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Abstract.    In this paper, a numerical simulation study was conducted on the seismic behavior and ductility 
demand of single-degree-of-freedom (SDOF) systems with partially self-centering hysteresis. Unlike fully 
self-centering systems, partially self-centering systems display noticeable residual displacement after 
unloading is completed. Such partially self-centering behavior has been observed in a number of recently 
researched self-centering structural systems with energy dissipation devices. It is thus of interest to examine 
the seismic performance such as ductility demand of partially self-centering systems. In this study, a 
modified flag-shaped hysteresis model with residual displacement is proposed to represent the hysteretic 
behavior of partially self-centering structural systems. A parametric study considering the effect of variations 
in post-yield stiffness ratio, energy dissipation coefficient, and residual displacement ratio on the 
displacement ductility demand of partially self-centering systems was conducted using a suite of 192 scaled 
ground motions. The results of this parametric study reveal that increasing the post-yield stiffness, energy 
dissipation coefficient or residual displacement ratio of the partially self-centering systems generally leads to 
reduced ductility demand, especially for systems with lower yield strength. 
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1. Introduction 
 

Large residual deformation associated with conventional ductile structural design can often 
make the structure appear unsafe to occupants, impair its ability to resist subsequent aftershock 
earthquakes and significantly increase the cost of post-earthquake retrofit (Ruiz-Garcia and 
Miranda 2006a, 2006b). Residual structural deformation thus starts to be recognized as a 
complementary parameter in the evaluation of structural (and non-structural) damage in 
performance-based earthquake engineering (Pampanin et al. 2003, Christopoulos and Pampanin 
2004). Recognizing the importance of controlling the residual deformation, self-centering seismic 
resisting system has recently been attracting considerable attention from the community (e.g. 
Kurama et al. 1999, Ricles et al. 2001, Christopoulos et al. 2002b, Mahin et al. 2006). Such 
self-centering system is characterized by a flag-shaped hysteresis loop with certain energy 
dissipation capability and small or zero residual structural deformation after strong earthquakes.  
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(a) Flag-shaped model (b) Modified flag-shaped model 

Fig. 1 Hysteretic model of (a) self-centering and (b) partially self-centering systems 
 
 

Special metals like shape memory alloys (SMAs) also exhibit a flag-shaped stress-strain curve 
(Desroches and Smith 2004, Song et al. 2006). Due to its unique energy dissipation behavior and 
high fatigue life, SMA has been studied for use as a self-centering damping device in seismic 
resistant structures (Dolce et al. 2005, Zhu and Zhang 2008, Miller et al. 2011). 

Though the self-centering system has the appealing behavior of reducing or eliminating the 
residual structural deformation, it may exhibit certain shortcoming if not properly designed. 
Particularly, the self-centering system has a lower energy dissipation capacity compared to the 
bilinear elasto-plastic hysteretic system, which is evidenced by the smaller enclosed area of its 
hysteresis loop. To address this issue, supplemental damping mechanism such as friction damping 
(Dolce et al. 2000, Zhu and Zhang 2008), hysteretic damping and viscous damper (Kam et al. 
2010) is often implemented to augment the energy dissipation capacity of self-centering structural 
systems. However, increased energy dissipation capacity with the afore-mentioned measures such 
as friction damper is often accompanied with residual displacement in the system, after the system 
is completely unloaded. 

Research works on self-centering systems with increased energy dissipation (Kurama 2001, 
Rodgers et al. 2007, Cardone et al. 2008, Wolski et al. 2009, Tremblay et al. 2010, Kam et al. 
2010) have shown partially self-centering behavior, as schematically illustrated in Fig. 1(b). 
Residual displacement became more pronounced with increasing energy dissipation in 
self-centering systems. However, although partially self-centering system exhibits residual 
displacement after unloading (which is a serviceability issue in seismic design), this has a 
beneficial effect of increased hysteretic damping capacity and may make such systems superior to 
fully self-centering systems in terms of energy dissipation capacity and ductility demand. No 
research has been reported on the interplay between residual displacement and ductility demand of 
partially self-centering structural systems. But understanding how such structural systems behave 
under seismic loading is important to develop cost-effective seismic designs. 

