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Abstract. This paper presents the solution scheme of using the continuous formulation of 1-D linear
member for the dynamic analysis of structures consisting of axially loaded members. The context
describes specific applications of such scheme to the verification of experimental data obtained from field
test of bridges carried out by a microwave interferometer system and velocimeters. Attention is focused
on analysis outlines that may be applicable to in-situ assessment for cable-stayed bridges. The derivation
of the dynamic stiffness matrix of a prismatic member with distributed properties is briefly reviewed. A
back calculation formula using frequencies of two arbitrary modes of vibration is next proposed to
compute the tension force in cables. Derivation of the proposed formula is based on the formulation of an
axially loaded flexural member. The applications of the formulation and the proposed formula are
illustrated with a series of realistic examples.

Keywords: dynamic stiffness matrix; axially loaded member; cable force; cable-stayed bridge; transfer
function

1. Introduction

Due to their high efficiency in utilizing the prestressing forces, most cable-stayed bridges consist

of slender members with regular cross sections. Thus, bridges of this type and their variations,

including the so-called extradosed bridges, can normally be modeled using 1-D line elements as a

combination of simplified frame structures and tensioned cables. Depending on the types of

excitations and responses associated with the analysis task, analysis of cable-stayed bridges can be

carried out with either a nonlinear or a linear solution scheme. For dynamic problems associated

with responses due to non-destructive testing (NDT) tests and ambient vibrations, bridges can

normally be reasonably represented by a linear model since the fluctuations caused by these

excitations are considered to be relatively insignificant to the initial static responses. Dynamic

analysis of cable-stayed bridges can be properly carried out using finite element (FE) techniques

with discrete formulation in the time domain. With the help of versatile FEM packages, time

domain scheme has been widely adopted. For example, recent relevant references include Bhagwat

et al. (2011) demonstrated the use of ANSYS to investigate the seismic responses of cable-stayed

bridges, and Ali and Okabayashi (2011) proposed a system identification scheme for bridges in
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which useful numerical simulations can be generated by simple 1-D FEM models. Except for cases

including significant behavior associated with slack cables, the use of a continuous formulation with

distributed properties in the frequency domain, however, provides a more efficient and sometimes

even more accurate procedure for the linearly dynamic analysis of frames than the lumped or

consistent formulations.

Over the past decades, the dynamic stiffness matrices for various continuous members have been

extensively investigated and independently used to study different problems by different researchers

(e.g. Latona 1969, Papaleontiou 1992, Banerjee and William 1994, Doyle 1997, Yu 1992, 1996, Dai

2005). Recent references related to this article include, for instance, Dai et al. (2007) which

thoroughly discussed the general applications of such dynamic stiffness matrices to dynamic and

wave propagation problems, and Yu and Roesset (2001) in which the general formulation for 1-D

prismatic members with respect to various theories were systematically summarized. Since stay

cables and prestressed box girders are axially loaded members, the formulation including the effect

due to axial force is of particular interest and would thus be outlined in this paper. 

Regarding the dynamics of tensioned slender members, tension force of a cable can be practically

calculated with the first natural frequency based on theory of a vibrating string. However, tension

forces based on the simple string theory are often overestimated and could be quite inaccurate for

certain cases. The major reason is that the lack of considerations of effects associated with flexural

stiffness and end constraints leads to the inadequacy in correctly describing the transverse vibration

(Wenzel and Pichler 2005). As a result, formulas based on the axially loaded beam provide better

approximations for the dynamic characteristics of tensioned cables. When considering directly

applying such formulas to assess cable forces, there is one important parameter needed to be

recognized beforehand, namely the flexural stiffness. Although structural properties of most cable

systems should practically be known values, precise information for certain stay cables may not be

possible due to their intricacy in composition. To overcome the above difficulty, a systematic

derivation for the dynamic responses of a general flexural member were thoroughly reviewed by the

authors and a series of feasible formulas which can be used with field data to predict reasonable

values of length/axial force/rigidity were studied and verified with test data (Yu et al. 2011). It is of

particular interest to the authors to demonstrate, in this paper, a useful formula for computing the

cable force from two natural frequencies without the need of precisely knowing the flexural rigidity.

