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 1. Introduction 
 

A cast-in-place reinforced concrete wall is a traditional 

lateral load resisting system widely used in seismic regions, 

which usually sustains permanent damage caused by 

yielding and local cracking during earthquakes (Eom et al 

2014, Lim and Hong 2014). High post-earthquake repair 

costs have motivated researchers to investigate self-

centering rocking walls (SCWs). The wall is post-tensioned 

to the foundation with unbonded multi-strand steel tendons. 

The replaceable or repairable dissipators are introduced into 

the joint between the walls and the foundation to provide 

energy dissipation capacity. The new system has exhibited 

positive effects in the seismic resistance within the design 

displacement (Xu et al. 2018, Feng et al. 2018). When 

loaded dynamically, the wall will rock about the foundation 

and therefore withstands strong earthquake shaking through 

gap opening mechanisms at the base. The seismic behaviour 

of SCWs can be approximated as the rocking motion of a 

rigid block. Rocking motion combines the benefits of 

rocking isolation with the advantage of the precast method, 

making the rocking wall have better construction quality 

and larger drifts with minor damage. Rocking does, 

however, face a higher risk of an overturning collapse. 

Posttensioned (PT) tendon and additional dampers will  
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offer an anchor effect for the rocking response. 

Early studies on the rocking response of a rigid block 

were presented by Housner (1963). Following these studies, 

the overturning of a rocking block under pulse-type motions 

has been studied (Makris and Roussos 2000, Zhang and 

Makris 2001, Makris and Zhang 2001). Near-fault ground 

motions are pulse-type motions characterized by the period 

and amplitude of the velocity pulse (Mavroeidis and 

Papageorgiou 2003, Bray and Rodriguez 2004), which can 

force the blocks to rock drastically. Recently, the dynamic 

behaviours of massive structural members such as bridge 

piers have been analysed under near-fault ground motions. 

Makris and Vassiliou (2014, 2015) analyzed the dynamics 

of bridge piers vertically restrained with an elastic tendon 

through the pier centreline. Giouvanidis and 

Dimitrakopoulos (2015, 2017) established dimensionless 

design parameters for the rocking frames comprised of two 

bridge piers and a heavy cap-beam and examined the 

seismic behaviour of the bridge system under both pulse-

type and historic ground motions.  

The significant differences between SCWs and bridge 

piers in the bending moment capacity, seismic demand and 

geometric dimensions (Kurama et al. 2002, Restrepo and 

Rahman 2007, Perez et al. 2004, 2007, 2013) have driven 

this paper to theoretically investigate the rocking 

behaviours of SCWs. The viscous dampers are velocity-

dependent energy dissipation systems, which are 

particularly incorporated to counteract near-fault 

earthquakes. The full recentering property of a SCW mainly 

depends on the prestressed tendon. Accordingly, the lateral  
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stiffness of the system will remain positive upon unlifting 

due to the large ratio of the elasticity of the tendon to the 

weight of the wall. The inelastic behaviour of a PT tendon 

can cause dynamic amplification and even toppling of a 

SCW (Bruce and Eatherton 2016). It is necessary to 

investigate whether SCWs will topple under pulse-type 

excitation considering the inelastic behaviour of the tendon. 

The overturning acceleration spectrum of SCW is given 

under one-sine pulse. Both the linear and nonlinear 

formations for the SCW are derived to facilitate the rocking 

analysis of SCW. Finally, the effect of the ductile behaviour 

of the PT tendon on the rocking response of the SCW is 

analysed. 
 

 

2 Description of self-centering wall  
 
A self-centering wall (SCW) is capable of both 

surviving significant seismic energy and exhibiting 

recentering behaviour. The existence of the prestressed 

tendon can not only provide recentering capacity for the 

wall but also ensure the positive stiffness of the wall upon 

uplifting. Tendon yielding or fracture may occur during 

strong earthquakes due to an increase in substantial tension 

force from gap opening. The overturning of the wall can be 

triggered by the initiation of the limit state. The motivation 

of this study is to analyze the dynamic of the wall with 

viscous damper. The yielding and fracture of the tendon is 

considered from the theoretical point. The conclusions will 

shed some light on the behaviour, performance, and design 

methodology of the wall under near-fault ground motions. 

