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Abstract.  Static torsional provisions employing equivalent lateral force method (ELF) require that the 
earthquake-induced lateral force at each story be applied at a distance equal to design eccentricity (ed) from a 
reference resistance centre of the corresponding story. Such code torsional provisions, albeit not explicitly 
stated, are generally believed to be applicable to the regularly asymmetric buildings. Examined herein is the 
applicability of such code-torsional provisions to buildings with set-back using rigid as well as flexible 
diaphragm model. Response of a number of set-back systems computed through ELF with static torsional 
provisions is compared to that by response spectrum based procedure. Influence of infill wall with a range of 
opening is also investigated. Results of comprehensive parametric studies suggest that the ELF may, with 
rational engineering judgment, be used for practical purposes taking some care of the surroundings of the 
setback for stiff systems in particular. 
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1. Introduction 
 

Geometry of the structure is often dictated by the architectural and functional requirements 
whereas the safety of the structure with optimum economy - the key design aim - is ensured by 
structural engineers. For instance, a stepped form (setback systems) of buildings is often adopted 
by the architects for adequate daylight and ventilation in the lower stories of the buildings in an 
urban locality where closely spaced tall buildings are expected. Such setback structures form an 
important sub-class of irregular structures wherein irregularities are characterized by 
discontinuities in the distribution of mass, stiffness and strength along the height of the building.  

Research progress for systems with irregularity in elevation is scarce primarily owing to the 
relative difficulty to characterize such systems (Kusumastuti et al. 1998). Studies (e.g., Humar and 
Wright 1977, Aranda 1984, Moehle and Alarcon 1986) up to mid-1980 on seismic response and 
relevant code provisions of systems with symmetric setback have been reviewed in the literature 
(Wood 1986). A simple definition to measure irregularity of such systems has been proposed and 
used in the recent works (Mazzolani and Piluso 1996, Karavasilis et al. 2008). Simplified method 
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to obtain lateral load distribution in symmetric and eccentric set-back systems has been developed 
using the concept of compatible load profile (Cheung and Tso 1987). Illustrations therein 
demonstrate the possibility of higher damage potential in members near the set-back. Subsequent 
analytical and experimental studies (Shahrooz and Moehle 1990) also corroborate such 
observation. It is reported elsewhere (Wood 1992, Pinto and Costa 1995, Mazzolani and Piluso 
1996, Kappos and Scott 1998, Romao et al. 2004) that the seismic response of setback systems is 
not significantly different from regular systems. While the effectiveness of the first mode of 
vibration to represent displacement response is observed in some study (Wong and Tso 1994), 
significant participation of higher modes is also noted elsewhere (Athanassiadou 2008, Karavasilis 
et al. 2008). The relative vulnerability associated to mass, strength and stiffness irregularities is 
examined in the literature (Al-Ali and Krawinkler 1998). Thus, contradictions exist and the 
progress in understanding seismic behavior of set-back buildings is rather slow. Although 
relatively simple method for the analysis of setback buildings is pursued (Basu and 
Gopalakrishnan 2008), major building codes (IS 1893-1984 2002, ASCE 7 2005, Eurocode 8 
2004), to date, recommend for dynamic analysis for the design of setback buildings. The codes 
further recommend that the base shear obtained from the dynamic analysis (and thereby, other 
response quantities) to be scaled up to that from the code specified empirical formula. 

Seismic codes permit equivalent static procedure (ELF) usually for regular buildings. In 
equivalent static analysis, the design base shear is estimated as a product of seismic weight and 
codified seismic coefficient associated to fundamental period of vibration. Such seismic coefficient 
takes into  account  the importance and ductility capacity of the structure as well as the type of 
soil and seismic activity of the region. For asymmetric system, building codes (e.g., IAEE 1997) 
specify that the earthquake-induced lateral force so computed be statically applied with an 
eccentricity equal to design eccentricity (ed) relative to some reference center of resistance. Such 
design eccentricities are outlined in the forms of primary design eccentricity, ed1j and secondary 
design eccentricity, ed2j, at any typical j-th story, as given below 

