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Abstract. This paper presents results for impedance (and compliance) functions and input motions of
foundations in a layered half-space computed on the basis of a procedure that combines a consistent
transmitting boundary with continued-fraction absorbing boundary conditions which are accurate and
effective in modeling wave propagation in various unbounded domains. The effects of obliquely incident
seismic waves in a layered half-space are taken into account in the formulation of the transmitting
boundary. Using the numerical model, impedance (and compliance) functions and input motions of rigid
circular foundations on the surface of or embedded in a homogeneous half-space are computed and
compared with available published results for verification of the procedure. Extrapolation methods are
proposed to improve the performance in the very-low-frequency range and for the static condition. It is
concluded from the applications that accurate analysis of foundation dynamics and soil-structure
interaction in a layered half-space can be carried out using the enhanced consistent transmitting boundary
and the proposed extrapolations.

Keywords: foundation dynamics; soil-structure interaction; consistent transmitting boundary; continued-
fraction absorbing boundary condition; layered half-space; wave propagation

1. Introduction

The effects of soil-structure interaction can strongly influence the dynamic response of structures,

especially massive, stiff ones, founded on relatively flexible ground. Accordingly, dynamic soil-

structure interaction has been studied extensively. Formulations of the interaction for flexible

structures supported on rigid or flexible foundations have been presented. One of the steps in the

solution of dynamic soil-structure interaction problems is the evaluation of impedance (and

compliance) functions and input motions (and driving forces) for surface or embedded foundations.

For this purpose, the impedance (and compliance) functions for surface foundations of various

shapes in various conditions have been calculated (Bougacha et al. 1993a, Bougacha et al. 1993b,

Gazetas and Roësset 1976, Gazetas and Roësset 1979, Kausel et al. 1975, Lin et al. 1987, Luco and

Westmann 1971, Luco and Westmann 1972, Wong 1975, Wong and Luco 1978a). Also, those for

embedded foundations have been evaluated using various techniques (Apsel and Luco 1987, Day
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1977, Kausel and Roësset 1975). The input motions (and driving forces) for the surface and

embedded foundations have been examined (Day 1977, Iguchi 1984, Luco and Mita 1987, Luco

and Wong 1987, Pais and Kausel 1989, Wong and Luco 1978a, Wong and Luco 1978b). Various

analysis techniques for foundation dynamics have been reviewed by Roësset (1980) and Luco

(1982).

In this study, impedance functions and input motions of rigid cylindrical (or circular) foundations

in a layered half-space are examined. Shown in Fig. 1(a) is a typical soil-structure system under

consideration. Supported on a rigid or flexible foundation, the structure is placed on or embedded in

layered soil that overlies a half-space. The layered soil on the half-space is divided into two regions.

One is a near-field region which can be irregular in geometry and inhomogeneous in elastic

properties. The other is the far-field region which is assumed to have a regular layered structure and

homogeneous elastic properties in the horizontal direction. The irregular and inhomogeneous near-

field region is usually modeled by conventional finite elements. On the other hand, the regular and

homogeneous layered far-field region is represented by mathematical or numerical models that are

capable of elastic-wave radiation into infinity. One of the most convenient and appropriate models

for the far-field region is a consistent transmitting boundary (Bougacha et al. 1993a, Bougacha et

al. 1993b, Kausel 1974, Kausel et al. 1975, Kausel and Roësset 1975, Lin et al. 1987, Tassoulas

1981, 1984, Waas 1972). The consistent transmitting boundary is built on a semi-analytic finite-

element method. It relies on a discretization of the medium in the direction of layering while

analytical solutions are used in the radial direction to infinity. Therefore, it is an appropriate

numerical model for the layered system and can be easily applied to complex problems where the

near-field region is represented using finite elements method. In addition, the fact that the consistent

transmitting boundary is based on a synthesis of eigenmodes of the layered soil entails another

computational advantage. Because of the modal synthesis, the evaluation of the necessary integral

transforms between the spatial and wavenumber domains can be carried out exactly without

numerical quadrature, thereby avoiding errors associated with either truncation or large and rapid

oscillations of the kernels (Kausel 1996). On account of these strengths, the consistent transmitting

boundary has been applied to problems of foundation dynamics successfully (Bougacha et al.

1993a, Bougacha et al. 1993b, Kausel 1974, Kausel et al. 1975, Kausel and Roësset 1975, Lin et al.

1987, Tassoulas 1981, 1984, Waas 1972).

