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 1. Introduction 
 

As an essential part of our modern life, electrical energy 

generated from a power plant is usually delivered by 

overhead electricity transmission systems to destination 

substations. An overhead electricity transmission system 

consists of transmission lines (i.e., conductors and ground 

wires) supported by a group of pylons (i.e., steel lattice 

towers). Due to the overwhelming dependencies of our 

modern society on electricity, overhead electricity 

transmission systems are required to cover the regions with 

seismicity. Although wind load will have a huge impact on 

the stable operation of the transmission tower-line system 

(Altalmas and El Damatty 2014, Li et al. 2013, Li and Yu 

2019, Tian et al. 2020), inadequate seismic designs of the 

pylons among an overhead electricity transmission system 

can lead to post-earthquake interruptions of electrical power 

supply, causing socioeconomic impacts in the affected  

region. For example, estimated direct costs for fully 

restoring the damaged electricity transmission systems were 

said to be approximately $500 million and $4 billion for the 

1994 Northridge and 1995 Kobe earthquakes, respectively  
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(Shinozuka et al. 1999). 

When performing the seismic design of a pylon, an 

estimation of its fundamental periods in two orthogonal 

vertical planes is necessary to determine the seismic forces 

required for sizing pylon members and checking pylon 

deflections. Unlike conventional building structures for 

which many design standards such as ASCE/SEI 7-16 

(ASCE 2016) recommend empirical formulas to 

approximate their fundamental periods, existing knowledge 

to achieve adequate estimates of the fundamental periods 

for pylons is fairly limited. Note that many of the formulas 

to approximate the fundamental periods of ordinary 

building structures were developed from regression 

analyses of the fundamental periods identified based on the 

data recorded from instrumented buildings or simplified 

analysis models (Goel and Chopra 1997, Goel and Chopra 

1998, Liu et al. 2013, to list a few). Although there are 

some formulas for the basic period of ordinary building 

structures (Asteris et al. 2017, De et al. 2018, Kim et al. 

2007, Sangamnerkar and Dubey 2017, Zhao et al. 2017, 

Shatnawi et al. 2019). These equations are generally 

inapplicable to pylons due to the significant differences in 

stiffness and mass distributions in pylons in comparison 

with typical building structures.  

At present, considerable seismic studies have been 

carried out on transmission tower-line system (Chen et al. 

2018, Wei et al. 2019, Tian et al. 2020), and none of the 

analysis could work without the fundamental period of the 

structure. According to the current seismic design practice, 

to glean the fundamental periods of a pylon in an overhead 
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Abstract.  In seismic design of a pylon supporting transmission lines in an overhead electricity transmission system, an 

estimation of the fundamental periods of the pylon in two orthogonal vertical planes is necessary to compute the seismic forces 

required for sizing pylon members and checking pylon deflections. In current practice, the fundamental periods of a pylon in two 

orthogonal vertical planes are typically obtained from eigenvalue analyses of a model consisting of the pylon of interest as well 

as some adjacent pylons and the transmission lines supported by these pylons. Such an approach is onerous and numerically 

inconvenient. This research focused on development of a simplified method to determine the fundamental periods of pylons. 

The simplified method is rooted in Rayleigh’s quotient and is based on a single-pylon model. The force vectors that can be used 

to generate the shape vectors required in Rayleigh’s quotient are presented in detail. Taking three pylons selected from 

representative overhead electricity transmission systems having different design parameters as examples, the fundamental 

periods of the chosen pylons predicted from the simplified method were compared with those from the rigorous eigenvalue 

analyses. Result comparisons show that the simplified method provides reasonable predictions and it can be used as a 

convenient surrogate for the tedious approach currently adopted. 
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Fig. 1 A simple system illustrating the nodes and DOFs 

 

 

electricity transmission system, a sophisticated Finite 

Element (FE) model consisting of not only the pylon of 

interest but also a few adjacent pylons as well as the 

transmission lines supported by these pylons has to be 

developed for eigenvalue analyses. Such a model is referred 

to herein as the cluster model. Note in the cluster model that 

the transmission lines and the adjacent pylons are included 

to create the ideal boundary conditions for the pylon of 

interest. Unlike the FE models for conventional civil 

structures in which stiffness gradually varies in the system, 

the pylons and the transmission lines included in the cluster 

model have significantly different stiffness features. 