To investigate the rocking and overturning of a SCW 

with a central posttensioned (PT) tendon shown in Fig. 1(a), 

consider an SCW with mass m, diagonal distance 

2 2 2=R b h  and aspect ratio b/h=tanα having base 

viscous dampers on the edge of the wall subjected to a 

sinusoidal type ground acceleration gu  in Fig. 1(b). It is 

assumed the wall and the base are rigid and the relative 

sliding motion is entirely avoided. When the imminent 

uplifting resistance of the SCW is exceeded with increasing 

acceleration, the SCW will be set into rocking motion about  

 

 

the pivoting point O or O’ repeatedly, as shown in Fig. 1(c), 

where θ is the rotation angle of the wall. 

Near-fault ground motions containing strong velocity 

pulses can impose extreme demands on structures and force 

the SCW to rock drastically. The pulse-type effects can be 

quantified by equivalent pulses, which replicate comparable 

near-fault response characteristics using simple parameters 

(Alavi and Krawinkler 2004). Trigonometric pulses have 

been selected to illustrate the dynamic responses of a 

rocking block under near-source ground motion in previous 

studies (e.g. Zhang and Makris 2001). In this paper, a full-

cycle sinusoidal type pulse with acceleration amplitude ag 

and frequency wg is used to resemble a seismic excitation 

and its form is shown as follows 

g( ) sin( )

( ) 0

g g

g

u g a t t T

u g t T

   


 
 (1) 

where Tg=(2π-φ)/ωg is the time instant when the excitation 

expires and free rocking initiates, and 

φ=arcsin(bg/agh+P0b/agmh) is the phase angle when rocking 

initiates, which is given by the following formula. 

The damper force and velocity relation for typical 

viscous dampers are usually expressed as a fractional 

velocity power law 

sgn( )
n

vF c v v  (2) 

where c is the damping coefficient, representing the damper 

force per the damper velocity v raised to the power of n; n is 

a positive exponent in the range of 0.1-1 for the seismic 

application; and sgn is the signum function. The viscous 

dampers undertaken in this study have a coefficient c= 

10000 N·s/m and a velocity exponent n= 1. The function 

using n=1 represents a linear viscous damper in which the 

damper force is proportional to the relative velocity. This 

linearization also facilitates the derivation of the linear 

analytical solution in the following section. 

Under the negative ground acceleration gu , the wall 

will initially pivot about point O. It will recenter and pivot 

about the other point O’ if the toppling of the wall is 

   

(a) at rest position (b) sinusoidal type pulse (c) during positive rotation 

Fig. 1 Schematic diagram of examined rocking wall 
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avoided. During rocking motion of the wall, in addition to 

the work of the external forces, work is also done by the 

axial force in the tendon P and the damper Fv. By 

considering dynamic moment equilibrium, the equations of 

motion are respectively derived as follows 

2sin( ) (2 cos ) ( cos ) ( sin ) cos( ) 0
02 2
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02 2
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where θ is the rocking rotation of the wall at arbitrary time 

instant, P0 and kp are the initial force and stiffness of the PT 

tendon, respectively, and c is the damping coefficient of the 

damper. Following decompression, the tendon elongates 

2bsin(θ/2), as shown in Fig. 1(c), producing an increase in 

its axial force, which eventually becomes P0+2kpbsin(θ/2). 

Moreover, the moment due to the presence of the damper is 

the product of the total tendon force P and the moment arm 

bcos(θ/2). The moment arm from the damper force is 

2bcos(θ/2) and therefore the pertinent moment is 

2bFvcos(θ/2). For the rectangular block, the moment of 

inertia about the pivot point is . Upon 

uplifting, static moment equilibrium of the wall about the 

pivoting point gives . This means the 

seismic demand has reached the limit of the seismic 

resistance. Therefore, the wall will rock when the ground 

acceleration satisfies . Eq. (3) can 

also be expressed in a compact form using the signum 

function 
 

(4) 

The contribution of each component in the SCW is 

described in the above equation. Therefore, the equation can 

be further simplified as 

 

(5) 

where  is a measure of the 

frequency characteristics of the wall, and the larger the wall 

(R), the smaller the p. denotes the damping 

ratio, which is a dimensionless parameter that relates the 

damping coefficient c to the mass m and frequency p. 