The consistent transmitting boundary is versatile in problems of dynamics of a layered stratum of

finite depth but requires special care when applied to problems in a layered half-space. In the latter

applications, the energy of waves radiated by the structure is often assumed to be confined near the

surface of the layered half-space and the half-space is replaced with a layered stratum on rigid

bedrock at sufficient depth. However, the fixed boundary condition can lead to unsatisfactory

results, especially at low frequencies, if the depth of the stratum is not sufficient. To overcome this

difficulty, second-order paraxial approximations of exact half-space conditions and “continued-

fraction absorbing boundary conditions” (CFABCs) have been implemented in order to enhance the

performance of consistent transmitting boundaries (Andrade 1999, Lee et al. 2011a, 2011b, Lee and

Tassoulas 2011). In particular, the CFABCs are arbitrarily high-order local absorbing boundary

conditions, effective in modeling wave propagation in various unbounded domains. They are

compatible with domain-based numerical tools such as finite elements and can be implemented to

any desired degree of accuracy. A consistent transmitting boundary combined with the CFABCs was

formulated in plane strain and applied to dynamics of rigid foundations on a layered half-space to

verify its effectiveness by Lee and Tassoulas (2011).



Dynamin analysis of foundations in a layered half-spaceusing a consistent transmitting boundary 205

In this study, impedance functions and input motions of rigid cylindrical (or circular) foundations

in a layered half-space are obtained using a consistent transmitting boundary combined with

CFABCs. The outline of the paper is as follows. In Section 2, a consistent transmitting boundary

with CFABCs will be formulated in a cylindrical coordinate system. In Section 3, the effects of

obliquely incident seismic waves will be considered. The consistent transmitting boundary will be

applied to dynamics of embedded circular foundations in a layered half-space to demonstrate and

verify its accuracy in Section 4. Also, in Section 4, extrapolation methods will be proposed to

improve behaviors of the numerical model in the very-low-frequency range and for the static

condition. The paper will be summarized in Section 5.

2. Consistent transmitting boundary with continued-fraction absorbing boundary

conditions

As mentioned in Section 1, the near-field region of a layered half-space is usually modeled by

conventional finite elements and the far-field region by a consistent transmitting boundary. A

formulation for the conventional finite elements for axisymmetric structures with asymmetric loads

can be found in books on the finite element method. In this section, a consistent transmitting

boundary combined with the CFABCs will be formulated in a cylindrical coordinate system to

represent the far-field region of a layered half-space. Since the CFABCs are compatible with

conventional finite elements, their implementation is similar. Hence, the formulation will be

comparable to that for the consistent transmitting boundary without the CFABCs. The differences

will be limited to the element matrices for the CFABCs.

An elastic wave equation in a cylindrical coordinate system can be written as follows (Kausel 1974)

(1a)λ 2µ+( )∂ε
∂r
-----

2µ

r
------

∂ω z

∂θ
--------– 2µ

∂ωθ

∂z
--------- ρu··r–+ 0=

Fig. 1 Soil-structure system in a layered half-space: (a) schematic view and (b) numerical model
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(1b)

(1c)

where

(2a)

(2b)

(2c)

(2d)

In Eqs. (1) and (2), ur, uz and uθ denote the radial, axial and tangential displacements, respectively,

λ and µ Lamé constants, and ρ the density.

Assuming time-harmonic motion of frequency ω, solutions of Eq. (1) are obtained by the method

of separation of variables (Kausel 1974, Tassoulas 1981). The solutions correspond to motions in

plane strain and antiplane shear as follows

(3a)

(3b)

(3c)

and

(4a)

(4b)

(4c)

In Eqs. (3) and (4), k is a wavenumber, Ux(z) and Uz(z) are wave modes in plane strain, and Uy(z)

is a wave mode in antiplane shear, m is the Fourier number, Cm(kr) is any solution of the Bessel

equation of order m and the prime denotes differentiation with respect to the argument kr. The upper

terms in the square brackets are for the symmetric modes and the lower terms for the anti-

λ 2µ+( )∂ε
∂z
-----

2µ

r
------

∂ rωθ( )
∂r

----------------–
2µ

r
------

∂ω r

∂z
-------- ρu··z–+ 0=

λ 2µ+( )1
r
---
∂ε
∂θ
------ 2µ

∂ω r

∂z
--------– 2µ

∂ω z

∂r
-------- ρu··θ–+ 0=

ε
1

r
---
∂ rur( )
∂r

---------------
1

r
---
∂uθ

∂θ
--------

∂uz

∂z
-------+ +=

ωr
1

2
---

1

r
---
∂uz

∂θ
-------

∂uθ

∂z
--------–⎝ ⎠

⎛ ⎞=

ωz
1

2
---

∂ ruθ( )
∂r

---------------
∂ur

∂θ
-------–⎝ ⎠

⎛ ⎞=

ωθ

1

2
---

∂ur

∂z
-------

∂uz

∂r
-------–⎝ ⎠

⎛ ⎞=

ur r θ z, ,( ) kUx z( )C′m kr( )
cos mθ( )

sin mθ( )
=

uz r θ z, ,( ) ikUz z( )Cm kr( )
cos mθ( )

sin mθ( )
–=

uθ r θ z, ,( ) m

r
----Ux z( )Cm kr( )

sin mθ( )–

cos mθ( )
=

ur r θ z, ,( ) m

r
----Uy z( )Cm kr( )

cos mθ( )

sin mθ( )
=

uz r θ z, ,( ) 0=

uθ r θ z, ,( ) kUy z( )C ′m kr( )
sin mθ( )–

cos mθ( )
=
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symmetric modes. It can be shown by substitution that the expressions in Eq. (3) are solutions to

