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Abstract.  In earthquake engineering area, the critical excitation method is an approach to find the most 
severe earthquake subjected to the structure. However, given some earthquake constraints, such as intensity 
and power, the critical excitations have spectral density functions that often resonate with the first modes of 
the structure. This paper presents a non-stationary critical excitation that is capable of exciting the main 
modes of the structure using a non-uniform power spectral density (PSD) that is similar to natural 
earthquakes. Thus, this paper proposes a new method to estimate the power and intensity of earthquakes. 
Finally, a new method for the linear seismic design of structures using a modified non-stationary critical 
excitation is proposed. 
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1. Introduction 
 

The seismic design of structures based only on previous earthquakes is not adequate because 

future earthquakes may be more destructive. However, in recent seismic design procedures, the 

static and modal seismic designs of structures are based on the design spectrum produced by 

previous earthquakes. Presently, critical excitation methods have been developed to generate 

worst-case critical excitations (Takewaki 2007, Takewaki et al. 2012). The consideration of 

important constraints of earthquakes such as power and intensity can achieve this purpose. The 

critical excitation method is an optimization problem that maximizes the structural response as an 

objective function that is subject to some constraints. 

Critical excitation was initially proposed by Papoulis (1967). Then, Drenick (1970) used the 

method of critical excitation for structures in the time domain. For this method, an input excitation 

was obtained that produced the maximum response. In addition, Shinozuka (1970) applied the 

same method in the frequency domain and presented a narrower upper bound of the maximum 

response. 

Previously, many people have studied various constraints and objective functions. Iyengar 

(1972), Manohar and Sarkar (1995, 1998) and Takewaki (2001, 2002) developed a new 

optimization problem in the frequency domain to determine the input excitation by considering the 
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response resonance of higher modes of the structure with input excitation. Some proposed 

constraints include the power and the intensity limit of earthquakes that were presented by 

Takewaki (2007). Also, Abbas and Manohar (2002) considered a set of constraints with respect to 

the stochastic analysis. Ben-Haim and Elishakoff (1990) and Pantelides and Tzan (1996) presented 

several interesting convex models. Ghodrati and Ashtari (2006) used the wavelet theory to 

generate artificial earthquake excitations and introduced more excitations by using a linear 

combination of resultant artificial earthquakes to obtain the critical excitation. 

Takewaki (2001a, 2001b, 2007) proposed the optimum line as a geometric technique for 

solving stationary problems. Following Takewaki (2001a, 2001b, 2007), Ashtari (2004, 2006) 

introduced the Simple Optimum Line method which applied some approximations to find a 

simpler formula in this case. Then, an exact method for SDOF systems and a simple numerical 

technique were proposed to determine the stationary critical excitation for MDOF systems. Finally, 

Ashtari and Ghasemi proposed a more realistic expression of critical excitation (2010a, 2010b). 

Then, Moustafa et al. (2010) considered the modeling of critical excitation for an inelastic 

structure with regarding damage indices. Afterward, Moustafa and Takewaki (2009) with respect 

to the probability measurements and entropy concept introduced an approach to find resonance 

records. Nevertheless, it is worth mentioning that regarding to the Fujita et al. (2010) research, by 

finding optimal placement of viscoelastic dampers the objective drifts function of a linear structure 

can be more minimized. Finally, according to the drift and input energy demands, Takewaki (2011) 

scaled ground motions for designing tall buildings. 

Some of the proposed critical excitation methods focused on the primary frequency range of the 

structure. Based on the maximization problem, the optimization issue seems to be evident, but the 

result of the power spectral density function has no similarity to the power spectral density of a 

natural earthquake. This research aims to determine a more realistic critical input excitation. 

Therefore, this research proposes a modified critical excitation that is similar to natural 

earthquakes and follows the previous PSD of earthquakes that can be used in the linear seismic 

design of structures. 

