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Abstract.  The present investigation deals with the analysis of wave motion in the layer of an anisotropic, 
initially stressed, fiber reinforced thermoelastic medium. Secular equations for symmetric and skew-
symmetric modes of wave propagation in completely separate terms are derived. The amplitudes of 
displacements and temperature distribution were also obtained. Finally, the numerical solution was carried 
out for Cobalt and the dispersion curves, amplitudes of displacements and temperature distribution for 
symmetric and skew-symmetric wave modes are presented to evince the effect of anisotropy. Some 
particular cases are also deduced. 
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1. Introduction 
 

The influence of pre-existing stress on elasticity of solids referred as initial stress and strain or 
external stress is quite important subject and has been investigated by number of researchers. The 
propagation of elastic waves of a fiber-reinforced medium plays a great role in the practical 
problems of civil engineering and geophysics. Effect of earthquake on artificial structures near the 
surface of the earth is also of prime importance. A structure is excited during an earthquake and 
similar disturbances, which may cause more or less violent vibrations. These vibrations depend on 
the ground vibration as well as on the physical properties of the structures (Richter 1958). Most 
concrete construction on or near the surface of the earth includes steel reinforcing. The 
characteristic property of reinforced concrete member is that its components, namely concrete and 
steel act together as a single anisotropic unit as long as they remain in the elastic condition, i.e., the 
components are bound together without relative displacement. However, due to the mismatch of 
material properties, there exists a residual stress during the manufacture process of fiber-reinforced 
material. On the contrary, to prevent the fiber-reinforced material from brittel fracture, the layered 
structure is usually pre-stressed during the manufacture process. During the last five decades 
considerable attention has been directed towards this phenomenon. Biot (1965) in his work 
depicted the difference between the acoustic propagation under initial stress and in stress free state. 
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Kumar and Gupta (2010) discussed the wave motion in micropolar transversely isotropic 
thermoelastic half space without energy dissipation. To the author's knowledge, no work has been 
carried out so far to discuss the effect of initial stress on the propagation behavior of Lamb waves in the 
layered fiber-reinforced structure. 

In this article, analytic investigation of the propagation of Lamb waves in the layer of fiber-reinforced 
transversely isotopic thermoelastic initially stressed medium is considered. The effect of the anisotropy on 
the phase velocity, attenuation coefficient and specific loss is presented and illustrated graphically, for 
symmetric and skew-symmetric modes. The amplitude ratios of displacements and temperature distribution 
are also obtained, to evince the effect of anisotropy. This study has many applications in various fields of 
science and technology, namely, atomic physics, industrial engineering, thermal power plants, submarine 
structures, pressure vessel, aerospace, chemical pipes and metallurgy. 
 
 
2. Basic equations 
 

The linear equations governing thermoelastic interactions in homogeneous transversely 
isotropic initially stressed fibre-reinforced thermoelastic solid are 
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The deformation tensor is defined by 

.3,2,1,),(
2

1
,,  jiuue ijjiij

                                             (2) 

Balance law: The balance laws for initially stressed fiber-reinforced linearly elastic medium 

whose preferred direction is that of a are (Dhaliwal and Sherief 1980, Kumar and Gupta 2010, 

Kolsky 1963)
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 Equation of heat conduction:  Following, Lord and Shulman (1967) 
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 where   is the mass density, ijt  are components of stress, iu  the mechanical displacement, 

ije are components of infinitesimal strain, P is the normal initial stress, ,2/)( ,, jiijij uu  T the 
temperature change of a material particle, 0T  the reference uniform temperature of the body, ijK  
the heat conduction tensor, ij  the thermal elastic coupling tensor, *c  the specific heat at constant 
strain, ja  are components of a, all referred to cartesian coordinates. The vector a may be a 
function of position. The coefficients  ,,, TL  and  are elastic constants with the dimension 
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of stress. We choose a (Lord and Shulman 1967) so that its components are (1, 0, 0). The comma 
notation is used for spatial derivatives and superimposed dot represents time differentiation. 
3. Problem formulation 

 
Following Slaughter (2002), appropriate transformations have been used on the set of Eq. (1), 

for deriving the equations for transversely isotopic medium and restricted our analysis to the two 
dimensional problem. 