In this paper, a modified flag-shaped hysteresis model is proposed for partially self-centering 
systems, with an additional parameter representing residual displacement in comparison with the 
flag-shaped hysteresis model. This modified flag-shaped model was then used for a comprehensive 
parametric study conducted to investigate the ductility demand of partially self-centering systems 
under seismic excitation through nonlinear time history analysis. For systems with given values of 
initial period and yield strength, a favorable combination of post-yield stiffness ratio, energy 
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dissipation coefficient and residual displacement ratio can be determined from this parametric 
study results, in order to achieve economical design with lower ductility demand. These three 
parameters are chosen here to study the interplay between post-yield stiffness ratio, energy 
dissipation coefficient, residual displacement ratio and the system’s ductility demand. 
 
 
2. Analysis procedure: Overview 
 

2.1 General description 
 
Performance-based seismic design often involves the use of an equivalent 

single-degree-of-freedom (SDOF) system that represents the dominant vibration mode of the 
concerned structure, often multistory (Fajfar and Krawinler 1997). Analysis of such an equivalent 
SDOF system under seismic excitation not only provides insight into its inelastic seismic response 
behavior but also forms the basis for design parameter selection. The governing equation of 
motion of a nonlinear SDOF system under earthquake-induced base excitation can be expressed as 

( ) gmx cx f x mx                                 (1) 

where m is the mass and c is the viscous damping coefficient of the SDOF system; f(x) is the 
nonlinear restoring force of the SDOF system. x and x  are the displacement and velocity of the 
SDOF system relative to the ground; gx  is the ground acceleration caused by earthquake. A five 

percent viscous damping ratio is assigned in the time-history analysis. The P-Delta effect is not 
considered to avoid the complication from P-Delta effect on post-yield stiffness reduction in this 
study. It is noted that P-delta effect could lead to reduced effective post-yield stiffness and cause 
structural instability especially for flexible structures (Adam et al. 2004). The results of this study 
can be used if the reduction in post-yield stiffness due to P-Delta effect is known from other 
analysis. 

In this study, the yield strength fy of the nonlinear SDOF system is defined as 

R

F
f e

y                                      (2) 

where R is the strength reduction factor, which represents the actual strength level of the nonlinear 
SDOF system relative to the ground motion intensity, and Fe is the elastic design strength which 
can be obtained from the elastic response spectrum as follows 

ae mSF                                   (3) 

where Sa is the elastic spectral acceleration. An R value equal to or less than 4.0 corresponds to a 
relatively high lateral strength, and an R value greater than 4.0 indicates relatively low lateral 
strength (Seo and Sause 2005). 

In performance-based earthquake engineering, the inelastic displacement is one of the primary 
response indices to determine both the structural and non-structural damage to buildings under 
seismic loading. The ductility demand is defined here as the ratio of the maximum inelastic 
displacement xm to the yield displacement xy for a specified R value as follows 
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y

m
R x

x
                                    (4) 

In this study, the ductility demand is used as the primary response index for evaluating the 
seismic performance of the partially self-centering SDOF system. 
 

2.2 Hysteresis model for partially self-centering system 
 
For a fully self-centering system, a flag-shaped hysteresis model has been widely used to 

represent its cyclic behavior for the sake of simplicity (e.g. Christopoulos et al. 2002, Seo and 
Sause 2005), as shown in Fig. 1(a), where ke is the initial elastic stiffness. Key to defining this 
hysteresis model are two independent parameters: post-‘yield’ stiffness ratio α and 
energy-dissipation coefficient β. The coefficient β reflects the energy dissipation capacity of the 
self-centering system, as shown in Fig. 1. For example, a lower bound  value　  of zero produces a 
piecewise nonlinear elastic system while an upper bound β value of 1.0 corresponds to a 
self-centering system with the greatest possible energy dissipation capacity. For a given 
self-centering system with known initial stiffness and ‘yield’ strength values, the flag-shaped 
hysteresis model can be fully defined with these two parameters: α and β. 