 

 
2. Expression of earthquake ground motion in terms of the more general approach 
 

Several PSD functions have been proposed in the past. The function presented by Kanai (1957) 

and Tajimi (1960), which is known as the Kanai-Tajimi PSD function, has been widely used in 

previous studies. The PSD of ground acceleration, G1(ω) which depends on three parameters and 

represents filtered white noise, is given by 
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where ω(rad/s) is the frequency, S0 is the intensity of the ideal white noise, ωg(rad/s) is the filter 

frequency that determines the dominant range of the input frequencies and the damping coefficient 

ξg indicates the sharpness of the power spectral density shape. The intensity of the white noise S0 

tends to zero, which is not consistent with the PSD of actual earthquake records. Furthermore, 

singularities are present at ω equal to zero for PSD functions of the ground velocity and 
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displacement (see Ashtari and Ghasemi (2010a)). To overcome this inconsistency, modifications to 

the Kanai-Tajimi PSD function were proposed by Lai (1982) and Clough (1975). The modification 

suggested by Lai (1982) was obtained by filtering Sg1(ω) through an SDOF system, whereas the 

modification suggested by Clough (1975) was obtained by filtering Sg1(ω) through an SDOF 

system without mass. 

012122 )()()()()( SGGSGS gg                        (3) 
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where ωO is a variable that determines the low-frequency content of the ground motion. The larger 

amount of ωO is the least amount of the low-frequency content in the ground motion result. This 

paper aims to present a more realistic critical excitation by employing an earthquake PSD. For this 

purpose, by using the Kanai-Tajimi PSD, some frequencies can be excited more than other 

frequencies, such as the PSD of a natural earthquake, and the new method can easily estimate the 

PSD constraints of the earthquake. Eventually, a new method for the linear seismic design of 

structures is proposed that uses a modified critical excitation. 

 
 
3. Calculating the power of an earthquake 
 

The integral of the PSD function in the frequency range is equal to the power limit. 




dSSPower
g

)(
0                            (5) 

In other words, during the time domain, the power of the earthquake is equal to the mean 

square of the acceleration of the earthquake. 

 )(2 tuESPower g
                             (6) 

K(ω) can be defined as a modified filter; therefore, by the multiplication of G1(ω) and G2(ω) 

)()()( 21  GGK                               (7) 

According to Eq. (7), the spectral density function of the ground motion can be expressed as 

0)()( SKSg                                  (8) 

where S0 is the PSD of the white noise. Thus, the power of the earthquake can be written as 

02SKSPower                                (9) 
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If the average values of ωg, ωc and ξg from previously recorded earthquakes (see the average 

value in Ahmadi (1979) and Hong and Wang (2002)) are substituted into the modified filter K(ω), 

then the value of K2 is equal to 61.81. (K2 = 61.81). 

 

 
4. Maximum intensity of the power spectral density of an earthquake 

 
The maximum power spectral density of the Modified Kanai-Tajimi PSD is equal to 

)(Max 0  gSs                               (11) 

By utilizing the K1 coefficient, s̅ can be directly related to S0 as follows 

01SKs                                   (12) 

Using the average values of ωg, ωc, and ξg from previous earthquakes (Ahmadi (1979) and 

Hong and Wang (2002)), the value of K1 is then equal to 3.638 (K1 = 3.638). 

Finally, based on Eq. (9) and Eq. (12), the relationship between s̅ and S̅ can be expressed as 

SKs 3
                             

 
(13) 

where 

2

1
3

K

K
K 

                            
 

(14) 

Additionally, by replacing the average values of ωg, ωc and ξg, which were obtained from 

previous earthquakes, K3 will be equal to 0.0589 for the Kanai – Tajimi PSD modified by the Lai 

filter. (K3 = 0.0589). 

 

 
5. Modified non-stationary critical excitation 

 

The optimization problem for the non-stationary critical excitation method can be defined by 
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Fig. 1 Critical excitation PSD function obtained from the previous method 

 

 
Fig. 2 Modified form of the critical excitation PSD function 

 

 
Based on the Takewaki (2007) to maximize the objective function in the frequency domain, Eq. 

(16) results in a critical PSD function similar to a multi-rectangular shape (see Fig. 1). 

However, the PSD functions of the recorded earthquakes have a variable intensity, i.e., the 

natural PSD functions of the earthquakes are not the same and exhibit a constant intensity along 

their entire frequency content. According to the random vibration theory, the following 

relationship can be obtained for a non-stationary critical excitation by assuming )().()( twtctug  . 