  In the present paper, an infinite layer with traction free surfaces at Hx 2  (layer of 
thickness H2 ), which consists of homogeneous, initially stressed, fiber reinforced transversely 
isotropic thermoelastic material is considered. The origin of the coordinate system ),,( 321 xxx is 
taken on the middle surface of the layer. The 31 xx  plane is chosen to coincide with the middle 
surface and 2x -axis normal to it along the thickness. For the two-dimensional problem, we assume 
the components of the displacement vector of the form 
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                                                                     (5) 

 and assume that the solutions are explicitly independent of 3x , i.e., 0/ 3  x . Thus the field 

equations and constitutive relations for such a medium reduces to 
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where ,)( 213113111  ccc  ,)( 23315513332  cccc  ,24211   TLc  
,13  c ,23322 Tcc   ,2/44cco  ,26644 Lcc  ,255 Tc  ,553323 ccc  and 

,,,   TL  , are material constants, 21 , KK are coefficients of thermal conductivity, o  is 
thermal relaxation time, 21 ,uu   are the components of displacement vector. 

For further considerations, it is convenient to introduce the non-dimensional quantities defined 
by 
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4. Boundary conditions 
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The boundary conditions for the thermally insulated, initially stressed fiber-reinforced 
transversely isotropic layer are the vanishing of normal stress, tangential stress and temperature 
distribution. Therefore, we consider the following non-dimensional boundary conditions 
at Hx 2  are given by  
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5. Normal mode analysis and solution of the problem 
 

The solution for ),,( 21 Tuu representing propagating waves in the 21 xx   plane is assumed to 
be of the form 
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where   is the wave number , c   is the angular frequency and c is the phase velocity of 
the wave, m is the unknown parameter which signifies the penetration depth of the wave.  

With the help of Eqs. (10) and (12), Eqs. (6)-(8) reduced to (after suppressing primes) 
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The condition for the non-trivial solution of system of Eq. (13), yields a cubic equation in 2m as 
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The roots of this equation give three values of 2c . Three positive values of c  will be the 
velocities of propagation of three possible waves. The waves with velocities 321 ,, ccc  correspond 

to three types of quasi waves propagating into the medium. Let us name these waves as, quasi-
longitudinal displacement (qLD) wave, quasi transverse displacement (qTD) and quasi thermal 
wave (qT) wave. 

So Eq. (14) leads to the following solution for displacements and temperature distribution
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6. Derivation of secular equation 
 

Substituting the values of 21 ,uu  and T in the boundary conditions Eq. (11) at the surfaces H  
of the layer 
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In order that the six boundary conditions given by Eq. (11) be satisfied simultaneously, the 
determinant of the coefficients of jA and jB (j=1, 2, 3) in Eq. (16) vanishes. This gives an 

equation for the frequency of the layer oscillations. The frequency equation for the waves in the 
present case, after applying lengthy algebraic reductions and manipulations of the determinant 
leads to the following secular equations 
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These are the frequency equations which correspond to the symmetric and skew symmetric 
mode with respect to the medial plane 03 x . Here, the superscript '+' corresponds to skew 

symmetric and '-' refers to symmetric modes and .3,2,1),tan( 2  jxmT jj   
 

6.1 Amplitudes of displacements and temperature distribution 
 

In this section the amplitudes of displacement components and temperature distribution for 
symmetric and skew symmetric modes of plane waves can be obtained as 
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6.2 Specific loss 
 
The specific loss is the ratio of energy )( W  dissipated in taking a specimen through a stress 

cycle, to the elastic energy )(W stored in the specimen when the strain is maximum. Kolsky 

(1963), shows that specific loss )/( WW  is, c times the absolute value of the ratio of the 

imaginary part of wave number to the real part of wave number i.e., 
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                                                              (19) 

He noted that specific loss is the most direct method of defining internal friction for a material.
  

6.3 Particular case 
 
(1) Isotropic Elastic Case: Taking   TL  and 0   the Eq. (17), the 

corresponding expression for initially stressed isotropic fiber-reinforced elastic solid are obtained. 
(2) In the limiting case if on neglecting the effect of initial stress, the results for transversely 

isotropic fiber-reinforced thermoelastic solid are recovered.  
 
 
7. Numerical results and discussion 
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In order to illustrate the theoretical results obtained in the preceding sections, we now present 

some numerical results. For the purpose of numerical computations, we have used Matlab's 
Programming. The following relevant physical constants are taken for a fiber-reinforced 
transversely isotopic material 

21021021033 /1066.5,/1046.2,/1065.5,/1066.2 mNmNmNmKg LT  
10 2 10 2 3 1 1 1

11.28 10 / , 220.90 10 / , .0921 10 deg ,N m N m K Jm s          

,deg10015.,deg10017.,deg100963. 14
2

14
1

1113
2

  sJmK
1

00
113* 2,05.,100,293,deg10787.0   ssPKTKgJc  . 