Seismic energy dissipation due to each impact at the pivot 

point O or O’ is approximated with a restitution coefficient 

r, which is defined as the reduction of the angular velocity 

 (6) 

where  is the angular velocity just after impact,  is 

the angular velocity just before impact, and r denotes the 

restitution coefficient given by 

 (7) 

Although the above derivation of the coefficient r is 

derived based on some assumptions(ElGawady et al. 2011), 

Eq. (7) is a widely used method to measure the reduction in 

the kinetic energy of the block during the impact. When the 

angle of rotation θ reverses, the product of the angle of 

rotation θ in two adjacent steps is negative. If this condition 

is satisfied during rocking, the angular velocity in the 

current step is the restitution coefficient times the angular 

velocity in the previous step. 

 

 

3. Nonlinear numerical solution 
 
The nonlinear solution of Eq. (4) can be computed 

numerically by the state-space formulation. The PT tendons 

are assumed to be elastic until they reach their ultimate 

strength. If the tendon reaches its fracture elongation 

μs=(Fu-P0)/kp, the tendon snaps and the rocking rotation θs 

at this moment is expressed as 

 (8) 

where μs is the deformation causing the tendon to snap 

during rocking. Fu and P0 are the ultimate force and initial 

force of the PT tendon, respectively. The PT tendon is 

maintained in an elastic status with |θ|≤θy. Once snapping of 

the PT tendon occurs with |θ|>θy, the dynamic equation 

switches irreversibly to the equation of the free-standing 

wall 

 (9) 

By replacing ζ with γ=3b2ζ/R2=3ζsin2(α), Eq. (9) is 

similar to the analytical equation derived by 

Dimitrakopoulos and DeJong (2012).  

A state-space formulation is developed for the wall 

subjected to the seismic excitation as described in Eq. (1) 

 (10) 

The numerical integration of Eq. (10) is performed by 

ODE (Ordinary Differential Equation) solvers available in 

MATLAB. Fig. 2 provides an illustration of three possible 

normalized rotation histories of the SCW (P0/W =0): No 

overturning occurs when the ground acceleration amplitude 

ag is sufficiently small, as shown in Fig. 2(a); the wall 

continues rocking and will not stop until the mechanical 

energy is dissipated. Figs. 2(b) and 2(c) show two different 

modes in which a SCW may topple. With a specific pulse 

frequency and acceleration excitation, a SCW may overturn 

with one impact (Mode 1) or overturn directly (Mode 2). 

The transition from overturning with one impact (Mode 1) 

to overturning without impact (Mode 2) is not immediate 

when the excitation acceleration increases. This 

phenomenon is consistent with previous studies and has 

been explained by Makris and Zhang (2001). A sensitivity 

study has been performed to determine the suitable 

integration step for the calculation of the wall responses. 

Two integration steps (t=0.0001 s and t=0.00001 s) are  
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respectively examined for the computational model. It can 

be seen that, regardless of the integration step, the two 

models produce the same results for all of the rocking 

states. An integration step of 0.0001 s is currently used to 

obtain accurate numerical solutions and to reduce the 

computational time. 

It is instructive to plot the rocking responses of a SCW 

by the minimum overturning acceleration spectrum. The 

overturning acceleration spectrum is a graphical 

presentation of the relationship in Eq. (3). The concept of 

the spectrum is introduced to present graphically the pulse 

amplitude ag required to overturn the wall as a function of 

the pulse frequency wg. Both axes are dimensionless, the 

vertical axis is normalized by the product of the wall 

slenderness α and the acceleration of gravity g, while the 

horizontal axis by the frequency parameter p. The boundary 

lines between the overturning region and the safe region of 

the wall are plotted in the spectrum. Acceleration 

amplitudes with magnitudes larger than the bottom line 

(that corresponds to the minimum overturning acceleration) 

will be able to overturn the wall.  