Eq. (1) provided that Ux(z) and Uz(z) satisfy the governing equations for the wave modes in plane

strain (Tassoulas 1981). Analogously, the expressions in Eq. (4) are solutions to Eq. (1), if Uy(z) is a

wave mode in antiplane shear.

The wavenumber and wave modes in Eqs. (3) and (4) are computed from eigenvalue problems in

plane strain and antiplane shear (Kausel 1974, Tassoulas 1981). Using the finite-element approach,

the following algebraic eigenvalue problems are obtained

 in plane strain (5a)

 in antiplane shear (5b)

where ∆ is the corresponding eigenvector. For ordinary layers of sufficiently small thickness with

linear displacement interpolation, the matrices A, B, G and M in Eq. (5) are given by Waas (1972),

Kausel (1974) and Tassoulas (1981). For the CFABCs, element matrices in plane strain in Eq. (5a)

can be written as (Lee and Tassoulas 2011)

(6a)

(6b)

(6c)

(6d)

where the superscript and subscript j correspond to the j-th CFABC and hj is depth of the j-th

CFABC. Element matrices in antiplane shear in Eq. (5b) are given as follows

k
2
A ikB G ω

2
M–+ +[ ]∆ 0=

k
2
A G ω

2
M–+[ ]∆ 0=

A
j hj

4
----

λj 2µj+ 0 λj 2µj+ 0

0 µj 0 µj

λj 2µj+ 0 λj 2µj+ 0

0 µj 0 µj

=

B
j 1

2
---

0 λj– µj+ 0 λj µj+

λj µj– 0 λj µj+ 0

0 λj– µj– 0 λj µj–

λj– µj– 0 λj– µj+ 0

=

G
j 1

hj

----

µj 0 µj– 0

0 λj 2µj+ 0 λj 2µj+( )–

µj– 0 µj 0

0 λj 2µj+( )– 0 λj 2µj+

=

M
j ρjhj

4
--------

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

=
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(7a)

(7b)

(7c)

Since the mid-point integration rule is used for the evaluation of the matrices in Eqs. (6) and (7),

the matrices A j and M j are different from the ones for the ordinary layers. It has been shown (Lee

and Tassoulas 2011) that, if the CFABCs are used, the Rayleigh wave mode of a half-space can be

calculated almost exactly with only a shallow region of ordinary layers. Also, various characteristics

of the calculated eigenvalues and eigenvectors have been examined by Lee and Tassoulas (2011).

Using the eigenvalues k and eigenvectors ∆ obtained from Eq. (5), the consistent transmitting

boundary is derived (Kausel 1974, Tassoulas 1981). The transmitting boundary is obtained by

means of a synthesis of eigenmodes. For the far-field region of r ≥ r0, the dynamic stiffness R of the

transmitting boundary for Fourier number m can be obtained as follows

(8)

where K is the diagonal matrix of the eigenvalues. The modal matrices Ψ, Φ and Y are defined in

Kausel (1974) and Tassoulas (1981). For the ordinary layers, the matrices A, D, E, N, L and Q in

Eq. (8) are also given by Kausel (1974) and Tassoulas (1981). For the j-th CFABC, the element

matrices are as follows

(9a)

(9b)

A
j hj

4
----

µj µj

µj µj

=

G
j 1

hj

----
µj µj–

µj– µj

=

M
j ρjhj

4
-------- 1 1

1 1
=

R r0 AΨK
2

D E– mN+( )ΦK
m m 1+( )

2
----------------------L mQ+ Ψ–+

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y
1–

=

A
j hj

4
----

λj 2µj+ 0 0 λj 2µj+ 0 0

0 µj 0 0 µj 0

0 0 µj 0 0 µj

λj 2µj+ 0 0 λj 2µj+ 0 0

0 µj 0 0 µj 0

0 0 µj 0 0 µj

=

D
j 1

2
---

0 λj 0 0 λj– 0

µj– 0 0 µj 0 0

0 0 0 0 0 0

0 λj 0 0 λj– 0

µj– 0 0 µj 0 0

0 0 0 0 0 0

=
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(9c)

(9d)

(9e)

(9f)

Since the mid-point integration rule is also used for the evaluation of the matrices in Eq. (9), the

matrices A j, E j, N j and L j are different from the ones for the ordinary layers. The far-field region of a

layered half-space in Fig. 1 can be represented by the formulated consistent transmitting boundary

combined with the CFABCs. The only undetermined parameter for the j-th CFABC is its thickness.