                            (1) 

where D is the plan dimension of the building normal to the direction of ground motion and ej is 
the static eccentricity at jth story. The first part is a function of static eccentricity - real distance 
between center of mass and center of resistance. Dynamic amplification factor α in ed1 is intended 
to compensate for the dynamic effect of torsional response through static analysis. Factor δ in ed2 
specifies the portion of the torsion-induced so-called negative shear that can be reduced for the 
design of stiff-side elements. The second part, referred to as accidental eccentricity, is expressed as 
a fraction of plan dimension, i.e., βD (normal to the direction of ground motion and is introduced 
to account for the imponderables). For each element, the value of ed yielding greater force should 
be used in design. 
However, a lack of unanimously acceptable definition of reference centre of resistance for 
multistory buildings often appears to be a major setback to implement such static procedure. A 
search for proper resistance centre reveals a number of alternatives (e.g., Poole 1977, Humar 1984, 
Riddell and Vasquez 1984, Smith and Vezina 1985, Cheung and Tso 1986, Hejal and Chopra 1987, 
Tso 1990, Goel and Chopra 1993, Jiang et al. 1993, Makarios and Anastassiadis 1998). Such 
alternative reference centres, despite being placed at differing locations, often lead to similar 
response (Harasimowicz and Goel 1998). This observation fundamentally implies that the 
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Table 1 Dynamic characteristics of buildings with associated irregularity indices 
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Irregularity Index Dynamic characteristics 

b s avg. 
Mode 1 Mode 2 Mode 3 

T 
(sec.)  

T 
(sec.)  

T 
(sec.)  

1 3 M-IR1 1.25 1.25 1.25 0.367 0.858 0.244 0.057 0.135 0.068
2 3 M-IR2 2.00 1.25 1.63 0.362 0.828 0.217 0.028 0.140 0.136
3 3 M-IR3 1.25 2.00 1.63 0.333 0.814 0.234 0.118 0.122 0.050
4 3 M-IR4 1.75 1.75 1.75 0.326 0.770 0.183 0.161 0.121 0.055
5 3 M-IR5 1.75 1.75 1.75 0.303 0.727 0.218 0.207 0.120 0.057
6 3 M-IR6 2.00 2.00 2.00 0.306 0.701 0.158 0.217 0.134 0.079
7 6 M-IR7 1.75 1.30 1.53 0.623 0.708 0.562 0.167 0.326 0.058
8 9 M-IR8 1.52 1.19 1.36 0.957 0.706 0.860 0.144 0.529 0.076

* represents participating mass ratio for excitation in Y-direction (Refer to Fig. 1) and  
EI for all columns = 8.54 × 107 Nm2 

 

Table 2 Eccentricities (distance between CM and shear centre in metre) in representative setback buildings 
with and without floor flexibility corresponding to LP-I 

*1At CM; *2To the right of CM; *3To the left of CM 
 
Table 3 Uncoupled dynamic characteristics of fundamental mode of vibration 
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b s 
TL 

(sec.)
Tθ 

(sec.)
Tθ/TL

TL 

(sec.)
Tθ 

(sec.)
Tθ/TL

TL 

(sec.) 
Tθ 

(sec.) 
Tθ/TL

1 MIR 4 
Rigid 

1.75 1.75 
0.309 0.177 0.572 0.136 0.096 0.705 0.098 0.069 0.706

Flexible 0.314 0.266 0.848 0.227 0.153 0.674 0.139 0.091 0.650

2 MIR 7 
Rigid 

1.75 1.30 
0.574 0.311 0.542 0.240 0.160 0.667 0.221 0.110 0.497

Flexible 0.575 0.350 0.609 0.243 0.242 0.999 0.227 0.226 0.996

3 MIR 8 
Rigid 

1.52 1.19 
0.892 0.506 0.567 0.353 0.236 0.669 0.221 0.136 0.616

Flexible 0.893 0.533 0.597 0.355 0.289 0.814 0.227 0.254 1.117
*1At CM; *2To the right of CM; *3To the left of CM 

Sr. No. No of story
M IR 4 MIR 7 MIR 8 

Rigid Flexible Rigid Flexible Rigid Flexible 
1 St-1 2.54 2.50 2.66*2 2.65 2.13 2.11 
2 St-2 1.10 1.01 3.00 2.92 2.23 2.18 
3 St-3 0.00*1 -0.06 1.13 1.04 2.44 2.32 
4 St-4 - - 1.52 1.45 2.87 2.41 
5 St-5 - - 0.01 -0.06*3 0.84 0.87 
6 St-6 - - 0.01 -0.01 1.05 0.98 
7 St-7 - - - - 1.48 1.27 
8 St-8 - - - - 0.02 -0.06 
9 St-9 - - - - 0.05 -0.03 
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2.1 Modeling of infill wall 
 