The plots of non-dimensional phase velocity, attenuation coefficient and specific loss with non-
dimensional wave number restricted to thickness H=0.1 for symmetric and skew symmetric modes 
are shown in Figs. 1-6. Here, solid line with and without center symbol represent the variations 
corresponding to initially stressed fiber-reinforced thermoelastic transversely isotropic (ISFRTIT) 
and, for comparison, broken lines with and without center symbol represent the variations 
corresponding to initially stressed fiber-reinforced thermoelastic isotropic (ISFRIT). The lines 
shown in the figures without center symbol represent the variations corresponding to initial mode 
(n=1) of wave propagation, lines with center symbol (-o-) represent the variations corresponding to 
second mode (n=2) and lines with center symbol (-x-) represent the variations corresponding to 
final mode (n=3) of wave propagation.  

Figs. 1 and 4 show the variations of phase velocity with respect to wave number for symmetric 
and skew symmetric modes, respectively. It is depicted from these figures that for higher modes of 
wave propagation (n=2, n=3) there is a sharp increase in the phase velocity over the interval (0, 
0.5), but later on their values get decreases slowly and ultimately become constant with further 
increase in wave number. Whereas for initial mode of wave propagation, its value start with slow 
initial increase and  become constant with further increase in wave number. The variations are 
almost similar with slight difference in the amplitudes for the cases of ISFRTIT and ISFRIT. 
The variation of attenuation coefficient with respect to wave number for symmetric and skew 
symmetric modes can be depicted from Figs. 2 and 5, respectively. It is seen from Fig. 2 that for 
initial mode (n=1), the value of attenuation coefficient initially increase with small oscillation in 
 
 

Fig. 1 Variation of phase velocity with wave 
number for symmetric mode 

Fig. 2 Variation of attenation coefficient with wave 
number for symmetric mode 
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Fig. 3 Variation of specific loss with wave number 
for symmetric mode 

Fig. 4 Variation of phase velocity with wave 
number for skew symmetric mode 

Fig. 5 Variation of attenuation coefficient with 
wave number for skew symmetric mode 

Fig. 6 Variation of specific loss with wave number 
for skew symmetric mode 

 
 

Fig. 7 Variations of amplitude of normal 
displacement with thickness of the layer 

Fig. 8 Variations of amplitude of tangential 
displacement with thickness of the layer 

 
 
the interval (0, 0.6), decreases sharply over the interval (0.6, 0.8) and then increases sharply with 
increase in wave number. For the next mode (n=2) and in the case of ISFRIT, its value decreases 
sharply in the interval (0, 0.4) and within the interval (0.4, 0.8) it nearly become constant and then 
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Fig. 9 Variations of amplitude of temperature distribution with thickness of the layer 
 
 
increases sharply with increase in wave number. However for ISFRTIT and in both the case of 
higher mode (n=3), its value goes increases uniformly with wave number. 

Figs. 3 and 6 illustrate the variations of specific loss with wave number for symmetric and 
skew symmetric modes. It is depicted from these figures that for the initial mode its value start 
with sharp initial decrease and then oscillate to attain a constant value, while for the higher modes 
(n=2, 3), its value sharply increases with increase in wave number and attain a constant value at 
the end. 

Figs. 7-9 indicate the trend of variations of amplitudes of normal displacement, tangential 
displacement and temperature distribution with respect to thickness H of the layer. It is depicted 
from Fig. 7 that the amplitude of normal displacement remains constant initially up to 1.5 and then 
decreases sharply with increase in thickness of the layer. The variation pattern for both ISFRTIT 
and ISFRIT remain same. Figs. 8 and 9 depict the variation of tangential displacement and 
temperature distribution with thickness of the layer. It can be seen from Fig. 8 that for the case of 
ISFRTIT and for both symmetric and skew symmetric mode, its value initially remains constant 
and then goes on increasing with increase in depth. While for the case of ISFRIT reverse behavior 
is depicted. Also, the variations of temperature distribution are similar to those of tangential 
displacement, but with opposite behavior for ISFRTIT and ISFRIT after reaching the value 1.6. 
 
 
8. Conclusions 
 

The expression for the propagation of waves in an infinite layer of initially stressed fiber 
reinforced thermoelastic transversely isotropic medium after deriving the secular equation is 
derived. The phase velocity of higher modes of wave propagation for symmetric and skew-
symmetric modes attain quite large values at vanishing wave number, which sharply flattens out to 
become steady with increasing wave number. The value of attenuation coefficient initially 
increases and then tends to zero at higher values of wave number. An appreciable of anisotropy is 
evinced from all the curves. The values of phase velocity get decreased with increase in anisotropy, 
while that of attenuation coefficient and specific loss oscillates arbitrarily. 
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