An alternative way to enhance the energy dissipation capacity of the system, as shown in Fig. 
1(b), is to allow the system to unload to a nonzero displacement. This hysteresis model is referred 
to as modified flag-shaped model here to represent the hysteretic behavior of partially 
self-centering systems, which could also arise due to relatively low initial stiffness. Most 
self-centering system consists of a restoring component (through post-tensioning tendons or shape 
memory alloy bar) and an energy dissipation component (metallic yielding or friction devices). 
Thus the flag-shaped hysteresis is the superposition of these two hysteresis loops. An example 
illustrating this concept can be found in the self-centering friction damping brace developed by 
Zhu and Zhang (2008). Therefore, if the initial stiffness corresponding to the restoring component 
is too low, superimposing the energy dissipation component hysteresis would cause a residual 
displacement in the overall hysteresis loop. Compared to the flag-shaped model, the modified 
flag-shaped model needs an additional parameter for definition, i.e., the residual displacement, xr. 
Apparently, if the residual displacement is set to zero, the modified flag-shaped model is 
simplified to the flag-shaped model. For this reason, the modified flag-shaped model can be 
considered as a general hysteresis model for describing self-centering systems. 
 

2.3 Earthquake ground motions 
 
A total of 192 historical earthquake ground motion records were selected from the PEER NGA 

database (http://peer.berkeley.edu/nga/) and scaled to be compatible with a target spectrum. The 
target spectrum adopted in this study is the uniform hazard response spectrum derived by 
Somerville (2002) for the design basis earthquake intensity level with a probability of exceedance 
of 10% in 50 years in Van Nuys, California. The selected earthquake records are free of any 
forward directivity effects (i.e., near-fault effects). All earthquake ground motion accelerograms in 
this ensemble were recorded on soil type D, and were generated by earthquakes of moment 
magnitude Mw ranging from 5.7 to 7.3. The hypocentral distance for these records ranges between 
3.4 and 59.7 km. 
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Fig. 2 Elastic response spectrum (spectral acceleration) of the 192 scaled earthquake records 
 
 

The scaling factor for each of the selected earthquake records was calculated by minimizing the 
sum of the squared error between its 5%-damped spectral accelerations and the target spectrum at 
the selected periods of 0.1, 0.5, 1.0, 1.5 and 2.0 seconds. The ensemble average and the average 
plus/minus one standard deviation spectral accelerations over the 192 scaled records along with the 
target spectrum are shown in Fig. 2. A good match can be seen between the ensemble average 
spectral values and the target spectrum in the range of periods greater than 0.4 seconds. In this 
study, the ensemble average spectral acceleration ordinates over the selected 192 scaled earthquake 
records was used to calculate the elastic spectral acceleration in Eq. (3). 
 
 
3. Parametric study 
 

3.1 Analysis parameters 
 

In this study, the residual displacement, xr, of the partially self-centering system is related to the 
maximum inelastic displacement by the following relation 

mr xx                                    (5) 

where γ is the residual displacement ratio. However, the value of xm is generally not available in 
advance before the simulation is done. According to the well-known equal displacement rule 
(Veletsos and Newmark 1960), it can be stated that the ductility demand is approximately equal to 
the strength reduction factor for structures with moderate or long periods (Seo and Sause 2005). 
Therefore, the residual displacement can be estimated from Eqs. (4) and (5) as, 

yr Rxx                                    (6) 

In this parametric study, the strength reduction factor R values considered are 2, 4 and 6, which 
are intended to be representative of strong systems, medium-strength systems and weak-strength 
systems relative to the ground motion intensity respectively. Four different values are considered 
for α, β and γ respectively as listed in Table 1. The initial system periods used in this study range 
between 0.1 to 1.9 sec. with the interval of 0.2 sec.  
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Table 1 The values of the parameters considered in the parametric study 

Parameter    
value 0.05, 0.10, 0.20, 0.30 0.25, 0.50, 0.75, 1.00 0, 0.10, 0.20, 0.30 

 

Fig. 3 Constant-R ductility demand spectra 
 
 

The values of α, β and γ produces a total of 64 different combinations for fully self-centering 
systems (γ = 0) or partially self-centering systems. For convenience, these combinations are 
denoted as SC α-β or PSCα-β-γ, where SC and PSC are the short names denoting self-centering 
and partially self-centering systems respectively; α, β and γ are the corresponding parameter values 
in percent. For example, SC5-25 represents a fully self-centering system with α equal to 0.05 and β 
equal to 0.25; PSC5-25-10 denotes a partially self-centering system with α equal to 0.05, β equal 
to 0.25 and γ equal to 0.10. 
 