For illustrative purposes only, the results here are 

presented in terms of an example. Traditional concrete walls 

with low height-to-width ratios (h/b) produce less energy 

dissipation due to the highly pinched hysteresis curves 

(Palermo et al. 2002; Sritharan et al. 2014). Following the 

physical characteristics of typical walls, this paper examines 

a slender rigid wall (h/b=5, W=25kN) with frequency 

parameter p=1.70, and slenderness α=11.31°. More details 

about the effects of the wall slenderness can be found in 

Apostolou et al. (2007). The overturning acceleration 

spectrum of the corresponding free-standing walls 

considering the energy loss during each impact (

) under a sinusoidal type pulse is plotted 

in Fig. 3(a). The results are calculated with a state-space 

formulation given by Eq. (10). It shows that the free-

standing wall has two overturning modes. For a small ωg/p 

(ωg/p<4.5), the free-standing wall will first topple with 

Mode 1 as the pulse acceleration increases and then topple 

with Mode 2 when the SCW suffers higher pulse 

acceleration. There is a finite margin area of acceleration 

amplitudes between Mode 1 and Mode 2 in which the free-

standing wall remains safe. For values within 4.5<ωg/p<10,  

 

 

overturning with Mode 1 will not happen. The minimum 

overturning acceleration with Mode 2 is increased sharply 

as a result of increasing ωg/p. For values of ωg/p>10, the 

high frequency exceeds the studied frequency range 

because the near-source ground motions have attributes of 

low frequency and large displacement amplitude. Therefore, 

this paper does not consider the possibility of the 

combination of two safe regions in the PT force cases after 

the value ωg/p exceeds 10. 

On the basis of the free-standing wall shown in Fig. 

3(a), a PT tendon (kp=5.6×106N/m, Fu=7.5W; W denotes the 

self-weight of SCW) and a pair of viscous dampers are 

implemented therein. The tendon has a diameter of 15.3 

mm, an area of 144 mm2, and a nominal ultimate stress of 

1860 Mpa. An elastic-brittle behaviour is assumed for the 

tendon. The damping coefficient ζ of viscous dampers is set 

to 1.15. Figs. 3(b)-(d) compare the overturning acceleration 

spectrum of SCW with different PT force cases under a 

sinusoidal type pulse. Note that the P0/W=0 case and the 

free-standing case are not equivalent owing to the existence 

of elastic coefficient kp. Sufficient pretention in the tendon 

usually causes a larger ratio of P0/W and may subsequently 

affect the rocking responses of the damped SCW. The 

results are computed for the cases where P0/W=0, P0/W=3, 

and P0/W=6 using Eq. (10). The results show that SCWs 

also have two different overturning modes even with 

different initial forces. However, it is obvious that higher 

acceleration is needed to topple SCWs in response to a low-

frequency pulse after the implementation of a PT tendon 

and viscous dampers. Taking an example of a given value 

ωg/p=2, the minimum overturning acceleration of the wall 

is increased from 1.3αg for the free-standing case to 7.3αg 

for the P0/W=0 case, 7.9αg for the P0/W=3 case and 9.8αg 

for the P0/W=6 case. It can be inferred that the existence of 

the tendon rather than the magnitude of the PT force plays a 

more important role in increasing the overturning resistance 

of the SCW in the low ωg/p range. As the value of ωg/p 

increases, it is more difficult to overturn the free-standing 

wall due to the disappearance of overturning with Mode 1. 

The lower bound of the overturning region with Mode 2 in 

the PT force cases is larger than that of the free-standing 

wall. However, the overturning area of Mode 1 in the PT 

force cases separates the safe region into two parts: region 

S1 with the elastic tendon and region S2 with the fractured  

max 0.95r  

   

(a) ag=3αg, wg=6p (b) ag=10αg, wg=6p (c) ag=20αg, wg=6p 

Fig. 2 Mode of a SCW: (a) no overturning (b) Mode 1: overturning with one impact (c) Mode 2: overturning 

without impact 
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tendon.  

Figs. 3(b) - 3(d) illustrates a similar overturning process 

for all of the walls with different PT forces in the tendon. 

When the pulse acceleration is relatively low, the rocking 

responses of the SCW remain in the safe region S1. Then, 

the SCW overturns after experiencing one impact (Mode 1) 

when the minimum overturning acceleration is exceeded. 

The PT tendon will be fractured under the influence of 

Mode 1. As the excitation acceleration increases, there is a 

safe region between the two modes with magnitudes larger 

than the overturning acceleration corresponding to Mode 1, 

meaning that it remains standing when the acceleration 

increases. This is because a SCW with a fractured PT 

tendon can return back to its initial position induced by the 

intense acceleration pulse. For even higher levels of 

acceleration, overturning of the SCW occurs again without 

impact (Mode 2) after PT tendon rupture directly in 

response to the oscillation of the wall. Different initial 

forces P0 in the PT tendon induce similar rocking trends of 

SCWs. 