)(.)( 2 wg StcS                            (18) 

If c(t) is a constant, then SW(ω) becomes similar to the power spectral density function of a 

natural earthquake. Accordingly, the intensity constraint (Eq. (16)) changes to a more realistic 

form. Here, SW(ω) resembles the Kanai – Tajimi PSD. 
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wsww sKSGGS  021 )()()(                       (19) 

By assuming KS = 1, the input spectrum will be exactly the Kanai – Tajimi PSD. However, if 

KS > 1, then the area of part of the modified PSD becomes equal to the power of Sw(ω). Therefore, 

the final form of the optimization problem of the non-stationary critical excitation can be modified 

as Eqs. (15) and (16) which is subjected to Eq. (19). 

Eq. (19) indicates that if the mode of the frequency tends towards the predominant frequency of 

the Kanai-Tajimi PSD function (the peak of the Kanai – Tajimi PSD), then this mode has a 

stronger effect. Thus, the higher modes of the structure can be excluded from the critical 

excitation. 

 

 
6. Seismic design using the modified critical excitation 

 

This paper introduces a new method for the linear seismic design of structures by means of risk 

analysis and modified critical excitation. The algorithm of the proposed method is developed as 

follows 

 

Step 1) Determination of the power constraint by considering probabilistic risk analysis (S̅). 

Step 2) Determination of the power constraint of the Gaussian stationary function (Sw) by 

utilizing S̅. 

Step 3) Determination of the s̅w constraint with respect to the relationship between S̅w and s̅w. 

Step 4) Determination of drifts of each floor at the critical moment with respect to S̅w and s̅w. 

Step 5) Comparison of the obtained drifts with the allowable drifts and strengthening the 

structure if the former drifts exceed the allowable amount and are unacceptable. 

 

6.1 Determination of the power constraint in a stationary state 
 
The value of S̅ is equal to the mean square value of the acceleration. 

)( 2aEa                                 (20) 

For the probabilistic risk analysis, by creating elements for the linear and surface sources, the 

value of the PGA can be obtained for every definite probability on the basis of the damping 

relationship and the Richter-Gutenberg relationship. In a typical damping relationship, the value of 

the PGA is obtained for the interval moment of the earthquake. By simplifying, the damping 

relations can be calculated from )( 2aEa  . For example, in Code 2800, the value of a̅, which is 

the same as S , is obtained for a 10% probability of the occurrence of an earthquake during a 

50-year period after a structure is built. 

If the value of the PGA is obtained by using risk analysis, then there is a simple method to 

obtain the value of S̅ by employing a simple proportion coefficient. 
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Table 1 Value of n for selected earthquakes 

Earthquake Year Location PGA (m/s
2
) S̅ (m

2
/s

4
) s̅ (m

2
/s

3
) n 

El-Centro 270 1940 Imperial Valley, CA, USA 2.11 0.186 0.011 4.88 

El-Centro 180 1940 Imperial Valley, CA, USA 3.07 0.266 0.0305 5.95 

Kobe KJM 000 1995 Hyōgo, Japan 8.06 1.092 0.0528 7.71 

Kobe KJM 090 1995 Hyōgo, Japan 5.87 0.707 0.0416 6.98 

Taft021 1952 Kern County, CA, USA 1.53 0.0627 0.0056 5.69 

Taft111 1952 Kern County, CA, USA 1.74 0.0722 0.0043 6.49 

Bajestan-L1 1918 Quchan, Iran 0.92 0.0237 0.0014 5.97 

Ferdos-L1 1968 Dasht bayaz, Iran 0.86 0.0296 0.0017 4.98 

Tabas 1978 Tabas, Iran 9.15 2.861 0.2017 5.41 

      6.006 = n 

 
Table 2 Value of K0 for selected large earthquakes 

Earthquake S̅ s̅ δw
 

δw Points K0 

El-Centro 270 0.266 0.305 0.544 0.3879 1024 20.5 

El-Centro 180 2.861 0.2071 87.59 6.201 1024 30.6 

Kobe KJM 000 1.0917 0.528 31.86 1.704 512 29.2 

Naghan 3.698 0.0772 71.42 1.422 128 19.3 

 

 
According to Table 1, the coefficient n is obtained for nine accelerograms in which the average 

value of n is 6.0.’ 