3.2 Ductility demand spectrum 
 
The ensemble average ductility demand spectra over the suite of 192 scaled earthquake 

records for the SC 5-25 and PSC 5-25-10 systems with R equal to 2.0, 4.0 and 6.0 are shown in Fig. 
3, where R  denotes the ensemble average value of the ductility demand over the 192 records. It 

is seen that in general the R  spectrum can be divided into two distinctive regions, one is the 

short-period region where R  is strongly period-dependent and tends to increase as the period 

decreases, while the other region is in the long-period region where R  tends towards a constant 

value as the period increases. It is observed that R  is around 2, 5 and 7 for the strength 
reduction factor R values of 2.0, 4.0 and 6.0 in the moderate- and long-period region (e.g. T > 1.2 
sec.) respectively, implying that the “equal displacement rule” well-established for elasto-plastic 
systems is also valid for the moderate- and long-period region of the partially self-centering 
systems. However, for medium-strength or weak-strength self-centering or partially self-centering 
systems, the equal displacement rule may not yield conservative estimate. More extensive research 
need to be done to quantify the R- relationship for partially self-centering system in the future. 
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(a) R  spectra for PSC systems with different  

values 

(b) Ratios of R  for PSC systems with different  

values to that of PSC5-25-10 system 

Fig. 4 Effect of  on R  spectra (R=4.0) 

 
 

Fig. 3 also shows that R  increases with increasing R values. Also, the period separating the 
two regions on the spectrum curve increases with the increase of R values. It is also worth noting 
that the three ductility demand spectral curves of the partially self-centering system all fall below 
the corresponding curve of the fully self-centering system. For R values equal to 2.0, 4.0 and 6.0, 
the average reduction in R  of PSC 5-25-10 compared to SC 5-25 is 0.242, 0.611 and 0.808 
respectively. This reduction is greater for R value of 6.0, meaning that the partially self-centering 
systems generally has a lower ductility demand than the corresponding fully self-centering system, 
especially for those cases with relatively lower strength values. 
 

3.3 Effect of parameter variation on displacement ductility demand: single variable 
change 
 
3.3.1 Effect of post-yield stiffness ratio  
To investigate the effect of post-yield stiffness  on R  of the partially self-centering systems, 

the R  spectra for the partially self-centering systems within the range of  values considered in 

this parametric study are computed and plotted in Fig. 4(a). In all cases, ,  and R are set to be 
0.25, 0.10 and 4 respectively. It can be seen that R  generally decreases with the increase of  
over the period range considered, although in practice increasing the post-yield stiffness of 
partially self-centering systems may be costly, for example, by using more high-strength 
pre-tensioning tendons, thus increasing cost due to additional steel tendon use and anchoring 
requirements for these pre-tension steel tendon. 

Fig. 4(b) shows the ratios of R  for the PSC10-25-10, PSC20-25-10 and PSC30-25-10 

systems to that of the PSC5-25-10 system respectively. It can be seen that the effect of  on R  

depends on the system’s initial period. For periods less than 0.5 s, increasing  values is more 
effective in reducing R  and the reduction becomes smaller with the increase of the period.  
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(a) R  spectra for PSC systems with different   

values 

(b) Ratios of R  for PSC systems with different 

  values to that of PSC5-25-10 system 

Fig. 5 Effect of  on R  spectra (R=4.0) 

 
 
However, for periods longer than 0.5 s, the effect of  is less effective and the reduction seems to 
be independent of the period value. 
 

3.3.2 Effect of energy dissipation coefficient  
Fig. 5(a) shows the R  spectra for the partially self-centering systems over the range of  

values considered in this parametric study. For all cases, ,  and R are kept to be constant equal to 
0.05, 0.10 and 4 respectively. Similar to the above observations made for the variation of  value, 

R  generally decreases with the increase of  over the period range.  However, the change in 

R  is relatively small (within 10 percent of each other) as seen in Fig. 5(a).  