Consequently, eigenvalue analyses using the cluster model 

can be numerically challenging. Moreover, the low-order 

eigenvalues and eigenvectors obtained from the cluster 

model are usually associated with the vibration modes of 

the transmission lines rather than these of the pylons since 

the transmission lines are much more flexible compared 

with the pylons. To achieve the fundamental periods of the 

pylon of interest, extremely-high-order eigenvalues (e.g., 

higher than the 480th order in an example that will be 

discussed in detail in a following section) have to be 

extracted. Further, identifying the specific eigenvalues 

associated with the fundamental vibration modes the pylon 

of interest among a huge number of eigenvalues obtained is 

formidably tedious. Therefore, the approach adopted in the 

current seismic design practice for determination of the 

fundamental periods of pylons involves excessive 

modelling efforts and high computational costs. An urgent 

need exists to develop a simplified method which is 

convenient to implement and provides reasonable 

approximates of the fundamental periods of pylons. 

The objective of this investigation was to fill the critical 

knowledge gap described above. Specifically, this technical 

note formulates a simplified method which is rooted in 

Rayleigh’s quotient to estimate the fundamental periods of a 

pylon from an overhead electricity transmission system. 

Taking three pylons from representative overhead electricity 

transmission systems with different design parameters as 

examples, the authors further assess accuracy of the 

proposed simplified method against the onerous but more 

rigorous approach adopted in the current practice. 

Recommendations to implement the simplified method in 

practice are presented as well. 

2. Development of a simplified method  

 
This section derives a simplified method for estimating the 

fundamental periods of pylons in overhead electricity 

transmission systems. The theoretical basis for the simplified 

method, Rayleigh’s quotient, is briefly revisited and is 

subsequently extended into the simplified method. 

Implementation procedures and strategies to properly select the 

parameters for the simplified method are then presented. 

 

2.1 Revisit of Rayleigh’s quotient 
 

For a Multiple-Degree-of-Freedom (MDOF) system with 

lumped masses, Rayleigh’s quotient is given as (Chopra 2011) 

T
2
n T

 


 

k
=

m
 (1) 

where ωn represents the circular frequency of the system; ϕ 

represents the assumed shape vector that defines the 

deflected shape of the system; and m and k represent the 

mass and stiffness matrices of the system, respectively.  

Note that Rayleigh’s quotient can be derived by 

equating the maximum potential energy and the maximum 

kinetic energy of the system executing simple harmonic 

motion (Chopra 2011, Clough and Penzien 1993). Although 

Rayleigh’s quotient is valid for any vibration frequency of 

the MDOF system, its common engineering application is 

to evaluate the lowest or fundamental frequency with a trial 

shape vector that is chosen based on physical insight 

(Chopra 2011). 

 

2.2 Extension to the simplified method 
 

To obtain the shape vector, ϕ, a vector of external forces, 

f, can be assumed on the system in practice. Note that the ith 

element in f represents the force applied at degree of 

freedom (DOF) i in the system. Accordingly, ϕ can be 

computed as 

1 k f
 

(2) 

Substituting Equation (2) into Equation (1) gives 

T
2
n T




 

f
=

m
 (3) 

Obviously, accuracy of the fundamental frequency 

predicted by Rayleigh’s quotient depends on the vector of 

external forces, f, considered in the calculation. 