The moment associated with the initial forces P0 in the 

equation of motion for the rocking mechanism of SCW is 

becoming dominant compared to the moment associated 

with gravity force as the P0/W increases to 6. The dominant 

contribution of the strands to the overall behaviours makes 

the wall insensitive to the excitation frequency. It can be 

observed in Fig. 3(d) that the minimum overturning 

acceleration boundary associated with Mode 1 of 

overturning tends to be a horizontal line as the P0/W 

increases.  

 

 

The other observation related to varying initial forces P0 

is the overturning acceleration for the prestressed wall is 

smaller than that of a free-standing wall for a large wg/p 

ratio. Although the increasing forces P0 in the strands 

provides an enhanced self-centering capacity for the 

rocking wall, the fracture of the tendon can cause a 

significant loss of the tendon contribution and trigger an 

entirely different kinematic mechanism in the wall. Makris 

and Zhang (2001) introduced the ratio of the dissipated 

strain energy to the total energy in analysing the rocking 

response of an anchored block. The strain energy in the 

P0/W =0 case before the fracture of the PT tendon is 

 (11) 

The kinetic energy of a SCW is considered to be zero at 

the verge of overturning (θ=α). The potential energy 

(excluding the energy dissipation by viscous dampers and 

impacting) is given by 

 (12) 

The ratio of the dissipated energy to the total energy of a 

SCW is 

2

u tF uSE

PE mgR
  (13) 

where ut=Fu/kp denotes the total elongation of the PT tendon  

1

2
u tSE F u

2

(1 cos )
2

PE mgR mgR


  

  

(a) Free standing wall (b) P0/W=0 

  

(c) P0/W=3 (d) P0/W=6 

Fig. 3 Overturning acceleration spectrum of a free-standing wall under a sinusoidal type pulse 
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Fig. 4 Schematic diagram of the formula transformation 

 

 

and it can also be approximated by θ·b.  

The strain energy lost from the failure of the strands is 

approximately 51% of the energy that is needed to topple 

the free-standing wall. This value is much larger than the 

results for bridge piers given by Makris (0.6%), which are 

calculated based on the premise that Fu equals mg. These 

large differences indicate that the failure of PT strands 

easily induces the topple of the SCW. Therefore, the 

yielding of PT strands should be avoided in the design of 

SCWs. 

 

 

4 Linear analytical solution 
 

Eq. (3) and its compact form shown by Eqs. (4) and (5) 

are applicable for arbitrary values of the rocking angle. For 

slender walls with small slenderness α, the toppling usually 

happens at a low rocking angle and therefore Eq. (3) can be 

linearized. The trigonometric function of θ can 

approximately be solved in order to avoid calculation 

difficulties. The linearization allows for the calculation of 

closed-form solutions when the seismic excitation is 

simplified a trigonometric form. Accordingly, the moment 

from the damper Md is and the moment Mt from 

the tendon is , and Eq. (3) is reduced to 

 (14) 

where f1=6b2 / R2, f2=(kpb2-mgR) / mgR, f3=(mgRa+P0b) / 

mgR. Eq. (14) can be compacted with 

 (15) 

Accordingly, the solution of Eq. (15) should be 

presented for two segments  and . Eq. (15) 

is a typical pattern of a nonhomogeneous equation with 

constant coefficients. The result θ(t) should contain two 

vibration components: forced vibration and free vibration. It 

is assumed that the initial stiffness of the PT tendon is 

sufficiently large to keep kp>mgR/b2. Hence, f2>0 is 

reasonable for a SCW. SCWs are considered to be an 

underdamping system(Chopra 1995), and the damping for 

the system satisfies the equation as follows 

 (16) 

The linear analytical solution can be expressed by Eq. (17) 

for the segment  

 
(17) 

where . The equation for the 

angular velocities is directly obtained from the time 

derivatives of Eq. (17): 

 

(18) 

where tk=t-tc. The constants A1 and B1 can be determined in 

terms of the initial rotation  and initial angular 

velocity in each phase and given by 

 
(19) 