It has been shown (Lee and Tassoulas 2011) that the j-th CFABC with thickness of hj is a perfect

absorber for waves with a vertical wavenumber l = lj = −2i/hj (Guddati 2006). However, it is not a

perfect absorber for waves with a given horizontal or apparent wavenumber k. This is because there

are two kinds of waves for a wavenumber k: P and S waves. The P and S waves with an identical

wavenumber k have different vertical wavenumbers l = lp =  and l = ls = ,

respectively, where Cp and Cs are the wave speeds for the P and S waves, respectively. Thus, the

single CFABC layer with thickness hj is not a perfect absorber for waves with a horizontal

wavenumber k. In order to be a perfect absorber for waves with a wavenumber k in a layered half-

E
j 1

2
---
µjhj

r0
---------

1 0 0 1 0 0

0 0 0 0 0 0

0 0 1 0 0 1

1 0 0 1 0 0

0 0 0 0 0 0

0 0 1 0 0 1

=

N
j 1

4
---
µjhj

r0
---------

0 0 2 0 0 2

0 1 0 0 1 0

2 0 0 2 0 0

0 0 2 0 0 2

0 1 0 0 1 0

2 0 0 2 0 0

=

L
j µjhj

r0
2

---------

1 0 1– 1 0 1–

0 0 0 0 0 0

1– 0 1 1– 0 1

1 0 1– 1 0 1–

0 0 0 0 0 0

1– 0 1 1– 0 1

=

Q
j 1

2
---
µj

r0
----

0 0 0 0 0 0

1 0 1– 1 0 1–

0 0 0 0 0 0

0 0 0 0 0 0

1 0 1– 1 0 1–

0 0 0 0 0 0

=

ω
2

/Cp

2

k
2

– ω
2

/Cs

2

k
2

–
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space, it was proposed that layers of the CFABC be used in the form of 2-layers (Lee and Tassoulas

2011). One layer is designed to absorb the P wave and the other the S wave. Each of the 2 layers has

thicknesses of hp = −2i/lp and hs = −2i/ls, respectively. The perfect absorption of the 2-layer can be

proved easily. Also, a method for determination of thicknesses of the 2-layer has been proposed for

evanescent waves as well as propagating waves (Lee and Tassoulas 2011). The terms ‘propagating’

and ‘evanescent’ in this context refer to characteristics of waves in the vertical direction of layering.

The propagating waves in the vertical direction have a real vertical wavenumber l and the evanescent

ones an imaginary wavenumber l. Therefore, CFABC layers must have imaginary and real

thicknesses for the propagating and evanescent waves, respectively. For vertically-propagating P and

S waves with a horizontal wavenumber k, the thicknesses of the 2-layer are

(10a)

(10b)

(10c)

where θP and θS are incidence angles with respect to the z axis. For an evanescent Rayleigh surface

wave with velocity CR, the thicknesses of the CFABC 2-layer can be written as

(11a)

(11b)

(11c)

where αP = CP/CR > 1 and αS = CS/CR > 1. Using the thicknesses of Eqs. (10) and (11), the element

matrices in Eqs. (6), (7) and (9) are calculated.

3. Effects of obliquely incident seismic waves

A layered half-space is modeled by conventional finite elements in the near-field region and the

consistent transmitting boundary derived in Section 2 in the far-field region. In this section, the

effects of obliquely incident seismic waves in a layered half-space will be taken into account in the

formulation of the transmitting boundary.

Consider a free field in the layered half-space (Fig. 2(a)) subjected to obliquely incident seismic

waves, with an apparent wave velocity of Capp and wavenumber of kapp = ω/Capp on the free-field

surface. For vertically incident wave, Capp = ∞ and kapp = 0. Assumed are the time- and x-harmonic

waves with  term. The incident waves are applied at the base at z = zN+1 and result in free-

field motions in the half-space. Applying base motions at z = zN+1 and solving the wave propagation

hP

2iCP

ωcosθP

------------------–=

hS

2iCS

ωcosθS

-----------------–=

sinθP

sinθS

------------
CP

CS

------=

hP

2CP

ω αP

2
1–

----------------------=

hS

2CS

ω αS

2
1–

----------------------=

αP

αS

------
CP

CS

------=

ei ω t k
app

x–( )
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problems of Eqs. (12) and (13) with free surface specified at z = z1, the free-field motions 

and  are obtained

  for P and SV waves (12a)

(12b)

 for an SH wave (13a)

(13b)

where the matrices A, B, G and M are the same as the ones used in Eq. (5). The free-field motions

of Eqs. (12) and (13) can be expressed in the cylindrical coordinate systems as follows (Kausel