Owing to its distinguishing features of high accuracy and non-contact, the microwave interferometer

has gradually become popular and used for monitoring the dynamic characteristics of the bridge

decking system and the cables. Cheng et al. (2010) used IBIS-S, which is an instrument carrying

microwave sensors and has a 1-D imaging capability for remotely measuring the displacements of

multiple locations simultaneously, to monitor the dynamic behavior of various types of bridges. It was

concluded that such device can be a proper tool for speedy, accurate and non-contact measurement

of the dynamic response of a wide range of bridge structures with an average setup time less than

30 minutes. By equipping the measurement system with an efficient computer program for structural

analysis to enable the in-situ verification, the use of a microwave interferometer was found to have

the potential to serve as an efficient scheme for the quick assessment of bridges.

The paper is aimed to introduce a simple yet complete strategy for carrying out the linear

dynamic analysis of a cable-stayed bridge and to outline the related theoretic backgrounds. First, the

derivation of dynamic stiffness matrix is briefly reviewed with emphasis on the formulation related

to axially loaded members. The context of deriving an improved equation used in recovering cable

forces is next introduced. Typical results of the simulated bridge using the continuous formulation
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are illustrated with numerical examples and their applications to help verify the field data.

2. Dynamic stiffness matrices

As mentioned above, the details regarding derivations of dynamic stiffness matrices of the 1-D

continuous member can be found in references (Dai et al. 2007, Yu and Roesset 2001). The

derivation scheme of dynamic stiffness matrix, however, is still briefly outlined in this section for

providing completeness of the context. Despite that dynamic stiffness matrix can be numerically

obtained, explicit form associated with simpler theories can be use to obtain useful analytical

expression of simple problems and can potentially provide insightful information, thus the

derivation of such simpler explicit form is also presented. 

2.1 Axially loaded Rayleigh beam

Consider a uniform member subjected to a constant axial force N with Young’s modulus E, cross-

sectional area A, moment of inertia I and mass density ρ. The governing equation in the frequency

domain for the transverse vibrations of the member using the Rayleigh beam theory and including

effects of axial load and rotational inertia are

(1a)

(1b)

(1c)

 (1d)

where , ,  and  represent, in the frequency domain, the bending moment, vertical force,

shear force of the cross section and transverse displacement of the centroidal axis. A positive N

represents a tension force. The assumption of constant N implies that the fluctuation due to dynamic

loads are much less than the original static axial force. Combining the above equations gives then

(2)

By defining

 and (3)
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where r1, r2, r3 and r4 are the roots of the characteristic equation

(5) 

To form the dynamic stiffness matrix, we first express end displacement  in terms of the

constant Ci as

(6)

and end force  in terms of the constant Ci as

(7)

Since , the computation of the stiffness matrix  can

be numerically performed as

(8)

Alternatively, the explicit form of the stiffness matrix  can be derived. For the reason

of simplicity in derivation, the solution form is changed to 

+

with 

 and (9)

The two coefficient matrices can thus be obtained as
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with ,
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(10)

with

, , 

2.2 General linear element

2.2.1 Transverse vibration

In addition to the basic effects accounting for in the axially loaded Rayleigh beam element, the

most general case for the flexural element would also include effects due to shear deformation (i.e.,

Timoshenko beam) and distributed springs (due to soil pile interaction). Referring to Fig. 1, the

corresponding governing equations can be expressed as in Eq. (11)

(11a)

(11b)

(11c)

(11d)

in which,  is rotation of the cross section, κ and G are effective shear area coefficient and Shear

Modulus, Kf and Kr are the dynamic stiffness functions with K = k + iωc, standing for the restraining

effects in the transverse and bending rotational directions, respectively. In the above equations, Df

and Dr are defined and used to simplify the expressions of the equations. Except for a special case
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(12)

thus, the two terms β and α change to

 and (13)

The roots are

(14)

Based on Eqs. (6) and (7), the coefficient matrices [T1] and [T2] can be expressed as
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Fig. 1 Differential element for flexural vibration: (a) schematic plot for a flexural member, (b) coordinates and
displacements, (c) two pairs of the section forces, (d) equilibrium of transverse forces and (e)
equilibrium of bending moments
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(15)

(16)

in which  and 

The stiffness matrix  can thus be numerically obtained in a straightforward way, while the

explicit form for  can be deduced as shown in Yu and Roesset (2001), it is too cumbersome to

be useful in providing analytical expressions for simple dynamic problems.

