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 1. Introduction 
 

Functionally graded materials (FGMs) are a class of 

composites that have continuous variation of material 

properties from one surface to another and thus eliminate 

the stress concentration found in laminated composites. A 

typical FGM structure presents a continuous variation of 

material properties over the thickness direction by mixing 

two different materials, for example, a ceramic and a metal. 

The gradual variation of properties avoids the delamination 

failure that is common in laminated composites. 

Functionally graded materials have been used in the 

aerospace, mechanical, nuclear, and civil engineering due to 

superior heat shielding properties of ceramics and high 

toughness of metals. 

Structures like plates resting on elastic foundation can 

be found in various structural engineering fields. A two-

parameter model of Pasternak (1954) which considers the 

shear deformation between the springs had been proposed 

to describe the interaction between the plate and foundation. 

The Winkler model (1867) is a special case of Pasternak 

model by setting the shear modulus to zero. 

Bending and free vibration of functionally graded 

structures resting on elastic foundation had been studied by 

many scholars. Thai and Choi (2012) studied the free 

vibration of functionally graded plates on elastic foundation 

using a refined shear deformation theory which contains 

only four unknowns. Jodaei and Yas (2012) investigated the 

elastic foundations based on the three-dimensional theory of  
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free vibration of functionally graded annular plates on 

elasticity using state-space based differential quadrature 

method. Yas and Tahouneh (2012) investigated the free 

vibration of functionally graded annular plates on elastic 

foundations based on the three-dimensional theory of 

elasticity using the differential quadrature method (DQM). 

Akbaş (2014) studied the wave propagation analysis of edge 

cracked beams resting on elastic foundation. 

Recently, Akbaş (2015) investigated the free vibration 

analysis of edge cracked functionally graded beams resting 

on WinklerPasternak foundation. Ait Atmane et al. (2017) 

studied the effect of thickness stretching and porosity on 

mechanical response of a functionally graded beams resting 

on elastic foundations. Sayyad and Ghugal (2018) 

investigated an inverse hyperbolic theory for FG beams 

resting on Winkler-Pasternak elastic foundation. Benyoucef 

et al. (2018) studied the effect of the micromechanical 

models on the free vibration of rectangular FGM plate 

resting on elastic foundation. Mirza et al. (2018) used the 

various theories for the analysis of Laminated and FGM 

Beams. Fazzolari (2018) investigated the free vibration and 

elastic stability behaviour of three-dimensional functionally 

graded sandwich beams featured by two different types of 

porosity, with arbitrary boundary conditions and resting on 

Winkler-Pasternak elastic foundations. Khelifa et al. (2018) 

studied the buckling response with stretching effect of 

carbon nanotube-reinforced composite beams resting on 

elastic foundation. Zaoui et al. (2019) used a new 2D and 

quasi-3D shear deformation theories for free vibration of 

functionally graded plates on elastic foundations. Mahmoud 

et al. (2019) studied the effect of parameters of visco-

Pasternak foundation on the bending and vibration 

properties of a thick FG plate. In addition, in recent years, 
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many papers have been published in the studies of FGM 

structures on elastic foundations: Addou et al. (2019) 

investigated the influences of porosity on dynamic response 

of FG plates resting on Winkler/Pasternak/Kerr foundation 

using quasi 3D HSDT. Chaabane et al. (2019) developed 

analytical study of bending and free vibration responses of 

functionally graded beams resting on elastic foundation. 

Boulefrakh et al. (2019) analyze the effect of parameters of 

visco-Pasternak foundation on the bending and vibration 

properties of a thick FG plate. Boukhlif et al. (2019) used a 

simple quasi-3D HSDT for the dynamics analysis of FG 

thick plate on elastic foundation. Mahmoudi et al. (2019) 

used a refined quasi-3D shear deformation theory for 

thermo-mechanical behavior of functionally graded 

sandwich plates on elastic foundations. Semmah et al. 

(2019) analyze the thermal buckling of SWBNNT on 

Winkler foundation by non local FSDT. Karami et al. 

(2019a) studied the wave propagation of functionally 

graded anisotropic nanoplates resting on Winkler-Pasternak 

foundation. Chikr et al. (2020) used a novel four-unknown 

integral model for buckling response of FG sandwich plates 

resting on elastic foundations under various boundary 

conditions using Galerkin’s approach. Refrafi et al. (2020) 

studied effects of hygro-thermo-mechanical conditions on 

the buckling of FG sandwich plates resting on elastic 

foundations. To include certain higher order effects such as 

thickness stretching effects, various higher order shear 

deformation theories (HSDT) have been developed 

(Boutaleb et al. 2019, Addou et al. 2019, Khiloun et al. 