1974)

UP SV–

*

USH

*

kapp

2
A ikappB G ω

2
M–+ +[ ]UP SV–

*
0=

UP SV–

*
Ux

*
z1( ) Uz

*
z1( ) … Ux

*
zN 1+( ) Uz

*
zN 1+( )〈 〉

T
=

kapp

2
A G ω

2
M–+[ ]USH

*
0=

USH

*
Uy

*
z1( ) … Uy

*
zN 1+( )〈 〉

T
=

Fig. 2 Effects of obliquely incident seismic waves: (a) free field, (b) removal of the cylindrical region of
r ≤ r0, (c) cylindrical region of r ≥ r0 with free boundary condition and (d) soil-structure interaction system
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for symmetric motion

(14a)

(14b)

(14c)

for anti-symmetric motion

(15a)

(15b)

(15c)

where δm0 is the Kronecker delta and Jm(−kappr) the Bessel function of order m. From Eqs. (14) and

(15), the Fourier amplitude of nodal displacement vector U* at the cylindrical boundary of r = r0 in

the free field can be obtained

for symmetric motion

  for  1 ≤ j ≤ N (16a)

for anti-symmetric motion

  for  1 ≤ j ≤ N (16b)

ur

*
r θ z, ,( ) u r

*
r z,( )cos mθ

2

1 δm0+
----------------Ux

*
z( )i

m 1+

kapp

---------
dJm kappr–( )

dr
----------------------------cosmθ= =

uz

*
r θ z, ,( ) u z

*
r z,( )cos mθ

2

1 δm0+
----------------Uz

*
z( )imJm kappr–( )cos mθ= =

uθ

* r θ z, ,( ) uθ

*
r z,( )sin mθ–

2

1 δm0+
----------------Ux

*
z( )mi

m 1+

kappr
--------------Jm kappr–( )sin mθ–= =

ur

*
r θ z, ,( ) u r

*
r z,( )sin mθ

2

1 δm0+
----------------Uy

*
z( )mi

m 1+

kappr
--------------Jm kappr–( )sin mθ= =

uz

*
r θ z, ,( ) uz

*
r z,( )sin mθ 0= =

uθ
*

r θ z, ,( ) uθ

*
r z,( )cos mθ

2

1 δm0+
----------------Uy

*
z( )i

m 1+

kapp

---------
dJm kappr–( )

dr
----------------------------cosmθ= =

U3j 2–

*
u r
* r0 zj,( ) 2

1 δm0+
----------------Ux

*
zj( )i

m 1+

kapp

---------
dJm kappr–( )

dr
----------------------------

r r
0

=

= =

U3j 1–

*
u z
*

r0 zj,( ) 2

1 δm0+
----------------Uz

*
zj( )imJm kappr0–( )= =

U3j

*
uθ

*

r0 zj,( ) 2

1 δm0+
----------------Ux

*
zj( )mi

m 1+

kappr0
--------------Jm kappr0–( )= =

⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

U3j 2–

*
u r
* r0 zj,( ) 2

1 δm0+
----------------Uy

*
zj( )mi

m 1+

kappr0
--------------Jm kappr0–( )= =

U3j 1–

*
u z
*

r0 zj,( ) 0= =

U3j

*
uθ

*

r0 zj,( ) 2

1 δm0+
----------------Uy

*
zj( )i

m 1+

kapp

---------
dJm kappr–( )

dr
----------------------------

r r
0

=

= =
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧
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If the cylindrical region of r ≤ r0 is removed from the free-field, consistent nodal forces must be

applied at the cylindrical boundary of r = r0 to preserve equilibrium (Fig. 2(b)). The vector of

consistent nodal forces, P*, can be calculated as follows

(17)

where N(z) is the shape-function matrix on the boundary and (r, z), (r, z) and (r, z) are

Fourier amplitudes of stress components of the free-field calculated from the free-field motions of

Eqs. (14) and (15). The matrices A, D, E, N, L and Q in Eq. (17) are the same as the ones in Eq.

(8) and the matrices Ψ* and Φ* are given as follows

for symmetric motion

  for  1 ≤ j ≤ N (18a)

  for  1 ≤ j ≤ N (18b)

for anti-symmetric motion

  for  1 ≤ j ≤ N (19a)

  for  1 ≤ j ≤ N (19b)

P
*

r0 N
T

z( )

σ r
* r0 z,( )

τ rz
* r0 z,( )

τ rθ
* r0 z,( )⎩ ⎭

⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

dz=r0 kappAΨ
*

D E– mN+[ ]Φ* 1

kapp

--------
m m 1+( )