2.2.2 Axial and torsional vibrations

The basic governing equations for axial and torsional vibrations in the frequency domain are

respectively

(17)

and

(18)

in which  and  stand for axial displacement and torsional angle in the frequency domain, and A

and IP are the cross sectional area and polar moment of inertia, E and GJ are Young’s modulus and
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stiffness functions due to the soil-pile interaction. Similar to the flexural stiffness matrix, the axial
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in the frequency domain can be shown as

(21)

with 

Similarly the torsional stiffness matrix can be obtained as

(22)

with 

3. Dynamic analyses of cable-stayed bridge

3.1 Stay cables

For the normal cable element without considerations of effects due to gravity and second order

geometry, the frequency equations can be expressed as in Eq. (23),

(23)

in which ρA, N and L are respectively the mass unit length, force and length of the cable with fn
standing for the cyclic frequency of the nth mode of transverse vibration.
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3.1.1 Modal equation by axially loaded beam model
To deduce the modal equation of a fixed-fixed beam from the dynamic stiffness matrix, one can

form the stiffness matrix for a two-element member with two equal elements of length l/2, namely

the left and the right. Since both ends are fixed, the only two kinematic degrees of freedom are the

displacement and rotation at the mid-span, denoted as  and . Assembling by the direct

stiffness approach, the resulting equilibrium equations for the two degree-of-freedom system can

then be shown as

(24)

in which symbols s, c, SH and CH in terms sij now become , ,  and

.

Setting the determinant of the stiffness matrix equal zero to obtain the modal equation, we have
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(29)

The factor δ can be expected to be small comparing to 1 for normal tensioned cables.

To find out modal frequencies, the characteristic equation, Eq. (4) can be rewritten in terms of σ as

 (30)

or, in a form as

(31)

in which y is defined to simplify the subsequent procedure. Using the simply supported beam as an
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(37)

After dropping out the terms higher than third order, the roots for y can then be expressed as

(38)

As a result, the modal frequencies for a tensioned fixed-fixed beam model can be rigorously

approximated by

(39)

in which the correction term is clearly more complicated than the previous one for simply supported

model. After deriving the frequency equation for vibration modes, it can be applied to provide the

relation between cable force and vibration frequency.

3.1.2 relation between cable force and vibration frequency
In the previous section, Eqs. (33) and (39) are expressed in a general form as

(40)

in which  representing the relation between mode frequency and tension force

based on the basic string theory, and ξn stands for a correction factor corresponding to the mode

frequency of the nth mode. The correction factors in accordance to Eqs. (33) and (39) are

respectively shown as

(41a)

(41b)

with δ defined as .

Both Eqs. (33) and (39) provide better predictions than the traditional string formula when calculating

the mode frequency or vice versa the force of tensioned cables. However, to properly use the

formulae derived from beam theory, there is still one important parameter needed to be recognized

beforehand, namely the flexural stiffness. Certain default factory values may be considered by the

testers as given data for specific structural properties, yet precise information may not be possible

due to their intricacy in composition. A more versatile formulation which eliminates the use of the

flexural stiffness is thus useful to provide testers with alternative ways of verifying estimates for the

cable forces.