Conceptually, f should be selected to generate a deflected 

shape of the system which best approximates its 

fundamental vibration mode shape. Here, the authors 

propose the following two candidates for f which are 

calculated based on the mass matrix, m, and two assumed 

acceleration influence vectors, Av and Ar, respectively  

vf = mA
 

(4) 
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rf = mA
 

(5) 

The acceleration influence vectors, Av and Ar can be 

determined according to the following criteria: holding the 

entire system of interest as a rigid body, the ith element in 

Av can be determined as the acceleration along DOF i due 

to application of a unit acceleration at the support bases of 

the system along the vertical direction; while the ith element 

in Ar repents the acceleration along DOF i due to 

application of a unit angular acceleration about the 

geometrical center of the support bases of the system in the 

vertical plane of interest. 

To illustrate the above criteria, consider an example 

two-dimensional system shown in Fig. 1, which has N 

lumped masses and 2N DOFs in the XOZ plane. Assuming 

that the coordinates of the ith lumped mass is (xi, zi), one can 

determine Av and Ar as 
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Mathematically, Eq. (7) can be further simplified as 
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(11) 

Accordingly, the periods of the system adopting Av and 

Ar which are denoted as TnAv and TnAr respectively, can be 

determined as 

T

n. T
2T

 


v
A

v

m
=

mA
 

(12) 

T

n. T
2T

 


r
A

r

m
=

mA
 

(13) 

The larger value from the above two predictions is taken 

as the fundamental period of the system, Tn, which is 

n n. n.max( , )T T T
v r

A A=
 

(14) 

Beyond Av and Ar introduced above for the simplified 

method, another acceleration influence vector, denoted as 

Ah, is also considered in this research for comparison 

purpose. Holding the entire system of interest as a rigid 

body, the ith element in Ah can be determined as the 

acceleration along DOF i due to application of a unit 

acceleration at the support bases of the system along the 

horizontal direction in a vertical plane of interest. As will be 

discussed in a following section, the force vector associated 

with Ah is sometimes used to determine the fundamental 

periods of regular building structures from Rayleigh’s 

quotient. Inclusion of Ah in this research helps confirm 

whether a force vector suitable for regular building 

structures remains applicable for pylons.  

Taking the example system shown in Fig. 1 for 

consideration, Ah can be given as 

2
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(15) 

Similarly, the period of the system associated with Ah 

denoted as TnAh, can be computed as 

T

n. T
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 


h
A

h

m
=

mA
 

(16) 

 

2.3 Implementation procedure 
 
In practice, a pylon should be first isolated from an 

overhead electricity transmission system and discretized as 

a MDOF system to implement the simplified method. Fig. 2 

shows such a pylon for developing the MDOF system. The 

MDOF system is referred to thereafter as the single-pylon 

model. As shown, the pylon has two major portions - the 

trunk and the crossarms. The members in the trunk can be 

differentiated into three categories: the primary post 

members, the diaphragm members, and the diagonal 

members; while these in the cross-arms can be separated 

into three categories: the upper chord members, the lower 

chord members, and the web members.  

The nodes at the ends of each primary post member and 

these at the ends of each bottom chord member are selected 

to lump the masses tributary from the adjacent pylon 

members. In a vertical plane of interest (e.g., the XOZ plane 

as shown in Fig. 2), each of the nodes lumping the masses 

from pylon members has two DOFs – the x and z 

translation components.  

Aside from the masses from the pylon members, the 

masses from the transmission lines supported by the pylon 

of interest should also be included into the single-pylon 

model. Fig. 3 shows how transmission lines are physically 

supported by a pylon. As shown, the transmission lines are 

attached to the bottom chord members through an insulator. 