Buildings are usually analyzed as bare frames in practice. However, lateral force induced shear 
causes in-plane lateral deformation in the infill wall. Such mode of deformation tends to elongate 
one diagonal and shorten the other of each panel of a building frame. However, the brick infill 
within the panel resists against the shortening of the diagonals only. Thus the effect of infill wall, 
in the linear elastic range, may be modeled using truss member connected to beam-column joints 
through hinges. Such “equivalent strut” (Smith 1962, Smith and Carter 1969, Mainstone and 
Weeks 1970, Mainstone 1971) is introduced along one diagonal only with similar attributes in both 
tension and compression. This, from the view point of mechanics, is analogous to the inclusion of 
two ‘compression only’ truss member along two diagonals of the panel in linear elastic range. The 
effective width (a) of such equivalent struts having actual diagonal length (rinf) and wall thickness 
(tinf) is determined following the recommendation given in FEMA 306 (FEMA 306 1998). The 
equivalent width of a diagonal compressive strut, a, is given by 

inf
4.0

1 )(175.0 rha col
                            (3) 

where, 
4

1
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inf
1 4

2sin
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inf1tan
L

h
 , hcol. and Icol. respectively stand for centre to 

centre height and moment of inertia of column (m4); hinf and Linf represent height and length of 
infill wall (also refer to Fig. 2). Modulus of elasticity of infill wall (Eme) and the modulus of 
elasticity of frame elements (Efe) are assumed as 6300 MPa and 25,000 MPa respectively. 
Thicknesses of outer and inner infill wall are taken as 230 mm and 115 mm respectively. 

To account for the effect of opening due to doors and windows, width of the compressive struts 
so estimated is modified by stiffness reduction co-efficient λgraphic as outlined in the literature 
(Asterris 2003, Kose 2009). In the parametric study, values of such opening percentage are taken 
as 0, 10, 25, 50 and 100 respectively. It may be mentioned that the case with 100% opening 
represents popularly used bare frames, while the first one (0% opening) corresponds to no opening 
at all. Representative systems (MIR-4, MIR-7 and MIR-8) with three, six and nine stories are 
analyzed to realize the impact of infill. 
 

2.2 Dynamic characteristics 
 
Free vibration characteristics of bare frames modeled as rigid diaphragm are presented in Table 

1. Natural periods, mode shapes are computed corresponding to translational (Y) and torsional 
(rotation about Z) degrees of freedom. The participating mass ratio (), defined for nth mode as 

y

yn

M

f 2

, is also computed. fyn ( y
T

nyn mf  ) is the participation factor where my is the load 
corresponding to unit acceleration and My is the total unrestrained mass in Y-direction. The mode 
shapes (φ) are normalized such that 1n

T
n M  in which M is the global mass matrix (SAP 2000, 

Sarkar et al. 2010). For torsionally coupled systems, relative proximity of the uncoupled lateral 
and torsional periods of the systems is known to be a useful indicator of torsional vulnerability. 
Thus, uncoupled lateral (TL) and torsional (T) periods are also computed for the systems chosen. 
Uncoupled fundamental lateral periods are computed by standard eigen-value analysis 
constraining the stories to translate in Y-direction only. To assess uncoupled torsional periods, 
mass moment of inertia at each floor is specified only (with no translational mass). Subsequent 
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To achieve further insight into the mode coupling phenomenon, 1




c

p , where of ∆p and ∆c are 

displacements of the perimeter frame and centroid of the deck respectively, is graphically 
presented in Fig. 3 along with the coupled natural periods and participating mass ratio in each 
mode. ∆p is recorded on the edge where translational and torsional displacements are additive. Fig. 
3 shows that, for fundamental mode of vibration, influence of torsion relative to translation is 
subdued. Dominance of translational vibration in the first coupled mode is also confirmed from 
associated  (in the range of 70% to 86%) and hence the systems are torsioanlly stiff. It may 
further be noticed that, although both the coupled periods and corresponding  closely remain 
stable, order of coupling in higher modes may potentially change due to floor flexibility. 