1 4δ
2

–( )y2
4 nπ( ) 8δ

2
nπ( )3+[ ]y–

nπ( )2

δ
2

------------- nπ( )4+– 0=

y
nπ( )
δ

----------- 1 2δ 4δ
2

8δ
3

+ + +( ) nπ( )2
δ
2

2
----- 4δ

3
+⎝ ⎠

⎛ ⎞+=

fn
ωn

2π
------ n

2L
------

N

ρA
-------⎝ ⎠

⎛ ⎞ 1 2δ 4δ
2

8δ
3

+ + +( ) nπ( )2
δ
2

2
----- 4δ

3
+⎝ ⎠

⎛ ⎞+×= =

fn fn 0, ξn×=

f0 n, n 2l⁄ N ρA⁄=

ξn 1 nπδ( )2+=

ξn 1 2δ 4δ
2

8δ
3

+ + +( ) nπ( )2 δ
2

2
----- 4δ

3
+⎝ ⎠

⎛ ⎞+=

δ EI Nl
2⁄=



282 Chih-Peng Yu and Chia-Chi Cheng

The proposed way of obtaining such adapted approximation is straight-forward. We start the idea

with the simpler case of the simply supported model. Based on the form of Eq. (33), the elimination

of the mode related term (nπ) can be achieved by using the squares of two equations expressed at

two arbitrary mode frequencies, say  and  for the pth and nth modes. Subtraction between the

two associated equations leads to an alternative expression for the relation between axial force and

mode frequencies as shown in Eq. (42)

(42)

By defining an equivalent fundamental frequency of cable vibration, , Eq. (42) demonstrates

that Eq. (33) can be transformed into the original form of Eq. (23) without knowing the exact value

of the stiffness term. Following a similar procedure used for the fixed-fixed beam model, the

resulting equation for Eq. (39) is

(43)

in which  is defined as the equivalent frequency of fundamental mode

associated with the fixed-fixed model, and φ serves as an additional factor to account for the effect

of boundary constraints. Consequently, a rigorous formula for evaluating cable force can be

proposed as

(44)

with 

It is clear that the formula for the fixed-fixed model raises again the problem about the need of

evaluation values of φ and δ as well. To fulfill this need, another useful relation as shown in

Eq. (45) can also be deduced from the simply support beam model in a similar way by cancelling

out the axial force in Eq. (33).

(45)

in which  can be treated as an equivalent fundamental frequency of flexural vibration of beam.

Eq. (45) depicts that the relation between flexural stiffness and mass density can also be established

by calculating the value of  from two specific mode frequencies. As a result, the dimensionless

factor δ defined by Eq. (29) can also be approximated by two mode frequencies in a familiar form

after substituting the force and stiffness terms with Eqs. (42) and (45), as shown in Eq. (46).
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(46)

Although the equivalent  in Eq. (46) is derived based on the simply supported beam model, it

provides an optional way of roughly determining the reasonable value for the dimensionless factor

δ, and thus it is especially useful when data of flexural rigidity and cable force are not reliable or

remain unknowns.

3.2 Bridge structure 

Except for special-purposed analysis associated with certain cable-related dynamics, linear

dynamic analysis of a cable-stayed bridge can be separated into two parts of analysis, namely stay

cables and bridge structure. It is generally accepted that the additional consideration of stay cables

in structural modeling has limited influence on the bridge responses, while the cable response may

expose dynamic characteristics of the bridge structure. Since the structural system of most cable-

stayed bridges consists of regular members of long spans/lengths, modeling with a continuous

formulation can be beneficial to the analysis task due to the significant reduction in the number of

elements used. The formulation shown in this article contains the assumption of constant cross

section which implies that a member with variable cross sectional properties would have to be

simulated with multiple divided segments, each still with constant properties. The bridge models

described in the following sections are thus modeled as a combination of prismatic members with or

without axial forces regardless that the model includes stay cables or not. Using the formulation

described for the general flexural members, computer programs were implemented to perform

dynamic analysis of 2-D (plane-) and 3-D (space-) frames. The numbers of nodal degrees of

freedom of the 1-D line element used for the two types of frames are respectively three (i.e.,

axial + in-plane flexural motions) and six (i.e., axial + torsional + two flexural motions).

3.2.1 frame model 

To perform reasonable simulation for realistic cable-stayed bridges, the computer programs

developed in this work are capable of including effects due to axial forces and distributed properties

including masses and restraints (springs and dashpots). In a 2-D model, the bridge is simplified as a

plane frame. In a 3-D model, the bridge is modeled as a space frame with appropriate amount of

lateral members to roughly account for the overall lateral and torsional stiffness due to the out-of-

plane motions. 