 

6.2 Determination of the power constraint in a non-stationary state 
 
The value of S̅w is equal to the mean square of the Gaussian stationary function w(t), which can 

be expressed by 

  







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2

2
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)(
)(

to

ta
EtwESw                           (22) 

where a(t) is the natural acceleration function of the earthquake. This equation can also be written 

as 

 2)(taES                                 (23) 

For the definite function c(t), both of the parameters S̅w and S̅ are dependent of the a(t) function. 

Hence, the mean coefficient can be determined statistically as follows 

SKSw .0                                 (24) 

To determine K0, the values of S̅w and S̅ should first be calculated for different earthquakes, and 

eventually, K0 will be equal to S̅w / S̅. 
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To calculate S̅w and s̅w, weak accelerations were excluded from the accelerogram, and the 

remaining accelerations were subjected to the PSD function calculations. Additionally, the 

coefficients  and   in the Bolotin envelope function c(t) = e
-α*t

 – e1∙e
-β

*
t
 were determined under 

the condition that the peak of c(t) occurs at the moment of the PGA, and the duration of the 

earthquake is equal to the limitation of the c(t) function. Additionally, the total number of selected 

points is equal to 

][log
1

022
N

N                                 (25) 

where N0 represents the number of points that remain after weak accelerations were excluded from 

the beginning and end of the accelerogram. 

 

6.3 Determination of the amplitude constraints in a non-stationary state 
 
According to Eq. (15), regarding several earthquakes, the shape of Sw(ω) is similar to Sg(ω). 

Therefore, the modified Kanai-Tajimi PSD function can also be used for Sw(ω). Thus, 

ww SKs 3                                 (26) 

In Table 2, the values of  s̅w were obtained from earthquake records. A comparison of the 

results of Table 2 with the results of Eq. (26) indicates that this assumption provides good results 

(with the exception of the Naghan earthquake). Because the Naghan earthquake contains only a 

few points of the acceleration of the earthquake (128 points), the possibility of errors in the 

calculation of  S̅w and s̅w is high. If values of zero are added to the end of the accelerogram, and 

256 points of acceleration are used to calculate S̅w and s̅w instead of 128 points, the values of S̅w 

and s̅w will be equal to 43.296 and 0.8583, respectively. 

 

 
7. Design example 

 
The linear seismic design of a two-story commercial building in Tehran on soil type II (Iranian 

code (2005)) is considered. The span and story height are shown in Fig. 3. The system of the 

building consists of a simple framework with steel concentric bracing. The damping ratio is 0.02. 

A bracing check is desired. 

(The duration of the earthquake is assumed be 30 seconds, and its PGA is assumed to occur 

during the 5
th
 second.) 

 

Solution 
Considering the mass and stiffness of the structure 

The stiffness of the stories in the x and y directions for the first and second stories is equal to 

)/(96.7598.3722
1,1 cmKNKK BRyx   

)/(56.13778.6822
2,2 cmKNKK BRyx   

Furthermore, the mass of each story is equal to 
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4
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2*UNP8

BR

2*UNP10

BR

BR BR

BR

BRACING  PLAN

 

Fig. 3 Bracing plan and Bracing elevation of a commercial building, (UNP represents the 

cross-section of the braces’ profile) 
 

tonsm  23.831   

tonsm  49.632   

 

7.1 Design using static analysis 
 
Using the static analysis method, the basic shear force (earthquake force) is equal to 

KNW
R

ABI
V 4.21)49.6323.83(

6

)15.235.0(



  

KNV
Wh

hW
F 12.124.21

5.423.837.749.63

)2.35.4(49.6322
2 







 