A spherical bearing is used at each end of the insulator, 

making the insulator actually a two-force member. It is 

proposed to lump the tributary masses of the transmission 

lines to the ends of the bottom chord members (i.e., where 

the corresponding insulators are attached). Considering the 

fact that each insulator can rotate freely about its ends and 

the swaying vibrations of the insulator and the attached 

transmission lines relative to the pylon crossarm are not of 

interest, each of the lumped masses tributary from the  
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transmission lines only has one DOF along the axial 
direction of the insulator (i.e., the vertical direction). Taking 
a typical pylon for example, Figs. 4 (a) and 4(b) show 
distributions of the lumped masses from the pylon members 
and these from the transmission lines, respectively. For the 
vibration mode of the pylon in the XOZ plane, each lumped 
mass in Fig. 4(a) has two DOFs (the x and z translations)   

 

 

 

and each lumped mass in Fig. 4(b) only has one DOF (the z 

translation). Accordingly, if the model has Np lumped 

masses from pylon members and Nt lumped masses from 

transmission lines, m  for determining the fundamental 

period of the system in the XOZ plane is a (2 Np + Nt) x (2 

Np + Nt) matrix. 
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After establishing the mass matrix, the acceleration 

influence vectors, Av and Ar should be determined based on 

Eqs. (6) and (11). Next, the external force vectors (i.e., f) 

should be determined based on Eqs. (4) and (5) followed by 

application of the forces to the single-pylon model. The 

displacements gleaned at the identified DOFs from elastic 

static analyses of the single-pylon model are subsequently 

used to form ϕ. With m, ϕ, and the corresponding 

acceleration influence vector (Av or Ar), the fundamental 

period of the pylon can determined from Eqs. (12) to (14). 

Notably, when Ah is considered, the above procedure can be 

similarly implemented. Moreover, the procedure can be 

similarly implemented in the orthogonal vertical plane (i.e., 

the YOZ plane for the example shown in Fig. 4) if vibration 

of the pylon in that plane is of interest. 

 

 

3. Validation of the simplified method 
 

Three representative pylons from three different 

overhead electricity transmission systems (denoted as 

Prototypes A to C) were chosen as examples to validate the 

simplified method developed in the prior section. 

Specifically, the fundamental periods of the example pylons 

determined from the simplified method based on the single-

pylon models were compared with these computed from the 

rigorous eigenvalue analyses using the cluster models. This 

section first describes the prototypes and example pylons 

and then reports comparisons of the analysis results. 

 

 

Fig. 5 shows the cluster models for the example pylons. 

Note that Pylon 2 from each cluster model is of interest. 

Fig. 6 illustrates elevation of each example pylon. The 

member configurations of the example pylons selected from 

Prototypes A to C are categorized as SK29101, S4Z2, and 

SDF5A, respectively, according to the Rules of 

Nomenclature for Transmission Poles and Towers (CEPP 

2013). Unless labelled ground wires, the transmission lines 

shown in Fig. 5 are conductors in each prototype. Table 1 

presents the properties of the transmission lines (ground 

wires and conductors) included in each cluster model. Fig. 7 

compares the percentages of the masses from the pylon 

trunk, pylon crossarms and tributary transmission lines in 

each single-pylon model. 

Prototype A is a 1000 kV electricity transmission 

system in Shandong Province, China. The entire system 

extends about 1048.5 km. Three spans of transmission lines 

and four pylons were included in the cluster model as Fig. 

5(a) shows. The three spans of transmission lines 

considered in the model have the same span of 600 m. As 

Fig. 6(a) depicts, the pylon of interest has three crossarms at 

the elevations of 75 m, 94.5 m, and 113.8 m, respectively.  

Prototype B is a 220 kV electricity transmission system 

in Jiangsu Province, China. The entire system extends about 

11.7 km. Three spans of transmission lines with the same 

span of 400m and four pylons were included in the cluster 

model as Fig. 5(b) shows. Pylon 2 from Prototype B was 

selected since it has the highest number of crossarms among 

the three example pylons as compared in Fig. 6. Note that a  
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Fig. 4 Lumped masses in the single-pylon model 
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higher number of crossarms tends to amplify the 

overturning action and the flexural deformation of the pylon 

when it vibrates laterally.   