3.2.2 types of responses 

After the total dynamic stiffness matrix has been assembled, the equilibrium can be solved for

each specific frequency. According to the nature of excitations, the programs developed can

simulate two types of dynamic responses. The first type simulates responses due to prescribed

ground motions in which the Fourier transform of the support motions are used as input. Eq. (47)

shows the equilibrium equations. The subscripts F and R refer to free and restrained nodal

displacements, and SP and UG refer to the condensed foundation stiffness matrix and the specified

support excitations.
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(47)

It should be noted that this implies that kinematic interaction effects are being neglected. It is

assumed that the motions at the top of the foundation would be the same that would occur at that

level of the soil without any foundation. At each frequency, the free nodal accelerations are found

by solving Eq. (47), the corresponding relative nodal displacements can next be obtained. The

second type of excitation simulates responses due to external forces such as point impacting or

loads at multiple locations. In this case, the nodal displacements can be directly solved from the

equilibrium equations.

After the nodal displacements have been obtained, the displacements at any desired location can

be calculated and the corresponding support reactions and the member forces can also be computed.

Finally, the time histories associated with these responses can be obtained using the inverse Fast

Fourier transform technique.

It is worth noting that the continuous formulation in the frequency domain allows one to directly

determine the transfer function, rather than convert from the response histories, thus it provides a

more accurate and efficient way to assess the relative importance of different frequency components

of motion.

4. Examples of numerical modeling

Numerical models, in which a realistic 3-span cable-stayed bridge as shown in Fig. 2 was modeled

as 2-D and 3-D symmetric frames using the proposed continuous formulation, are used to illustrate

the potential of the formulae in accessing the dynamic characteristics of the cable-stayed bridge.

Both 2-D and 3-D models included two types of simulations, the complete ones contain frame

structure and cables while the simplified ones only model frame structure. For the complete models,

SFF SFR

SRF SRR SP

*
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U
··
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Fig. 2 Configuration of modeled bridge
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the bridge members were separated into segments according to the layout of stay cables and thus

the number of elements used in the simulation is relatively high. For the simplified models, the

bridge members were divided into as few segments as possible so that the efficiency of the

formulation can be manifested. The bridge was selected because experimental results associated

with certain field tests are available so that comparison between numerical and experimental results

can also be made.

For the simplified models, the entire three spans were divided into 12 elements in the 2-D case, 3

for each side and 6 for central. The gradually varying depth of the box girder near piers was

roughly simulated with two segments. In the 3-D case, the deck was longitudinally modeled as three

parallel lines of girders, each line consists of 12 elements as in the 2-D case. Between the central

and the two edge girders there are 26 lateral elements linking nodes at the same longitudinal

location. The tapered pylons and uniform piers were all simulated with single segment in which

properties at mid-height of the pylon were used.

For the 2-D complete models, the entire three spans contain 40 elements, 10 for each side and 20

for central, and the pylon also consists of 10 elements due to the cable layout. The number of cable

elements in the complete models is 72 (2 pairs of 36). For both 2-D and 3-D models, the general

properties used are

And the displacement boundary conditions were; two ends of the deck are pinned and the bottoms

of two piers are fixed.

The main purpose of this study was to conduct parametric studies with generic bridges rather than

attempting to duplicate the actual dynamic response of any particular case. The details about the

general properties used for the various models are skipped in this paper and yet they can relatively

represent the simulated bridge, and data of the 2-D models and their evolved 3-D ones are

consistent at least for the in-plane motion along the longitudinal direction.

4.1 Example-1 : impact responses of 2-D model

To illustrate the ability of the formulation to reproduce vertical vibration characteristics in a bridge

deck, the case of a side span subjected to an impulse due to sudden stop of a truck near the mid-

span of the first span was considered. Fig. 3 shows the transfer functions of the displacements

recorded at the mid-span locations of the first (south) and central spans obtained with the direct

continuous formulation. The consideration of cables in the model causes the natural modes slightly

shift to higher frequencies yet the difference is limited. Therefore, the cables can be neglected when

dealing with dynamic characteristic associated with bridge frames. Fig. 3(c) shows, in logarithm

scale, the typical transfer function of a cable and that of the deck where the cable is connected to. It

is clear that the data recorded at the cable contains the characteristics associated with the deck yet

the transfer function is predominantly controlled by cable vibration.