2
----------------------L mQ+ Ψ

*
–+

⎩ ⎭
⎨ ⎬
⎧ ⎫

∫–=

σ r
* τrz

*
τ rθ
*

Ψ 3j 2–

* 2

1 δm0+
----------------i

m 1+
Ux

*
zj( )Jm kappr0–( )=

Ψ 3j 1–

* 2

1 δm0+
----------------i

m
Uz

*
zj( )Jm 1– kappr0–( )=

Ψ 3j

*
0=

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

Φ3j 2–

* 2

1 δm0+
----------------i

m 1+
Ux

*
zj( )Jm 1– kappr0–( )=

Φ3j 1–

* 2

1 δm0+
----------------i

m
Uz

*
zj( )Jm kappr0–( )=

Φ3j

*
0=

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

Ψ 3j 2–

*
0=

Ψ 3j 1–

*
0=

Ψ 3j

* 2

1 δm0+
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The motion U0 of the cylindrical far-field region of r ≥ r0 with free boundary at r = r0 (Fig. 2(c))

can be obtained by application of forces opposite to P* on the boundary as follows

(20)

If the structure and near-field region are included, the motion U of the boundary at r = r0 is no

longer the motion U0 (Fig. 2(d)). There are also interaction forces P' and P" applied to the far- and

near-field regions, respectively. Since the motion U0 is obtained from the free boundary condition

on the boundary of r = r0, the vector P' is given as follows

(21)

where Eq. (20) has been used. The equation of motion of the structure and near-field region can be

written as

(22)

where MNF, CNF and KNF are mass, damping and stiffness matrices, respectively. In Eq. (22), the

number of entries in P" is increased with as many zeros as necessary to match the dimensions of

MNF, CNF and KNF. Since the interaction forces are opposite to each other, i.e., P' + P" = 0, Eqs. (21)

and (22) can be combined by increasing the numbers of rows and columns in the vectors and

matrices of Eq. (21)

(23)

Eq. (23) is the final equation of motion for the soil-structure interaction system subjected to the

obliquely incident seismic waves.

4. Applications

Using the numerical method presented in the previous sections, impedance (and compliance)

functions and input motions of rigid circular foundations on the surface of or embedded in a

homogeneous half-space will be computed. The impedance and compliance functions for rigid

circular and cylindrical foundations can be written as

(24a)
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(24b)

It should be noted that KHR = KRH and CHR = CRH in Eq. (24). It is usual to introduce stiffness and

damping coefficients for the impedance functions. The stiffness and damping coefficients are

defined as follows

(25a)

(25b)

(25c)

(25d)

(25e)

where µ* = µ(1 + 2iβs) is the complex shear modulus with hysteretic damping ratio βs, R the

foundation radius and a0 =ωR/Cs a dimensionless frequency. The input motions for the rigid

circular and cylindrical foundations are defined as follows

(26)

For a surface circular foundation subjected to vertically incident waves, the transfer functions in

Eq. (26) are: Sxx = Syy = 1, Szz = 1, Sxz = Szx = 0, Ryx = −Rxy = 0 and Ryz = −Rzy = 0. For a embedded

cylindrical foundation subjected to vertically incident waves, Sxx = Syy, Sxz = Szx = 0, Ryx = −Rzy and

Ryz = −Rzy = 0. For obliquely incident waves, all transfer functions must be calculated.

φz

∆z

∆x

φy

∆y

φx⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

CTT      

 CVV     

  CHH CHR   

  CRH CRR   

    CHH C– HR

    C– RH CRR

Mz

Fz

Fx

My

Fy

Mx⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

KTT µ*R
3

kTT ia0cTT+( )=

KVV µ*R kVV ia0cVV+( )=

KHH µ*R kHH ia0cHH+( )=

KRR µ*R
3

kRR ia0cRR+( )=

KHR µ*R
2

kHR ia0cHR+( )=

Rφ z

*

∆z

*

∆x

*

Rφ y

*

∆y

*

Rφ x

*

⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

  Rzy

Szx Szz  

Sxx Sxz  

Ryx Ryz  

  Syy

  Rxy

Ux

*
z1( )

Uz

*
z1( )

Uy

*
z1( )⎩ ⎭

⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=



216 Jin Ho Lee, Jae Kwan Kim and John L. Tassoulas

4.1 Surface circular foundation

Compliance functions and input motions of a rigid circular foundation on the surface of a

homogeneous half-space in Fig. 3(a) will be calculated first. Poisson’s ratio ν of the half-space is 1/

3 (Cp = 2Cs). A very small amount of hysteretic damping (βs = 0.005) is included for the numerical

calculations. The near-field region is discretized using conventional finite elements. On the other

hand, the consistent transmitting boundary is placed at r = R for a representation of the far field,

r ≥ R. Both regions are truncated at the depth of H = 4R and two 2-layers of the CFABCs are

applied at the bottom to represent the effects of the half-space in the vertical direction. One of the

2-layers is for an evanescent wave and the other for a vertically propagating wave. Since the

velocity CR of the Rayleigh surface wave for the half-space is 0.9325Cs, the parameters αP and αS

for the evanescent wave in Eq. (11) are 2.1448 and 1.0724, respectively. For the vertically

propagating wave, only a vertically-incident wave is considered and the parameters θP and θS in Eq.