For the other segment , Eq. (15) becomes 

 (20) 

where . The equations for the 

angular velocity are given by 

 

(21) 

θ(tc) and 𝜃̇(tc) are assumed to be the angle of rotation and 

angular velocity in each initial phase, and then the constants 

A2 and B2 are: 

 
(22) 

Eqs. (17) and (18) and Eqs. (20) and (21) can be put 

together to build the time history of the rocking response of 

the  SCW in  the   ca se  and  case , 

respectively. Fig. 4 shows the formula transformation in 

each phase. sgn(θ)=−1 is used in Eqs. (17) and (18) for θ<0 

when the time t is prior to tc. At a specific time, the angle of 

rotation for a SCW changes from θ<0 to θ>0, and the  
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angular velocity  should decrease on the basis of Eq. 

(7). New boundary conditions θ(tc) and 𝜃̇ (tc)should be 

recorded as new initial conditions in the new rocking phase. 

Eq. (17) and Eq. (18) are used to compute the rocking 

response once again with tk=t-tc but with sgn(θ)=1 in this 

new phase. Note that the formula transformation repeats not 

only at the change of rotation angle θ but also at the 

moment of the transition from force rocking to free rocking. 
The linear analytical solution given by the foregoing 

equations will be validated using the numerical method with 
nonlinear and linear equations. Fig. 5 shows the results for a 
SCW for the case P0/W=6 under the one-sine pulse with the 
acceleration amplitude ag=25 m/s2 and the excitation 
frequency ωg=5p. All three solutions in Figs. 5(a)-(b) show 
a similar overturn process of a SCW with the fracture of the 
PT tendon. Three boundary lines with a median difference 
of -1.96%, 1.61% and 2.00% are respectively observed 
between the overturning plots of the linear method and 
analytical method. These numbers indicate a good 
agreement of the two solutions. The rocking responses 
calculated by the analytical method match well with the 
linear numerical method during the whole rocking process, 
which achieves a good approximation of the nonlinear 
numerical method. However, the differences are enlarged 
gradually over time compared to the nonlinear method, and 
this is mainly attributed to two reasons. One is the deviation 
accumulation of solving the differential equation and the 
initial condition. The other is that the linear approximation 
in Eq. (15) is based on the assumption of a small rotation 
and that the angle of rotation will increase with time. Fig. 
5(c) gives the overturning acceleration spectrum for a SCW  

 
 

using the linear solution with the analytical method and 
numerical method, displaying the good agreement of the 
two solutions. The linear solution also suggests that the 
minimum acceleration for a SCW overturning with Mode 1 
exhibits little relationship with the excitation frequency. 

 
 

5 Effect of the dampers coefficient 
 
The energy dissipation capacity of a SCW is highly 

dependent on the viscous damper parameters except for the 

kinetic energy loss during each impact. To investigate the 

effects of the viscous damper, Four additional cases are 

developed using the structural details in the P0/W=6 case 

(see Fig. 3(d)), but with different values of damping 

coefficients (ζ=3.45; ζ=5.75; ζ=8.05 and ζ=10.35). The 

damping of the viscous damper is increased to investigate 

the effects of their enhanced performance on the boundary 

lines of the overturning plot, as shown in Fig. 6. This 

represents a reasonable range for the studied example 

because it clearly captures the process of the boundary 

change. Compared to the baseline case, the overturning 

region M2 exhibits gradual reduction and the overturning 

region M1 obviously shrinks and eventually closes in this 

range. These variations cause the area of the safe regions S1 

and S2 increase with the increasing damping. The 

increasing damper force associated with a larger damping 

provides an enhanced lateral resistance in the rocking 

moment equilibrium since the failure of the strands happens 

when the acceleration amplitude is increased to create 

overturning of the wall. 



  

(a) Time history of rotation angle (b) Time history of angular velocity 

 

(c) Overturning acceleration spectrum 

Fig. 5 Comparison of different solutions for a SCW 
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6 Effect of the ductile behaviour of the PT tendon 
 
Seven-wire steel strands are the most common type of 

PT tendons used in SCW systems and are usually designed 

to be elastic during the designed earthquake events. 