Fig. 4 shows the modal deflections due to this particular loading case for the first two flexural

modes, which are associated with the first four peaks indicated in Fig. 3(a). As can be expected,

E 3.21 10
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N m
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Fig. 3 Transfer functions of 2-D complete models under an impact load: (a) displacement at mid-span of the
1st span (south), (b) displacement at mid-span of the central span and (c) displacement at middle of the
#3 cable

Fig. 4 Response shapes of deck associated with the case of Fig. 3(a)
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including cables in the model slightly affects the response amplitudes and natural frequencies but

not the mode shapes. As a result, modeling of cables can indeed be neglected when only the

response of the bridge frame is concerned. This would result in a significant improvement in the

computational efficiency since models without cables can be simulated with least number of

elements depending on the how we treat the tapered portion of the bridge members.

Fig. 5 shows the result obtained with the simplified model for the same impact problem in which

Figs. 5(a) to 5(c) correspond to responses at mid-span of the first span, 1/4th span and mid-span of

the central span, respectively. Except that displacement responses are replaced by the acceleration

responses in order to clearly show frequency peaks, Figs. 5(a) and 5(c) show similar transfer

functions as those obtained by more elements in Fig. 3. It should be noted that a span can be

simulated with just one element provided the assumption of uniform cross section for the entire

span is used. Fig. 6 shows the corresponding modal deflection shapes due to the particular loading

for the first four modes observed from Fig. 5. These modal shapes can be easily related to either

symmetric or asymmetric mode of the in-plane flexural motion of the frame. 

Fig. 5 Transfer functions of 2-D simplified model under an impact load: (a) acceleration at mid-span of the 1st

span (south), (b) acceleration at 1/4th-span of the central span and (c) acceleration at mid-span of the
central span
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4.2 Example-2 : seismic responses of 3-D model

To demonstrate the usefulness of the 3-D model, the case of a simplified 3-D model with specified

vertical ground motion applied at supports is used as an example. Fig. 7 shows the transfer functions

associated with mid-span locations due to uniform vertical support motion in which plots (a) and (b)

correspond to the center line and the edge line of bridge deck, respectively. Comparing curves in

Fig. 7(a) and Fig. 5, it can be seen that the in-plane motions depicted by the 2-D and 3-D models

are generally consistent while the additional mass and stiffness due to adding lateral elements in the

3-D model leads to somehow more complicated curves. From Fig. 7(b), it is obvious that the

additional three degrees of freedom of the 3-D model recover more vibration modes than the

fundamental 2-D ones.

To manifest further the practicality of the continuous formulation in studying the linear responses

of cable-stayed bridges, the 3-D model was also studied by subjecting it to realistic ground motions,

such as a significant vertical component of the Northridge Earthquake as shown in Fig. 8(a) where

the peak acceleration is as high as 0.54 g. Fig. 8(b) shows the time history of the displacement

Fig. 6 Response shapes of 2-D simplified model associated with the case of Fig. 5(a)
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Fig. 7 Transfer functions of 3-D simplified model under vertical ground motion: (a) response at mid-span of
the 1st and central spans (along center of deck) and (b) response at mid-span of the 1st and central
spans (along edge of deck)

Fig. 8 Response histories of 3-D model due to a vertical earthquake: (a) ground motion with peak acceleration
0.54 g, (b) displacement response at the edge of mid-span of the 1st span and (c) typical force history in
cables



290 Chih-Peng Yu and Chia-Chi Cheng

recorded at the mid-span of the first (south) span along the edge line of the deck, which is obtained

with the transfer function described in Fig. 7(b) multiplied by the frequency components of the

ground motion in Fig. 8(a) together with the inverse Fast Fourier Transform to get results in the

time domain. 