The story drift is calculated by 

jjj KV /  

cm
R

h
cm

K

V
j 25.2

6

450
03.0

03.0
28.0

96.75

4.21 1

1

1   

cm
R

h
cm

K

V
16.1

6

320
03.0

03.0
088.0

56.137

12.12 2

2

2
2   

.. 2.1618.165.1
2

1
1

1 KOKNF
V

F aBR   

.. 1809.95.1
2

2
2

2 KOKNF
V

F aBR   
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And, in chevron bracing, the coefficient K = 0.85 should be applied as 

  KNFBFa 8.162
1max11   

  KNFBFa 5.192
2max22   

The coefficient K is assumed to be equal to 0.85 for the purpose of applying the joint area of 

the bracing to the related beam or column, which accounts for the existing partial local supports 

(such as walls). The 2UNP60 can also be used, but with the consideration that the necking effect 

(stipulated in Appendix 2 of the Iranian Code 2800) does not correspond to the standard value. 

Consequently, the 2UNP80 is used as the bracing profile for the second floor. 

123/6035/  yFrKL (Necking checks as stipulated in Appendix 2 of the Iranian Code 

2800) 

 

7.2 Design using the modified critical excitation 
 
The modified critical excitation method results in the value of the maximum inter-story drift by 

considering the following assumption 

(sec),7   ),sec(2.0   ),sec(50  endwrange tradrad   and (sec)3startt  

Considering that Tehran has a very high relative risk of an earthquake occurrence (PGA=0.35 

g), and given the discussion in Section 5, we obtain 

(sec),7   ),sec(2.0   ),sec(50  endwrange tradrad   and (sec)3startt  

Thus, the constraints of the Gaussian static variable (a(t)/c(t)) = w(t) were obtained as follows 

),/(82.930 42 smSSS ww   and )/(578.00589.00589.0 32 smsSSs wwww   

Finally, we obtain 

  sec5     )(00.2)( 2
11  tatcmdEMax d  

  sec5     )(55.0)( 2
22  tatcmdEMax d  

Fig. 4 illustrate the PSD function for the modified non-stationary critical excitation. As 

expected, according to Fig. 4, the drift of the first story is greater than that of the second story, and 

the maximum response occurs at the moment when the earthquake reaches its PGA moment. In 

addition, Fig. 4 includes the diagram for the F(ω) function, which has two peaks related to the first 

and second modes of the structure. Fig. 5 shows the frequency content of the modified critical 

excitation; the band frequency of the critical excitation approaches the peak of the Kanai-Tajimi 

PSD function. 
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(a) Critical excitation in time-frequency 

domains 

(b) Mean-square response of the structure 

 

  
(c) Square frequency response function of 

the structure 

(d) Maximum mean square of story drifts Square 

frequency response function of the structure 

Fig. 4 Modified critical excitation and structural response 

 

Fig. 5 Frequency content of the modified critical excitation 
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Fig. 6 Standard deviation of inter-story drift for the non-stationary critical excitation 

 
 

8. Comparison of the responses obtained in the modified non-stationary critical 
excitation method with the conventional method 
 

This paper proposes a modified critical excitation in which its intensity constraint is a function 

of the frequency (𝜔). Fig. 6 shows the standard deviation of the inter-story drift that was obtained 

from the conventional method compared to the modified non-stationary critical excitation methods. 

As shown in this diagram, the responses obtained from the modified method (Real NSCE) are less 

than the conventional method (NSCE) (about 80 percent). 

The intensity and power constrains were obtained from the El-Centro Earthquake (1940) 

. 
sec

7363.0  
sec

34.8 3
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9. Conclusions 
 

1) The modified critical excitation can be employed for the frequency content of the ground on 

which the structure was built, such as a natural earthquake excitation. Furthermore, the 

proposed method can generate a critical structural response. 

2) In addition to providing the algorithm for obtaining the response using the modified 

non-stationary critical excitation method, this paper identified a method that has advantages 

such as the ease of calculation and more realistic responses compared to conventional 

methods. 

3) In this paper, a new method was proposed to determine the power and amplitude constraints 

of earthquakes in non-stationary conditions that was based on the PGA of desirable 

earthquakes. 

4) Finally, this paper provides a new seismic design of structures that utilizes the modified 

critical excitation method and can be used by considering only one earthquake parameter 

(PGA), which is in conformance with many other linear seismic design codes for structures. 
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