Fig. 5(b) shows the ratios of R  for the PSC5-50-10, PSC5-75-10 and PSC5-100-10 systems 

to that of the PSC5-25-10 system. In comparison with the effect of , the reduction of R  with 

increasing  values remains largely unchanged over the concerned period range, implying that the 
effect of  on R  is independent of the system’s period. Additionally, the effect of energy 

dissipation coefficient   appears to be slightly larger than the effect of post-yield stiffness  on 

R  of the partially self-centering systems, for the period range greater than 0.5 sec. Increasing 

the value of energy dissipation coefficient   requires the use of supplemental dampers and thus 
may not be a cheap option. Furthermore, increasing energy dissipation capacity of partially 
self-centering systems by certain measures such as friction dampers may also lead to increased 
residual displacement, as observed in previous research works described in the Introduction 
section.  

 
3.3.3 Effect of residual displacement ratio  
Fig. 6(a) shows the R  spectra for the partially self-centering systems with the range of  

values considered in this parametric study. In all cases, ,  and R values are equal to 0.05, 0.25 
and 4 respectively. It can be seen that R  generally decreases with the increase of  over the 
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(a) R  spectra for PSC systems with different    

values 

(b) Ratios of R  for PSC systems with different  

  values to that of SC5-25 system 

Fig. 6 Effect of  on R  spectra (R=4.0) 

 

 
Fig. 7 Effect of combined change of  and  on R (=0.10) 

 
 
period range, and this change in R is more pronounced than the effects of  and , for the period 
range greater than 0.5 sec. 

Fig. 6(b) shows the ratios of R  for the PSC5-25-10, PSC5-25-20 and PSC5-25-30 systems 

to that of the SC5-25 system. It can be seen that for a small value of  (for example,  = 0.1), its 
effect on R  is approximately independent of the system’s period; however, for a larger value of 
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 (e.g.  = 0.3), the effect is most effective at the period value around 0.3 s. For system with a 
period of 0.3 s, the value of R  for partially self-centering system with  of 0.3 drops by 28 
percent compared with the corresponding self-centering system. This can be partially explained by 
the fact that when the residual displacement ratio   increases, more energy dissipation through 
hysteretic damping is available to the system, thus reducing the system’s displacement ductility 
demand. Apparently, when  increases, the merits of self-centering systems, that is, small residual 
displacement, gradually fade away. 

 
3.4 Effect of parameter variation on ductility demand: multivariate change 
 
From the observations made above, increasing the individual values of ,  or   respectively 

can reduce the ductility demand of the partially self-centering systems. In this section, combined 
variation of these parameters is examined in order to provide guidance on selecting design 
parameter values to achieve a desired ductility for the partially self-centering systems. 

 
3.4.1 Effect of post-yield stiffness ratio and energy dissipation coefficient combined 
To investigate the effect of the combined change of   and  on R  for the partially 

self-centering systems, the R  spectra for the partially self-centering systems with the range 

of  and  values considered in this study are shown in Fig. 7. The initial periods of these systems 
are 0.5 s and 1.5 s for R equal to 2 and 6 respectively. In all cases,  is set to be 0.10. It is seen that 
increasing  or  values generally deceases the R value, which is more significant for the 
systems with larger R values (systems with relatively low strength). For partially self-centering 
systems with smaller R values (systems with relatively high strength), increasing  or   is not 
very effective in reducing the R value.  

Fig. 7 also shows that for the partially self-centering systems with lower strength, the effect of 
  on R  depends on the particular value of . The smaller value  is, the more rapidly R  

decreases with the increase of . Similarly, the effect of   on R  also depends on to the 

value of . For a smaller value of , a larger reduction of R  can be achieved with the increase 

of  values. 
 

3.4.2 Effect of post-yield stiffness ratio and residual displacement ratio combined 
Fig. 8 shows the R  values for the partially self-centering systems with the range of  and  

values considered in this parametric study. The initial periods of these systems are 0.5 and 1.5 s 
with R equal to 2 and 6 respectively. In all cases,  is set to be 0.25. It is seen that increasing  or  
generally leads to deceased R  values, and it is more significant for systems with larger R 
values (systems with relatively lower strength). For the partially self-centering systems with 
smaller R values (systems with relatively higher strength), increasing  or  values is not as 
effective.  