Nevertheless, tendons may experience inelastic behaviour 

due to unexpected larger drift demands under extreme 

earthquakes. Although the aforementioned elastic-brittle 

model can simply represent this fracture behaviour of PT 

tendons, it cannot describe the ability of PT tendons to 

undergo large inelastic elongation prior to the fracture. The 

influence of the ductile behaviour of PT tendons on the 

collapse diagram of SCW is unclear. Fig. 7 shows a 

simplified bilinear model for PT tendons considering 

tension only. The Bouc-Wen hysteretic model has been 

adopted to describe the elastic-plastic behaviour of PT 

tendons, but it cannot capture the tension-only behaviour. A 

mathematical model of PT tendons is built to consider the 

elastic-plastic tension-only behaviour and is used to analyse 

the effects of the tendon plastic behaviour on the rocking of 

the SCW. This local subroutine is implemented in the 

computational modelling of the SCW to calculate the 

deformation and force of the tendon based on the geometric 

information from the rocking wall. It will shed some light 

on further studies to rebuild this material and investigate the 

nonlinear tendon behaviour of the tendon. 

 

 

 

Fig. 7 Elastic-plastic behavior for PT tendon considering 

tension only 

 

 

Fig. 8 State model for PT tendon 

Fig. 8 shows the state model for PT tendons considering 

tension only. PT tendons remain elastic at the branch O→A. 

 (23) 

where Fp denotes the inner force in the PT tendon, k1 

denotes the elastic coefficient of the PT tendon, and u is the 

1pF k u

  
(a) (b) 

  
(c) (d) 

Fig. 6 Overturning influenced by viscous dampers with (a)ζ=3.45; (b) ζ=5.75; (c) ζ=8.05; (d) ζ=10.35 
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corresponding deformation of the PT tendon. 

The plastic strain of the PT tendon will take place at the 

branch A→B, and the force-displacement equation is: 

 (24) 

where k2 denotes the yield coefficient of the PT tendon and 

uy is the yield deformation of the PT tendon.  

During the unloading from the branch B→C, the 

equation of the PT tendon can be expressed as 

 (25) 

where up denotes the x-coordinate of the unloading point at 

the branch A→B.  

The inner force Fp decreases to 0 when the PT tendon 

relaxes: 

 (26) 

The reloading path is D→C→B→E until the PT tendon 

ruptures. 

To exactly describe the inelastic behaviour of the PT 

tendon, an auxiliary line passing through the zero point and 

parallel to the branch A→B is constructed to intersect the 

branch B→C. The x-coordinate of the intersection point is 

uk. s denotes the status of the PT tendon (s=0 for the line 

OA and BC; s=1 for the line AB and s=−1 for the line CO). 

Therefore, there are three states for this tendon material, 

State 1 (s=0), State 2 (s=1) and State 3 (s=−1). The compact 

form of Eqs. (23) - (26) is given by 

 (27) 

State 1 represents the tendon being loaded with the input 

of k=k1 and Rp=−(k1-k2)uk, State 2 represents the branch 

with the input of k=k2 and Rp =(k1-k2)ut and State 3 

represents the load path with the input of k=0 and Rp =0. 

The transitions of the three states are presented in the Eqs. 

(28) - (30). When the condition of the state change is 

satisfied, the value of the indicator s will be changed, and 

the material behaviour in the new state is used in the 

analysis. 

 (28) 

 

(29) 

 

(30) 

The equation between the angle of rotation θ and the 

displacement at the end of the PT tendon μ is given by 

 (31) 

Conditional statements (μ>μy) are used to determine 

whether the yielding of the strands are being reached. The 

yielding deformation of the tendon μy can be calculated 

using the stress at yield and the modulus of elasticity 

reported in previous experiments (Bruce and Eatherton 

2016). The program will evaluate if the tendon deformation 

μ, including the initial PT deformation (P0/k1) and the 

superimposed deformation due to loading ( ), 

is larger than the yielding strain at each increment. Once the 

if condition is met, State 2 (s=1) will be executed.  