(10) are 0. The finite-element mesh is shown in Fig. 3(b). It should be noted that the size of the

finite elements and layer thickness in the transmitting boundaries is selected consistently with the

shear-wave speed of the half-space and the maximum frequency of interest. The longest side is

about 1/6 of the minimum shear-wave length for the considered range of frequencies.

The compliance functions CTT, CVV, CHH, CRR and CHR are calculated and normalized by the static

Fig. 3 Rigid circular foundation on the surface of a homogeneous half-space: (a) schematic view of problem
and (b) finite-element mesh
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compliances equal to 3/16µR3, (1−ν)/4µR, (2−ν)/8µR, 3(1−ν)/8µR3, and 3(1−2ν)/16πµR2 for CTT,

CVV, CHH, CRR and CHR, respectively. In Fig. 4, the compliance functions are shown to compare

favorably with those obtained from impedance functions reported by Luco and Mita (1987).

Discrepancies between the present numerical results and the analytical ones of Luco and Mita

(1987) are, to a great extent, typical of the discretization errors inherent in finite-element

computations. Mesh refinement leads to reduction of the relatively “stiff” response that is a

Fig. 4 Compliance functions of a surface circular foundation



218 Jin Ho Lee, Jae Kwan Kim and John L. Tassoulas

consequence of discretization. Differences in the coupling compliance (CHR) are largely due to the

relaxed contact conditions adopted in the analytical work by Luco and Mita (1987). Finally,

deviations of the computational results from the analytical ones in the very-low frequency range are

a consequence of the approximation that underlies the CFABCs. These very-low frequency results

will be examined further and improved using extrapolation methods below.

Fig. 5 Amplitudes of transfer functions of a surface circular foundation (solid lines for this study and dashed
lines for Luco and Mita (1987))
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Also, the transfer functions Sxx, Szz, Ryz, Syy and Rzy are calculated for Cs/Capp = 1/10, 1/5, 1/3.333,

1/2.5 and 1/2. In Fig. 5, the transfer functions are compared with Luco and Mita’s results (1987).

Because of the relaxed contact conditions, these five transfer functions are the nonvanishing ones in

Luco and Mita’s results. If the exact (rough) contact conditions are used, other transfer functions in

Eq. (26) are also nonzero. It can be seen in Fig. 5 that the numerical method presented in the

previous sections produces accurate results.

4.2 Embedded cylindrical foundation

Compliance functions and input motions of a rigid cylindrical foundation embedded in a

homogeneous half-space in Fig. 6(a) are examined next. Poisson’s ratio ν of the half-space is 1/4

(CP = CS). The discretization of the near and far fields shown in Fig. 6(b) is similar to that of the

previous application, except for the excavated region of soil for the embedment of foundation and

the parameters αP and αS in Eq. (11). In the cases examined herein, the depth of embedment E is

set equal to 0 (a surface circular foundation), 0.5R, 1.0R and 2.0R. Since the velocity CR of the

Rayleigh surface wave for the half-space is 0.919CS, the parameters αP and αS for the evanescent

wave in Eq. (11) are 1.884 and 1.088, respectively.

3

Fig. 6 Rigid cylindrical foundation embedded in a homogeneous half-space: (a) schematic view of problem
and (b) finite-element mesh
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The computed stiffness and damping coefficients are compared in Fig. 7 with those from Day’s

study (1977). The transfer functions Sxx = Syy and Ryx = −Rxy for a vertically incident S wave are

calculated. Also, the transfer functions Syy and Rzy for a horizontally incident SH wave are obtained.

The calculated transfer functions are compared with those of Day (1977) in Figs. 8 and 9. It is

Fig. 7 Impedance functions of an embedded cylindrical foundation (solid lines for this study and dashed lines
for Day (1977))
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Fig. 7 Continued

Fig. 8 Amplitudes of transfer functions of an embedded cylindrical foundation subjected to a vertically
incident S wave
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Fig. 8 Continued

Fig. 9 Amplitudes of transfer functions of an embedded cylindrical foundation subjected to a horizontally
incident SH wave
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observed that the numerical method presented in this paper leads to good results. However, the

stiffness and damping coefficients deviate from the available estimates in the very-low-frequency

range.

Overall, the above applications indicate that the present numerical method performs well as a tool

for dynamic analysis of foundations in a half-space.

4.3 Extrapolation into the very-low-frequency range and the static condition

The differences noted above between the numerical results and other available estimates in the

very-low-frequency range are due to intrinsic characteristics of the CFABCs. Specifically, the

CFABC layers have very large thicknesses in the very-low-frequency range (see Eqs. 10 and 11).