Prototype C is a 220 kV electricity transmission system 

in Shandong Province, China. The entire system extends 

about 58.4 km. Three spans of transmission lines and four 

pylons were included in the cluster model as Fig. 5(c) 

shows. The three spans of transmission lines are 294 m, 

1118 m, and 285 m, respectively. Pylon 2 from this system 

was chosen because it supports extremely long-span 

(exceeding 1000 m) transmission lines from one side and it 

is also the highest among the three example pylons 

considered. Notably, the interior span of the transmission 

lines in the cluster model shown in Fig. 5(c) crosses the 

Yellow River which is the 2nd longest river in China and 

also the 5th longest river in the world. Incidentally, the 

cluster model selected from Prototype C has been analyzed 

for other research issues by the authors. Further information 

about the model and the prototype can be found elsewhere 

(Tian et al. 2017, Tian et al. 2018). 

Abaqus (Version 6.12), which is a commercially 

available software package, was used to develop the cluster 

model for each example pylon. In each cluster model, beam 

elements (B31) and truss elements (T3D2) were adopted for 

the pylon members and transmission lines, respectively. Up 

to 120 elements were used for the transmission line in a  

 

 

 

 

 

 

 

 

 

 

 

 

 

single span in these cluster models. Isotropic elastic 

material and tension-only elastic material properties were 

assigned to the pylon members and transmission lines, 

respectively. Masses were introduced to each cluster model 

through assigning mass densities to the materials for the 

pylon members and the transmission lines.  

SAP 2000 (Version 14), which is also a commercial 

software package, was used to develop the single-pylon 

models. Elastic frame elements were used for the pylon 

members. The forces associated with a certain acceleration 

influence vector were assigned to the corresponding DOFs 

in each single-pylon model. The displacements due to the 

application of f were used to construct the corresponding 

shape vector ϕ, followed by calculation of the approximate 

fundamental periods. 

Table 2 summarizes the fundamental periods predicted 

from the eigenvalue analyses of the cluster models and 

these from the simplified method based on the single-pylon 

models. The predictions based on Ah were also included in 

Table 2 for comparison. Note that the periods associated 

with the longitudinal and transverse directions were 

compared separately. As shown, when the simplified 

method is implemented, the predictions associated with Ar 

govern in all cases (i.e., between Av and Ar, adoption of Ar 

produces larger fundamental periods in the simplified 

method). Along the transverse direction, the errors of the  

 

Fig. 7 Masses from different members in each single-pylon model 

Table 1 Summary of properties of transmission lines 

Prototype 
Category of 

transmission lines 
Designation 

Modulus of  

elasticity (MPa) 

Cross-section  

area (mm2) 

Mass per unit  

length (kg/km) 

A 
Conductor JL/GIA-630/45 63000 674 2079.2 

Ground wire JLB20A-185 147220 182.8 1221.5 

B 
Conductor LGJ-300/40 73000 339 1133 

Ground wire JLB40-150 103600 148 696 

C 
Conductor LHBGJ-400/95 78000 501.02 1856.7 

Ground wire OPGW-180 170100 175.2 1286 
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governing predictions from the simplified method against 

the results from the rigorous eigenvalue analyses of the 

cluster models are 0.08%, 0.64% and 1.82% for the 

example pylons from Prototypes A to C, respectively. 

Along the longitudinal direction, the observed errors are 

3.12%, 3.24% and 0.7% for the example pylons from 

Prototypes A to C, respectively. The observed errors are all 

within the acceptable range, suggesting the adequacy of the 

simplified method.  

As briefly mentioned in the introduction section, 

eigenvalue analyses of the cluster models are onerous. 

Taking the cluster model from Prototype A as an example, a 

total of 482 and 486 eigenvalues have to be extracted in the 

analyses in the two orthogonal vertical planes to achieve the 

fundamental periods of Pylon 2 along the transverse and 

longitudinal directions, respectively. To identify the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eigenvalues for the vibration modes of Pylon 2, a database 

of the modal effective masses shown in Fig. 8 were 

generated. Note that each peak value in the graph suggests a 

vibration mode involving participation of a significant 

portion of the masses from the system (possibly 

participation of a pylon but not necessarily the one of 

interest). Based on a visual inspection of each mode 

associated with the peak modal effective mass, the mode 

numbers and eigenvalues associated with the fundamental 

vibration modes of Pylon 2 were identified. Compared with 

the eigenvalue analyses of the cluster model, the simplified 

method apparently requires much reduced modelling efforts 

and computational costs. 