It seems apparent from a thoughtful observation to Table 1 that, as arithmetic average of b and 
s decreases implying a tendency towards regularity in configuration, contribution of torsion 
dominated second mode usually diminishes and the participation of the translation dominated 
fundamental mode increases. Thus, the simple irregularity index (b, s) appears to be compatible 
with the important dynamic characteristics of the systems at least qualitatively. In this context, it 
may also be interesting to asses fundamental building period using codified formula such as 

4/30731.0 hTl  (UBC 1997), where h is the overall height of the building. Fundamental period of 
buildings without infill is evaluated as 0.43 sec, 0.72 sec. and 0.92 sec. for three, six and nine story 
systems respectively. This shows that the building period of this class of low to medium-rise 
systems may generally be shorter than what by code-specified empirical formula. As further 
evidence, an authoritative study (Goel and Chopra 1997) developing formula to estimate 
fundamental period of vibration of moment resisting frames may be referred. Such investigation, 
on the basis of ‘measured’ data on vibration period of a large number of buildings during real 
earthquakes, identified the similar limitation of empirical formula outlined in the code. Inadequacy 
of code-based empirical formulae is also pointed out in another illuminating study (Harasimowicz 
and Goel 1998). Thus, the codified formula for building periods need be re-evaluated since a 
higher estimate of period may often result in underestimating the design force. 

Dynamic characteristics of buildings with infill (50% opening assumed) are assessed and 
compared to those of the bare frames using rigid diaphragm model. Results, though not presented 
herein (but available in Mahato 2012), show that fundamental period reduces by around 20% due 
to the stiffening effect of infill wall for low to high rise systems. Systems are, however, observed 
to be torsionally stiff and hence the application of code-torsional provisions may be warranted. 
 
 
3. Method of analysis 
 

Response of the structures excited in Y-direction is first calculated by equivalent lateral force 
(ELF) method. To this end, fundamental period of the system is estimated employing empirical 
formula outlined in the code (UBC 1997). Subsequently, base shear (V0) is computed through 
multiplying the relevant spectral ordinate by seismic weight (refer to Table 4). Zone factor Z is 
assumed as 0.2, while seismic co-efficients Ca and Cv are chosen as 0.24 and 0.32 respectively. 
Considering occupancy importance factor as unity and response reduction factor for ordinary 
moment resisting frames (OMRF) as 3.5, design base shear is computed as per relevant guideline 
of UBC 97 (UBC 1997). Design base shear so calculated is distributed over the building height  

692



Table 

S
l. 

N
o.

 

1 
2 
3 
4 
5 
6 
7 
8 

 

Fig.
and 

*CE
THE
TO 
DIS

# LA
MA
FLO

Equivale

4 Basic seism

M
ax

im
um

 
 n

o.
 o

f 
st

or
y 

3 

6 
9 

 4(a) Differen
Chopra 1993)

ENTRAL NOD
E DIAPHRAG
ENSURE EQ

SPLACEMEN

ATERAL LOA
ASS DISTRIBU
OOR LENGTH

Fig. 4(b) P

ent lateral forc

mic design par

M
od

el
 

Id
en

tif
ic

at
io

n 

M-IR1 
M-IR2 
M-IR3 
M-IR4 
M-IR5 
M-IR6 
M-IR7 
M-IR8 

nt Steps of an
) 

DES OF BOT
GMS ARE CO

QUAL HORIZ
NT 

 
AD PROPORT
UTION ALON
H 
Procedure for 

ce method for 

ameters 

Story 1 Sto

1350 1
1350 9
1350 1
1350 9
1350 9
1350 4
1350 1
1350 1

alysis for ELF

 
TH ENDS OF 
ONSTRAINED
ZONTAL 

RTION TO TH
NG THE 

analysis in fle

 
 
 
 
 
 

buildings wit

Seismic

ory 2 Story 

350 900
900 900
350 450

900 450
900 450
450 450
350 900
350 1350

F method with

D 

HE 

 
N
fl
d
(i
(i
p
(i
p

exible diaphra

th setback: ad

c weight (kN)

3 Story 4

- 
- 
- 
- 
- 
- 

900 
0 1350 

hout locating 

No-torsion co
lexible floor 

diaphragm: 
i) Un-deforme
ii) Deflected 
lane loading w
iii) Deflected 
lane loading w

agm system (a

equacy in elas

Story 5
to 7 

Sto
&

- 
- 
- 
- 
- 
- 

450 
900 4

center of resi

ondition in 

ed floor diaphr
shape of flo

with torsion; 
shape of floor
without torsion

fter Basu and 

stic range 

Design
shear
[U BC

ory 8 
& 9 

- 62
- 54
- 54
- 46
- 46
- 38
- 69

450 85

istance (after 

 

buildings 

hragm;  
oor slab unde

r slab under in
on. 
d Jain 2004) 

n base 
r (kN)
C 97]

20 
40 
40 
65 
65 
85 
90 
50 

Goel 

with 

er in-

n-

(i)

(ii)

(iii) 

693



 
 
 
 
 
 

Rana Roy and Somen Mahato 

according to LP-I and LP-II. Following major seismic codes, three combinations of  and  are 
chosen. Static lateral load analysis is conducted utilizing the procedure developed elsewhere (Goel 
and Chopra 1993, Basu and Jain 2004) and is summarized below for convenience. 