The very large thicknesses lead to deterioration of the results in this range. Also, it can be deduced

from Eqs. (10) and (11) that the thicknesses of the CFABCs become infinite for the static condition.

Therefore, the numerical method presented in the previous sections cannot be applied for static

analysis directly. To overcome these difficulties, two extrapolation methods for the very-low-

frequency range and static condition are proposed.

Expressions for asymptotic behaviors at low frequency have been derived for the surface circular

foundation and are given in the Appendix (Robertson 1966, Thomas 1968, Galdwell 1968). The

first extrapolation method is based on these expressions. Real and imaginary parts of the

extrapolated compliance and impedance functions are assumed proportional to those of the

asymptotic expressions

  for a0 ≤ (27a)

(27b)

      for a0 ≤

  for a0 ≤ (27c)

for a0 ≤ (27d)

The coefficients are determined so that the extrapolated functions match the computed results at a

user-defined frequency. For example, using the numerical method presented in the previous sections,

the compliance functions CTT, CVV, CHH and CRR are first calculated for a0 ≥ . The coefficients
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= CHH and = CRR at a0 = . The method can be applied to any foundation stiffness with

known asymptotic behavior.
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Expressions for asymptotic behaviors at low frequency are not available for arbitrary surface or

cylindrical foundations. Therefore, a second, more general extrapolation method is proposed. The

extrapolated compliance and impedance functions have similar forms to the asymptotic expressions

given in the Appendix (but with different coefficients)

  for a0 ≤ (28a)

  for a0 ≤ (28b)

  for a0 ≤ (28c)

  for a0 ≤ (28d)

  for a0 ≤ (28e)

The coefficients are determined so that the extrapolated functions and their derivatives match the

calculated numerical results at a user-defined frequency. For example, using the numerical method

presented in the previous sections, the compliance function CTT for a0 ≥  is computed. The
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Fig. 10 Extrapolated compliance functions of a surface circular foundation
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coefficients ATT,0, ATT,2, ATT,3 and ATT,5 are determined so that = CTT and /da0 = dCTT/da0 at

a0 = .

Both extrapolation methods are applied to the problem of the surface circular foundation. The

user-defined frequency  is taken as 0.08π = 0.251. Since asymptotic expressions for the coupling

compliance (CHR) or stiffness (KHR) are not available, the first extrapolation approach is applicable

only to the diagonal entries of the compliance or stiffness matrices. Extrapolated results for the

CTT

e
dCTT

e

a0

e

a0

e

Fig. 11 Extrapolated impedance functions of an embedded cylindrical foundation
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vertical, horizontal, and coupling compliances are shown in Fig. 10. It can be observed that the

extrapolated results from both methods show substantial improvement.

The second extrapolation method is applied to the problem of an embedded cylindrical foundation

with E = 2R for which asymptotic expressions are not available. The user-defined frequency  is

taken as 0.08π = 0.251 in this case as well and the extrapolated results for the torsional, vertical,

horizontal, rocking and coupling motions are shown in Fig. 11. Again, improved extrapolated results

can be seen in the very-low-frequency range and for the static condition.

It can be concluded from the above discussion that using the two proposed extrapolation methods,

the numerical method presented in the previous sections can be improved to give satisfactory results

in the very-low-frequency range and for the static condition.

5. Conclusions

Impedance (and compliance) functions and foundation input motions of rigid cylindrical (or

circular) foundations in a layered half-space were obtained in this study using a consistent

transmitting boundary combined with continued-fraction absorbing boundary conditions. The effects

of obliquely incident seismic waves in a layered half-space were taken into account in the

formulation of the transmitting boundary. Impedance (and compliance) functions and input motions

of rigid circular foundations on the surface of or embedded in a homogeneous half-space were

computed and compared with available results. Extrapolation methods were proposed for

improvement of the results in the very-low-frequency range and for the static condition. It can be

concluded from the applications that accurate analysis of foundation dynamics and soil-structure

interaction in a layered half-space can be carried out by the presented numerical method.
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Appendix. Asymptotic behaviors of a rigid circular foundation on the surface of a

homogeneous half-space

Asymptotic behaviors at low frequency for a rigid circular foundation on the surface of a

homogeneous half-space are summarized. An expression for the torsional motion is given by

Thomas (1968), for the vertical motion by Robertson (1966), for the horizontal and rocking motions

by Galdwell (1968)

For the torsional motion
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For the vertical motion
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(A4a)

(A4b)

The constants I1, I2, etc. in Eqs. (A2) and (A4) are defined and their numerical values are given

by Robertson (1966). The constants B1, B2 and B3 in Eq. (A3) are defined by Galdwell (1968).
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