Fig. 8 also shows that for the partially self-centering systems with lower strength, the effect of 
 on R  is largely independent of . Similarly, increasing  values reduces R  uniformly 
over  
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Fig. 8 Effect of combined change of  and  on R ( =0.25) 

 
 

 
Fig. 9 Effect of combined change of   and  on R ( =0.05) 
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Fig. 10 Effect of combined changes of ,  and  on R (R=4.0, T=1.1 s) 

 
 
the range of  considered in this parametric study, implying that the effect of  on R  is also 

independent of . 
 

3.4.3 Effect of energy dissipation parameter and residual displacement ratio combined 
Fig. 9 shows the R  values for the partially self-centering systems with the range of  and   

values considered in this parametric study. The initial periods of these systems are 0.5 and 1.5 s for 
R equal to 2 and 6 respectively. For all cases,  is equal to 0.05. It is seen that increasing   or  
generally results in deceased R  values, and this is more significant for the systems with larger 
R values (systems with relatively lower strength). For the partially self-centering systems with 
smaller R values (systems with relatively higher strength), increasing   or   values is not as 
effective. 

Fig. 9 shows that for the partially self-centering systems, the effect of  on R  depends on the 

value of . The smaller value   has, the more rapidly R  decreases with the increase of . For 

example, for system with the initial period of 0.5 s and R equal to 6, the difference of R  

between partially self-centering system with   of 0.3 and self-centering system is 2.194 for   
equal to 0.25; however, for   equal to 1.00 the corresponding value is 0.882. Similarly, the effect 
of   on R  is also related to the specific value of . For a smaller value of , a larger reduction 

in R  can be achieved with the increase of . 
 
3.4.4 Effect of the three parameters combined 
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To investigate the combined effect of the three parameters, ,  and  on R  of the partially 

self-centering systems, variations of R  with the range of ,   and  values considered in this 
parametric study are shown in Fig. 10. The initial periods of these concerned systems are 1.1 s for 
R equal to 4. Similar observations as the above can be made. 

For any partially self-centering system with a specified initial period and strength reduction 
factor, the relationship between R  and the three parameters can be determined, which can be 
utilized to provide a basis to select a favorable combination of these parameters for partially 
self-centering systems. The values of these parameters can be determined with the objective to 
minimize the ductility demand of partially self-centering systems under seismic excitation while 
considering the following requirements: (1) these values should be achieved economically and (2) 
the residual deformation is below the accepted level. For example, suppose the initial period of a 
partially self-centering system is 1.1 s and the strength reduction ratio is equal to 4. Two possible 
combinations of the three parameters can be considered as candidates for design. For the first 
combination, ,   and   are set to be 0.05, 1.0, 0 respectively; and the second candidate 
involves that ,   and   values are equal to 0.20, 0.25, 0.1 respectively. From Fig. 10, it can 
be derived that the ductility demands for these two combinations are both around 3.9. Depending 
on the relative cost of realizing energy dissipation, post-yield stiffness, and technical challenges in 
eliminating residual displacements from the system, one of the two combinations can be selected 
for seismic design. 
 
 
4. Comparative study of time history responses 
 

For comparison purpose, two cases including one partially self-centering system and one 
self-centering system were analyzed subjected to a scaled version of the 1940 El Centro N-S 
earthquake record and the displacement responses are plotted in Fig. 11(a). A scaling factor of 
1.73 is used. As shown in Fig. 11(b), the 5% damped elastic response spectrum of the scaled 
record is in good agreement with the target spectrum used in this study.  