ELF is implemented by combining the results of three sets of analyses performed through 
standard frame analysis software (ETABS; SAP 2000) as described below.  

Step 1: The asymmetric buildings are restricted to deform only in the Y-direction by 
constraining the floor rotations. Such restriction is ensured by introducing hinges at each story in 
case of rigid diaphragm system (refer to Fig.4(a)). On the other hand, for flexible floor system, 
since the floor can translate, bend and twist under lateral load, ‘no-torsional rotation of floor’ is 
redefined as identical horizontal displacement of centre nodes of both ends of the diaphragm (refer 
to Fig. 4(b)). This condition is achieved by setting equal constraints (SAP 2000) in Y-translation to 
centre nodes of both ends of each floor. Systems so modeled are analyzed with the code-specified 
lateral forces applied at the floor CM for rigid diaphragm system and as a distributed force 
(proportional to mass distribution) for flexible floor system. The response quantities of such 
restrained systems are denoted as Rr. It is evident that the procedure outlined for flexible floor 
model is generic and may also be applied to rigid floor system.   

Step 2: Buildings modeled as three-dimensional frame are then analyzed. Code-specified 
lateral forces are applied as stated in Step 1 to compute the corresponding response R0.  

Step 3: Buildings are re-analyzed for the code-specified floor torques equal to βDjFyj to obtain 
Rac, i.e., the contribution of accidental eccentricity on the desired response (Fyj is the lateral load in 
the ith story). In flexible floor model, such floor torque is simulated by application of a compatible 
lateral load (refer to Basu and Jain 2004).  

Finally, the responses Rd
(1) and Rd

(2) are obtained by combining Rr, R0 and Rac as follows 

acrd RRRR  0
)1( )1(                           (4a) 

acrd RRRR  0
)2( )1(                           (4b) 

The algebraic sign of Rac should be the one that increases the magnitude obtained from the sum 
of the first two terms. The design value of the desired response is taken as the larger of two 
obtained from Rd

(1) and Rd
(2). In case of restriction to reduce the response due to torsion-induced 

negative shear, the design value is the highest of Rd
(1), Rd

(2) and Rr.  
The above approach is preferred in view of (a) the variability of the location of resistance 

centres with the distribution of lateral load and (b) the difference in torsional response due to floor 
forces applied at CR and story shears acting at CS for setback buildings (with unequal deck 
dimensions) when accidental eccentricity is accounted (Basu and Jain 2006). Simultaneously, 
responses of all the buildings are computed by dynamic response spectrum analysis (using design 
spectrum of UBC 97) combining modal responses by complete quadratic combination (CQC) 
(Chopra 2007). Adequate numbers of modes are considered so that at least 95 percent of the total 
seismic mass is captured. Following codal recommendation, response quantities obtained from 
dynamic analysis is scaled by a factor equal to V0/Vdyna where Vdyna is the base shear from dynamic 
analysis. Thus, the trend in results presented herein is generic and does not depend on the choice 
of code and other related factors such as Z, Ca and Cv etc. 
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4. Results and discussions 
 

4.1 Rigid floor system 
 
Maximum response in terms of frame shear, maximum inter-story drift is computed through 

