Case-M-3. While optimal damper distribution according to 
Takewaki’s method is close to the placement according to Cimellaro’s method as shown in Fig 9(c), 
the proposed method gives different magnitudes for the damping coefficients. In this case, the 
target damping ratio and the minimum value of the cost function for the proposed method attain to 
14% and 6.715 106 Ns/m, respectively as shown in Table 3. The increase of the storey mass 
through the upper storeys causes the increase of the fundamental period of the building. It is 
observed that the fundamental periods of these structures increase while the cost and the 
corresponding added damping ratio decrease. If Figs. 9 are examined in detail, optimal designs of 
the proposed method give a better response in terms of the added damping ratio compared to other 
methods. Proposed method is different from these methods. The suggested method minimizes the 
total damping coefficient under a target damping ratio and both lower and upper bounds of the 
design variable. It also includes a time history analysis to test the candidate optimal design. The 
other methods (Takewaki 2000a, Cimellaro 2007) are based on minimizing the transfer functions 
of both top displacement and top absolute acceleration evaluated at the fundamental frequency.  

 
 

 
Fig. 10 The variation of IDRs for each iteration number in 6-storey shear building models with 

different mass distributions 
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Fig. 11 The effect of different mass distribution on IDRs 
 
 
6.3 The effects of stiffness distribution on the proposed optimal damper problem 
 
The effects of storey stiffness distribution on the optimal damper problem are examined here as 

similar to the effects of storey mass distribution. Six-storey shear building models with three 
different stiffness distributions are considered as given in Fig. 12 and Table 4. The total stiffness is 
same for all three design cases. While the storey stiffness values increase through the upper storeys 
in Case-S-1 (Fig. 12(a)), they are given in decreasing quantities in Case-S-2 (Fig. 12(b)). The total 
stiffness is uniformly distributed to all storeys in a uniform stiffness model as shown in Fig. 12(c). 
Each one of storey masses is taken as m୧ ൌ 1.2	10ହkg for all models. Structural damping in the 
fundamental mode is assumed to be 0.02 and structural damping matrix is proportional to mass 
matrix. The corresponding fundamental periods for model structures are calculated as T1=1.56s in 
Case-S-1, T1=1.70s in Case-S-2 and T1=1.62s in Case-S-3. The upper limit value of the added 
damping coefficients is also fixed at cത ൌ 6.0	10Ns/m in the optimization stage for all models in 
this section. 

If the optimal damper allocations are examined in Fig. 13, dampers are placed to first two 
storeys for both Case-S-1 and Case-S-2, and one damper is inserted to the first storey in Case-S-3, 
according to the proposed method. If Case-S-1 is compared with Case-S-2, while the higher 
quantity of the damping coefficient is focused to second storey in Case-S-1, it is focused to the 
first storey in Case-S-2 in opposition to Case-S-1. Optimal locations of the dampers are compared 
according to different optimization methods as shown in Fig 13. While a major part of total 
damping coefficient is added to the 2nd storey in Fig. 13(a), a little part is placed on the first storey 
in case of using the proposed method. While the total damping coefficients are distributed to the 
first two storeys according to Takewaki’s methods, it is placed to the first three storeys in case of 
Cimallaro’s method. Fig. 13(b) presents that all optimal designs give us a good agreement with 
respect to the location of the dampers in Case-S-2. While the magnitude of the optimal dampers 
presents a decreasing trend from the proposed method to other methods in the first storey as shown 
in Fig. 13(b), there is an opposite situation for the second storey. As can be seen in Fig.13(c) there
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Fig. 12 Different stiffness distribution models (a) Case-S-1 T1=1.56s (b) Case-S-2 T1=1.70s (c) Case-S-3 

T1=1.62s 
 

 
Fig. 13 Optimal damper distributions: (a) Case-S-1, (b) Case-S-2 and (c) Case-S-3 

 
Fig. 14 The effect of different stiffness distribution on IDRs 
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Fig. 15 The variation of IDRs for each iteration number in 6-storey shear building models with 

different stiffness distributions 
 
 
is an optimal damper, which is obtained from the proposed method, placed on the first storey. The 
total damping coefficient is distributed to the first two storeys in the other methods.  