The two systems considered both have an initial period of 1.0 s and a mass of 4.0106 kg, 
 
 

(a) Earthquake record (b) Elastic response spectrum, 5% damped 
Fig. 11 Acceleration time history and elastic response spectrum for the scaled 1940 El Centro record 
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(a) Displacement response (b) Hysteresis response 

Fig. 12 Responses of the SC and PSC systems subjected to the scaled 1940 El Centro record (T=1.0 s, 

R=6.0,  =0.05, =0.25) 

 
 
which are intended to be representative of a 7-story steel moment resisting frame (MRF). For the 
two systems, the strength reduction factor R for both systems is set to be 6, and the post-yielding 
stiffness ratio  and energy-dissipation coefficient  are both set to 0.05 and 0.25 respectively. The 
residual displacement ratio is set to 0.10 for the partially self-centering system, while the 
self-centering system has no residual displacement by definition. 

The displacement time history and hysteresis curves of the two systems subjected to the scaled 
1940 El Centro record are shown in Fig. 12. It can be seen that though the partially self-centering 
system has a non-zero residual displacement (about 0.0115 m), its peak displacement is decreased 
by 12% compared to the fully self-centering system due to its increased energy dissipation 
capacity. This can be partially explained by the fact that more hysteretic energy dissipation occurs 
in the partially self-centering system as seen in the hysteresis loops shown in Fig. 12(b). Therefore, 
for certain cases, for example, those with small energy dissipation coefficient values, partially 
self-centering systems have the potential to achieve lower peak displacement values. The practical 
implication of this observation is: for certain self-centering systems, adding energy dissipation at a 
price of increased residual displacement may be desirable since peak displacement would also be 
reduced. Therefore, in practical application, a favorable combination of post-yield stiffness ratio, 
energy dissipation coefficient and residual displacement ratio for partially self-centering systems 
needs to be determined based on a prescribed criterion that considers ductility demand, relative 
cost of realizing energy dissipation, post-yield stiffness, and technical challenges in eliminating 
residual displacements from the system. 
 
 
5. Conclusions 
 

In this paper, a modified flag-shaped hysteresis model is presented for partially self-centering 
systems. Compared to fully flag-shaped hysteresis model, an additional parameter is included to 
account for the residual displacement of the system. With given initial period and yield strength, 
the hysteresis behavior of a partially self-centering system can be fully defined by post-yield 
stiffness ratio, energy dissipation coefficient and residual displacement ratio. In order to 
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investigate the influence of these three parameters on the displacement ductility demand of 
partially self-centering systems, a parametric study has been conducted through nonlinear time 
history analysis based on an ensemble of 192 historical earthquake records scaled to the design 
basis earthquake (DBE) in southern California. The findings from this parametric study can be 
summarized as follows: 
(1) “Equal displacement rule” is verified for the moderate- and long-period region of strong 

partially self-centering systems. For medium or weak-strength partially self-centering systems, 
the equal displacement rule may not give conservative estimate. Definition for medium and 
weak-strength partial self-centering systems is based on the strength reduction factor R value, 
which is given after Eq. (6). Larger R value corresponds to weaker system since its strength is 
lower. More extensive research need to be done to quantify the R- relationship for partially 
self-centering system in the future. 

(2) In general, increasing post-yield stiffness ratio, energy dissipation coefficient or residual 
displacement ratio all lead to reduced displacement ductility demand for partially 
self-centering systems, especially for systems with lower yield strength. The effect of 
post-yield stiffness ratio on the ductility demand of partially self-centering systems depends on 
the initial period of the system. However, in general, increasing energy dissipation coefficient 
or residual displacement ratio reduces the ductility demand of the partially self-centering 
systems by an almost constant ratio over the period range considered in this parametric study. 

(3) The effect of energy dissipation coefficient on the ductility demand of partially self-centering 
systems is related to the post-yield stiffness ratio and residual displacement ratio. However, 
the latter two parameters are independent of each other in affecting the ductility demand of the 
partially self-centering systems considered in the parametric study.  

(4) With given initial period and strength level, a favorable combination of post-yield stiffness 
ratio, energy dissipation coefficient and residual displacement ratio can be determined for 
partially self-centering systems based on a prescribed criterion that considers ductility demand,  
relative cost of realizing energy dissipation, post-yield stiffness, and technical challenges in 
eliminating residual displacements from the system. 

The P-Delta effect is not considered to avoid the complication from P-Delta effect on post-yield 
stiffness reduction in this study. The results of this study can be used if the reduction in post-yield 
stiffness due to P-Delta effect is known from other analysis. 
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