ELF employing lateral load conforming to both LP-I and LP-II. Three sets of  and  
combinations, viz.,  = 1.0,  = 0.5 (NBCC 1990);  = 1.5,  =1.0 (IS 1893-1984 (2002, Mexico 
1990) and  = 1.0,  =1.0 (NZS 4203 19984) are used. Such response is normalized by the 
companion quantities obtained from response spectrum based analysis and is presented through 
Fig. 5 to Fig.10 for rigid floor systems. 
Fig. 5(a) presents the height-wise variation of normalized frames shear in the perimeter frames (as 
the effect of torsion is maximum in the edge) of three story buildings corresponding to the 
distribution of design base shear as per LP-I (in ELF). Response of flexible side considering  = 
1.0 (NZS 4203 19984) is observed to consistently underestimate the response. However, it appears 
that the response of the flexible side may often be reasonably predicted by taking  = 1.5, although 
such response may be somewhat underestimated in the higher stories near the set-back in 
particular. Such concentration of force in the upper story elements in the surroundings of the set-
back indicates significant participation of higher modes. This observation is in line with those of a 
few earlier works (e.g., Cheung and Tso 1987, Shahrooz and Moehle 1990). Response of stiff side 
may, however, be estimated with an error limit of around 22-25% for the values of  specified in 
the the codes. Results of MIR 7 and MIR 8 presented in Fig. 5(b) displays a similar trend. Fig. 6, 
on the other hand, describing representative results corresponding to a load profile compatible with 
LP-II (in ELF), substantially overestimate the response particularly in higher stories. It may be 
recalled that the value of the exponent k involved in the definition of load distribution has been 
recommended as unity (as chosen in LP-I) in IBC 2003 (IBC 2003) for buildings with fundamental 
period lesser than 0.5 sec. Thus, such distribution (LP-I) appears to be useful also for setback 
buildings and is adopted in rest of the study along with the values of  and  as 1.5 and 0.5 
respectively (unless otherwise specified) 

Fig. 7(a) describes the variation of similar response parameter as a function of change of bay 
length, while such response with change of story heights is presented in Fig. 7(b). Bay length is 
considered to vary in the range of 4.0m to 6.0m whereas the story height is ranging between 3.0 m 
to 5.0 m to cover the practical range of interest. This includes a panel aspect ratio of 0.58 to 1.0. 
Values of  and  are assumed as 1.5 and 0.5 respectively. It is observed that the variation of 
normalized response is relatively insensitive to the aspect ratio of panel excepting in the 
neighbourhood of 0.7. 

Infill wall is observed to substantially alter the dynamic characteristics of the system. Thus, the 
performance of ELF is re-examined considering the effect of infill wall. Influence of opening due 
to doors and windows is taken into account through considering an opening of 0%, 10%, 25%, 50 

% and 100% in the infill wall. Normalized frame shear in perimeter frames at different stories 
of MIR 4, MIR 7 and MIR 8 are presented in Fig. 8 for a height-wise distribution of lateral load as 
per LP-I and LP-II, respectively. It seems that beyond 25% to 30% of opening, influence of infill 
wall on the response of flexible side may be marginal. Stiff side, however, does not show any 
systematic trend. 

It may be stated that, while frame shear may be used directly in design of frame elements, 
maximum inter-story drift may also be useful to envisage the seismic performance for both  
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Equivalent lateral force method for buildings with setback: adequacy in elastic range 

1. The study, through comprehensive case studies, observes that the code-specified ELF along 
with torsional provisions may be used, contrary to the conventional notion, for seismic design of 
setback buildings. Values of dynamic amplification factors  and  may be adopted respectively as 
1.5 and 0.5 along with a height-wise distribution of lateral load conforming to LP-I. Influence of 
accidental torsion and diaphragm flexibility may be ignored in practice. This code-static procedure 
may yield some concentration of seismic forces in the surroundings of the setback. However, such 
concentration may generally be acceptable keeping in view the overall design force (combination 
of dead, live, seismic loads etc.) and inherent uncertainties of seismic design. 

2. Inter-story drift can be reasonably estimated for set-back buildings through employing code 
torsional provisions with ELF assuming a lateral load profile as per LP-I. 

3. The observations outlined above are applicable for buildings with and without infill. It seems 
from the limited study that, beyond 25% to 30% opening in infill wall, response of the flexible 
side tends to be similar to those for bare frames particularly in medium to high-rise systems. 
Response of stiff side, in contrast, appears to be relatively sensitive to the infill percentage. 
However, pending further investigation confirming the generality of such observation, modeling of 
infill wall, as it exists, is desirable. 

4. Simple irregularity indices proposed elsewhere (Karavasilis et al. 2008) appears to be in 
some compliance with the dynamic characteristics of the system. This justifies the characterization 
of set-back buildings in terms of such simple parameters from a more conceptual standpoint. 
Further it seems that the code-specified empirical formulae for building period need introspection.  

In sum, the present study establishes that the ELF may be used for the design of vertically 
irregular systems, with certain experience and judgment, particularly in the vicinity of the setback. 
Seismic design strategy inherently relies on ductile response and hence the performance of such 
systems designed by both the approaches (ELF and response spectrum based) need be evaluated in 
inelastic range in future course of studies.  
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