Besides, Fig. 8(c) shows, as another example of related analysis, the typical time response of

cable forces due to the described ground motion. In this particular example, one can clearly see the

variation of the induced seismic force in the cable is relatively significant thus it can be concluded

the assumption of constant axial forces in cables might not be reasonable when bridges are under

significant ground motions.

5. Examples of field applications

5.1 Case-1 : verification of cable parameters

The proposed methodology of determining cable force using multiple mode frequencies was put

to test with field data obtained from velocimeters. The stay cables are composed of casing pipes

with a total of thirty one 7-wired strands of 15.2 mm diameter. The vibration was recorded under

normal traffic excitation. Results associated with various cables of identical design length match

well and it was concluded the stressing forces can be practically recovered by the proposed formula.

For demonstration purpose, the results shown in this example correspond to the case with a design

length of 55 m. The assumed mass per unit length (ρA) and the flexural rigidity (EI) of the cable

can be reasonably estimated from strand layout and properties of the individual strand as 33.75 kg/m

and 1.02 MN-m2. The dimensionless factor δ , as defined by Eq. (29), associated with this particular

set of cables is about 0.01 under their design loads.

Table 1 summarizes the corresponding results for the four sets of cables. Although the equivalent

frequencies defined in the previously section 3.1.2, fC , fCF and fB, can be calculated using any set of

two arbitrary mode frequencies, the values listed in the table were consistently calculated based on

the first and fourth modes for each cable in order to provide an insight into the average efficiency

of the proposed formulas. It can be seen that results obtained by Eqs. (44) and (46) where EI values

are not required agree well with those obtained by Eqs. (39) and (29) which requires precise value

of EI. Consequently, it is experimentally evident that the proposed approach of using formulas with

two arbitrary mode frequencies can be equally as good as its original counterpart.

Table 1 Comparison of cable forces using different formulas

Set # f1 (Hz) f4 (Hz) N0 (MN) N1 w/EI (MN) N2 w/δeq (MN) N2/N1 (%)

1 2.64 10.53 2.8464 2.7225 2.7303 100.3%

2 2.66 10.32 2.8897 2.7649 2.6995 097.6%

3 2.62 10.29 2.8035 2.6805 2.6615 099.3%

4 2.60 09.88 2.7608 2.6388 2.6284 099.6%

Applicable formulas : Eq. (23) Eqs. (39) and (29) Eqs. (44) and (46)
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5.2 Case-2 : verification of vibration modes

As described in the section of numerical examples, the mode frequencies of the simulated 3-span

cable-stayed bridge can be reproduced by the mentioned 2-D and 3-D model via analyzing the

transfer functions and response shapes associated with the appropriate excitations. This approach is

as effective as what is normally done in a traditional FEM analysis in which mode parameters are

solved with the eigenvalue analysis. Since conditions of long term traffic normally satisfy the

assumption of equal distribution of loading in both the frequency and space domains, field data

obtained from ambient vibrations due to long term traffic excitations, such as those in an FDD

(frequency domain decomposition) analysis, are expected to match the theoretical mode shapes of

an appropriate model. There are, however, circumstances that the real excitations might be different

from the ideal one, as a result, certain test results may look questionable when comparing with the

analytical solutions of an eigenvalue problem. 

Fig. 9 Comparison between FDD mode shape and response shapes by numerical modeling: (a) FDD mode
shape, (b) analytical mode shape (symmetrically flexural model) and (c) response shape due to a set of
unbalanced modal load
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For instance, Fig. 9(a) shows an experimentally extracted mode shape (FDD result) obtained from

the vertical displacement histories along one edge of bridge deck. The response was recorded using

a Microwave Interferometer under a long term traffic loading. For this particular mode, the vibration

is predominantly flexural vibration and thus the profiles of theoretical mode shapes along the center

line and edge line of the bridge deck are almost identical as shown in Fig. 9(b). It is obvious that

the difference between the response shapes of the FDD and the numerical results are apparent,

which raised a question to the analyst whether the test data is valid or not. After examining the in-

situ traffic condition, it was pointed out that the traffic flows were quite unbalanced in the two

opposite directions during the testing period, thus the assumption of uniform excitation due to traffic

loading appears to be deviated from the real condition. It is interesting to note that, by applying an

unbalanced type of modal loads to the 3-D model, the resulting response shapes may become

similar to the test one. For example, Fig. 9(c) shows the shapes corresponding to assigning different

magnitudes of a specific load pattern at the two sides along the bridge deck, a ratio of two to one

was arbitrarily chosen in this particular case. It should also be noted that the reasonable shape

happens only at/near the correct mode frequency.