All optimal designs satisfy the allowable level for IDRs as shown in Figs. 14 and 15. While 
iteration number and target added damping ratio attain to 10 and 10%, respectively in Case-S-1 
and Case-S-3, iteration number and corresponding target added damping ratio are obtained as 18 
and 18%, respectively in Case-S-2. Case-S-3 gives a lower value of cost function than the others 
as shown in Table 5, while its added damping ratio is equal to the added damping ratio of Case-S-1. 
If the dynamic characteristic of the model structure is changed with variation of the stiffness 
distribution, this results in the change of the optimal design. In case of the decrease of the storey 
stiffness through the upper storeys, an optimal damper with a higher damping coefficient value is 
focused to the second storey. In case of the increase of the storey stiffness through the upper 
storeys, an optimal damper with higher damping coefficient value is focused to the first storey to 
attain a target damping ratio and a boundary level of IDR. It can be seen in Fig. 14 that both the 
proposed design and the others present a good response with respect to the allowable IDR level. 
While the calculated optimal designs give better results in terms of the added damping ratio 
compared to the others, the optimal designs obtained from the other existing methods present a 
better IDR response than the proposed method. One design earthquake is used in this paper; 
however, the number of design earthquakes can be increased in a practical application. 
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7. Conclusions  
 
A simple optimization method is proposed to find optimal damper placement in shear buildings. 

The optimization problem is constructed on minimizing the cost (the sum of the damping 
coefficients of the added dampers) under a target added damping ratio in the first mode and both 
upper and lower bounds of the added dampers. Proposed algorithm covers both a numerical 
minimization to find a candidate optimal damper design under constraints and time history 
analyses to test the candidate optimal designs obtained in the numerical minimization step. After 
the algorithm satisfies numerical optimization, the candidate optimal designs are tested with a time 
history analyses in each one of iterations. If all IDRs calculated from time history analyses are 
below the allowable level, the algorithm is stopped; otherwise, it continues to satisfy the desired 
IDR level. The formulation of proposed optimal design method is simple and the solution of this 
optimization problem by using any numerical minimization method is easy. Both the cost function 
and the constraint functions are linear function of the design variables. The numerical optimization 
methods employed in this study can be changed with the available one which can solve the linear 
optimization problems. 

 
The following conclusions can be drawn from the numerical analyses results: 
 

1) The effects of upper limit of the added damping coefficient are investigated in the proposed 
damper optimization algorithm. The increase of the upper limit of the design variables results 
in the distribution of the dampers to lower storeys. The decrease of the upper limit value for 
the damping coefficients provides the placement of the dampers to more storeys. All optimal 
designs with different upper limits of dampers exhibit close performances to each other in 
terms of IDR response. Designers can choose an optimal design among the optimal solution 
sets.  

2) The obtained optimal designs for different upper limits of design variables give a better 
performance than the uniform design in terms of damping ratio and IDRs. While the optimal 
designs focus on the lower storeys, the uniform designs are allocated to all storeys in which 
case the labour cost will also increase when it is compared with the optimal case. The labour 
cost is not taken into consideration in this study; however it can be said that the placement of 
dampers to optimally specified storeys also gives the advantages compared to their placement 
to all storeys in terms of labour cost. 

3) The increase of the storey mass through the upper storeys causes the increase of the 
fundamental period of the building. The increase of the period results in the decrease of both 
cost and corresponding added damping ratio. The decrease trend of the storey mass causes a 
higher cost function value and a corresponding added damping ratio than the others. 

4) In case of both decrease and increase of the storey stiffness through the upper storeys, optimal 
dampers are focused on different storeys. If the dynamic characteristic of the model structure 
is changed with a variation of the stiffness distribution, this results in the change of the 
optimal design. 
 

The practicality of the proposed method can be associated with simplicity of the proposed 
formulation and usability of basic numerical optimization methods. The numerical results state 
explicitly that the proposed method is effective in order to minimize the total damping coefficient, 
to attain a desired damping ratio and to fall below the allowable level of IDRs. 
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