In the simplified method, Av is introduced for the case 

in which vertical vibration of a pylon turns to be its 

fundamental vibration mode in a vertical plane of interest. 

Table 2 Comparison of analysis results 

Prototype ID Pylon ID 
Vibration direction of 

interest 

Period from 

eigenvalue 

analysis of the 

cluster model 

(sec) 

Simplified method 

Acceleration 

influence vector 

Prediction  

(sec) 

Error* 

(%) 

A 2 

Transverse 0.8627 

Ah 0.7598 11.93 

Av 0.2568 70.23 

Ar 0.8619 0.08 

Longitudinal 0.8362 

Ah 0.7831 6.35 

Av 0.2568 69.29 

Ar 0.8101 3.12 

B 2 

Transverse 0.7167 

Ah 0.6063 15.4 

Av 0.5731 20.04 

Ar 0.7121 0.64 

Longitudinal 0.6535 

Ah 0.6034 7.67 

Av 0.5731 12.3 

Ar 0.6323 3.24 

C 2 

Transverse 0.9714 

Ah 1.3582 39.82 

Av 0.3327 65.75 

Ar 0.9537 1.82 

Longitudinal 0.9201 

Ah 1.3479 46.49 

Av 0.3327 63.84 

Ar 0.9137 0.7 
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(a) Transverse direction (b) Longitudinal direction 

Fig. 8 Modal effective mass in each vibration mode of the cluster model of Prototype A 
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Among the three example pylons considered in this 

research, none exhibits such a fundamental vibration mode. 

Nevertheless, it is recommended to consider Av when 

implementing the simplified method since such a case 

theoretically can occur in a pylon with extremely flexible 

crossarms. Moreover, Ah was introduced for comparison 

purpose since the force vector associated with Ah is 

occasionally used in practice for approximating the 

fundamental periods of simple systems such as shear 

buildings (Clough and Penzien 1993). Although Rayleigh’s 

quotient usually provides excellent estimates of the 

fundamental periods of conventional civil structures even 

with a mediocre force vector (Chopra 2011), the errors in 

the fundamental periods of the pylons predicted using Ah 

vary from 11.93% to 39.82% and from 6.35% to 46.49% 

along the transverse and longitudinal directions, 

respectively. This observation suggests that the force 

vectors acceptable for conventional civil structures should 

be used with caution for pylons since the two systems have 

significantly different mass and stiffness distributions. 

 

 

4. Conclusions 
 

This research focused on development and validation of 

a simplified method for determination of the fundamental 

periods of pylons in electricity transmission systems. The 

theoretical basis underlying the simplified method is 

Rayleigh’s quotient. Compared with the rigorous but 

excessively onerous approach adopted in the current 

practice, the simplified method decreases the needed 

modelling effort and computational cost. Moreover, the 

simplified method can be conveniently implemented via a 

conventional computer program that includes a simple 

elastic structural analysis module. Based on the analyses 

conducted in this investigation, the following conclusions 

may be drawn: 

• Through analyses of three example pylons selected 

from the representative overhead electricity transmission 

systems having different design parameters, the 

simplified method was found to provide the 

fundamental periods of the pylons that are similar to the 

predictions from the rigorous eigenvalue analyses of the 

cluster models. Therefore, the simplified method can be 

used as a convenient surrogate for the tedious 

eigenvalue analyses. 

• The stiffness and mass distributions in pylons are 

significantly different from these in conventional civil 

structures. As such, the force vectors that can be used in 

Rayleigh’s quotient to reasonably approximate the 

fundamental periods of conventional civil structures 

may be inadequate for pylons. 
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