By comparing the solid line in Fig. 9(c) with the test curve in Fig. 9(a), one can clearly see the

improved similarity between the two, especially the trends near the two pier locations, namely 80 m

and 220 m. Consequently, the test data were then verified as valid with the help of the above

comparing procedure. Finally, as a brief summary regarding the above field application, the

convenience of using the continuous formulation to generate reliable responses in the frequency

domain makes it very easy and effectively to verify related test results by a special-purposed

computer program implemented with such formulation.

5.3 Case-3 : scanning a group of stay cables

In addition to monitoring cable vibrations with traditional instrumentations like velocimeters and

accelerometers, Microwave Interferometer can also be used to simultaneously scan multiple cables of

a cable group. Fig. 10(a) shows as an example a plot containing certain frequency spectra associated

with ambient vibration for the nine cables of the same cable group. In practice, each spectrum was

arbitrarily normalized so that all curves have comparable peak amplitudes in the same plot. By

simulating the cable responses using the 2-D model with a specific excitation pattern, the normalized

spectra of the test data can be effectively and reasonably reproduced by the computer program as

shown in Fig. 10(b) where each curve was normalized to the same peak amplitude. In addition to

the nine normalized peaks, it can be observed from both plots that there are three peaks occurred

within lower frequency range, the relatively minor one below 1 Hz and two other peaks near 2 Hz.

These peaks are clearly associated with the three modes of the predominantly flexural vibrations of

the bridge deck. As a result, such a cable spectrum also carries dynamic characteristics of the bridge

deck and thus serves as supplementary information in an assessment task.

Owing to the high computational efficiency of the continuous formulation in obtaining the

frequency spectra, the structural properties used for the simulated model can be quickly revised and

the stress level of cables can be reasonably determined almost instantly. Although each cable of a

group can be easily analyzed individually, simultaneous analysis using a bridge model by adjusting

model properties provides one with a better picture of the overall behavior of the cable group and

that of the bridge as well.
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6. Conclusions

This paper presents the use of continuous formulation of 1-D member to verify experimental

results of a cable-stayed bridge, in which test data were obtained by in situ instruments including

those recorded by a newly developed non-contacting technique, the microwave interferometer. The

solution scheme associated with the dynamic analysis of the target bridge includes the

implementation of the continuous formulation into computer programs which can carry out 2-D or

3-D simulation for frames with cables, and the use of an innovative back calculation technique to

access the axial force of tensioned cables.

The dynamic analysis in the frequency domain using the continuous formulation, on one hand,

has the advantage of providing direct computation of the transfer functions, rather than converting

from response histories. On the other hand, the use of dynamic stiffness matrices of members with

distributed properties not only provides high accuracy for high frequency excitations but also

directly calculates rigorous response shapes regardless the degree of discretization in the FE model.

Regarding the determination of cable forces, the proposed formula allows one to carry out rigorous

Fig. 10 Comparison between normalized cable spectra: (a) experimental data and (b) numerical simulation
using 2-D model
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analysis using frequencies of two arbitrary modes of vibration without the need of flexural stiffness.

The application of such alternative formula to the field test data confirmed that the proposed

approach is capable of predicting cable forces of a cable-stay bridge in good agreements with those

analytical values obtained by the original formula. As a result, it is concluded that the proposed

formula can be practically useful in cross examining results obtained from other main effective

methods. 

It is also worth noting that, the use of a versatile monitoring device such as the Microwave

Interferometer together with the advantage of carrying out numerical modeling using an

effective computer program in the frequency domain allows the authors to speed up the related

assessment task in which the delay due to verification of modal data can be greatly reduced. 
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