After substitution of Eq. (27) into Eq. (4), it holds, 

 

(32) 

To verify the formula describing the elastic-plastic 

behaviour of the PT tendon, an example of a PT tendon 

with an effective length l=5 m and the initial PT force 

P0=0kN is used. The parameters for the elastic-plastic 

behavior of the PT tendon are chosen based on the previous 

experiments (Bruce and Eatherton 2016). The mean 

experimental results of the testing series BD/SU are input 

for the backbone curve of the tendon material. The yield 

strength defined as the force at 1% elongation is 1728 MPa 

and the peak strength is 1918 MPa. The load carrying 

capacity of the seven-wire strand experiences a sudden loss 

at every fracture of individual wires. The initial wire 

fracture is a limit state that should be avoided in a specified 

design level and therefore the deformation capacity of the 

seven-wire strand prior to initial wire fracture was recorded 

for different testing series. The strain at first wire fracture 

3.3% is chosen as the fracture limit. Once this strain limit is 

reached, the tendon is removed immediately from the 

model. The tested tendon at one end is fixed, and the 

enforced sinusoidal type displacement is applied to the 

tendon at the other end. A sinusoidal type displacement 

function with a maximum displacement of 0.165 m and a 

cosinoidal-type velocity function are used and the 

respective expressions are given by 

 (33) 

 (34) 

Fig. 9 shows the stiffness coefficient and the force-

displacement of the PT tendon. Peak A in Fig. 9(a) is the 

status where the PT tendon enters the plastic status instantly 

after reloading to maximum displacement and before 

unloading again. Fig. 9(b) shows the force-displacement 

curve of the tested PT tendon. The force in the tendon 

becomes zero after the tendon enters into the compression 

state. These results suggest that the given model can clearly 

describe the elastic-plastic tension-only behaviour of the PT 

tendon 

The overturning acceleration spectrum computed by Eq. 

(32) is shown in Fig. 10, along with the results from a SCW 

considering the elastic-brittle PT tendon. It demonstrates 

that a SCW with the elastic-plastic tendon also has two 

overturning modes. Extra excitation energy will be 

dissipated after the PT tendon sustains plastic deformation, 

resulting in high levels of acceleration required for a SCW  
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to rock in the elastic-plastic case. It can be observed in Fig. 

10 that the minimum overturning acceleration is increased 

significantly in the whole range of the studied wg/p after the 

plastic elongation of the tendon is considered. For large 

values of wg/p, the increase of the PT force has a limited 

influence on the upper limit of the safe region S1, indicating 

that the enhanced stability of the wall is found to be 

relatively independent of the initial PT force when the wall 

size or the pulse frequency is increased. For small values of 

wg/p, the upper limit of the safe region S1 tends to be a 

horizontal line with increasing initial force. The safe region  

 

 

S2 shifts upward and shrinks with the increase of the PT 

force. These results are consistent with those of a SCW 

using an elastic-brittle PT tendon. 

 

 

Conclusions 
 

This paper investigated the rocking responses of self-

centering walls (SCWs) with base viscous dampers under a 

sinusoidal type pulse. The inelastic behaviour of the tendon 

is considered. The main conclusions of the study are as 

  
(a) Stiffness coefficient of the PT tendon (b) force-displacement curve of the PT tendon 

Fig. 9 State model for PT tendons 

  

 

Fig. 10 Overturning acceleration spectrum with different fracture displacement ratios 
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follows: 

• SCWs with viscous dampers have similar rocking 

states to free-standing walls under a sinusoidal type 

pulse. Higher acceleration is needed to topple a SCW in 

response to a low-frequency pulse after the 

implementation of a PT tendon and viscous dampers. 

The overturning region with Mode 1 in the PT force 

cases separates the safe region of the wall into two parts: 

the region S1 with an elastic tendon and S2 with a 

fractured tendon. The minimum overturning 

acceleration of a SCW with an elastic-brittle tendon 

becomes insensitive to excitation frequency as the PT 

force increases. 

• The exact analytical solution to the linear approximate 

equation of motion is provided for a slender SCW. The 

rocking responses calculated by the linear analytical 

solution match well with the linear numerical solution 

during the whole rocking process and achieve a good 

approximation of the nonlinear numerical solution.  

• A simplified bilinear model for a PT tendon is 

constructed to describe the elastic-plastic behaviour of 

PT tendons. Two overturning types still exist in the wall 

when considering the elastic-plastic behaviour of the PT 

tendon. The minimum overturning acceleration is 

increased significantly in the whole range of the studied 

wg/p after the plastic elongation of the tendon is 

considered. 
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