2019, Zarga et al. 2019, Boulefrakh et al. 2019, Boukhlif et 

al. 2019, Mahmoudi et al. 2019, Zaoui et al. 2019, 

Benrahou et al. 2019, Kaddari et al. 2020). 

Since the shear deformation effects are more 

pronounced in these structures, the first-order shear 

deformation theory and higher-order shear deformation 

theories should be used. By using these theories, although 

many papers have been devoted to study static, vibration 

and buckling analysis of FG structures such as (Draiche et 

al. 2019, Abualnour et al. 2019, Alimirzaei et al. 2019, 

Medani et al. 2019, Draoui et al. 2019, Berghouti et al. 

2019, Bourada et al. 2019, Batou et al. 2019, Tlidji et al. 

2019, Boussoula et al. 2020, Adda Bedia et al. 2019, Meksi 

et al. 2019, Hellal et al. 2019, Hussain et al. 2019, 

Belbachir et al. 2019, Mahmoud and Tounsi 2019, Sahla et 

al. 2019, Safa et al. 2019, Karami et al. 2019b, 2019c, 

2019d, 2019e).  

The aim of this work is to propose a new hyperbolic 

shear deformation beam theory with only three unknowns 

for bending and dynamics of FG thick beames resting on a 

Winkler-Pasternak foundation. The kinematics is chosen 

based on hyperbolic cosine variation of transverse shear 

stress across the thickness of the beam. The equations of 

motion for thick FG beams are obtained in the Hamilton 

principle. Effects of the power-law index, length-to-

thickness ratio and foundation parameter  on the 

displacements, stresses, and natural frequencies of FG 

beams are investigated. Due to the lack of any study on the 

mechanics of FG beams resting on Winkler-Pasternak  

 

Fig. 1 FGM Beam resting on a two parameters elastic 

foundation 

 

 

foundation, it is hoped that the present study may be 

employed as a benchmark for future works of such 

structures. 

 

 

3. Theoretical formulations 
 
3.1. Basic assumptions 
 
The assumptions of the present theory are as follows: 

• The displacements are small in comparison with the 

height of the beam and, therefore, strains involved are 

infinitesimal. 

• The transverse displacement w includes two 

components of bending wb, and shear ws. These 

components are functions of coordinates x, t only. 

),(),(),,( txwtxwtzxw sb   (1) 

• The transverse normal stress σz is negligible in 

comparison with in-plane stresses σx. 

• The axial displacement u in x-direction, consists of 

extension, bending, and shear components. 

sb uuuu  0  (2) 

The bending component ub is assumed to be similar to 

the displacements given by the classical beam theory.  

Therefore, the expression for ub can be given as 

x

w
zu b

b



  (3) 

The shear component us gives rise, in conjunction with 

ws, to the hyperbolic variation of shear strain γxz and hence 

to shear stress τxz through the thickness of the beam in such 

a way that shear stress τxz is zero at the top and bottom faces 

of the beam. Consequently, the expression for us can be 

given as 
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3.2 Kinematics and constitutive equations 
 
Based on the assumptions made in the preceding 

section, the displacement field can be obtained using Eqs. 

(1) - (5) as 

x
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zf

x

w
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
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 (),(),,( 0  (6a) 

),(),(),,( txwtxwtzxw sb   (6b) 

The strains associated with the displacements in Eq. (6) 

are
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By assuming that the material of FG beam obeys 

Hooke’s law, the stresses in the beam become 

xx zQ   )(11  and xzxz zQ   )(55  (9) 

where 
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12
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zE
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3.3. Constitutive equations 
 

In this work, a rectangular beam of uniform thickness h, 

length L and rectangular cross section b x h, made of FGM 

and supported by an elastic foundation is considered, as 

shown in Fig. 1. 

The mechanical properties of FGM such as Young’s 

modulus E and mass density ρ can be expressed as 
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where the subscripts m and c represent the metallic and 

ceramic constituents, respectively; and p is the volume 

fraction exponent. The value of p equals to zero represents a 

fully ceramic beam, whereas infinite p indicates a fully 

metallic beam. The variation of Poisson’s ratio v is 

generally small and it is assumed to be a constant for 

convenience. 

3.4. Equations of motion 
 

In order to obtain the equations of motion, the energy 

method is adopted and the total energy of structure is 

required. This will include the strain energy of the beam 

UP? UB, the strain energy of foundation UF, the potential 

energy of the load V, and the kinetic energy of mass system 

T. The strain energy of the beam can be expressed as  
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Where Nx, 𝑀𝑥
𝑏 , 𝑀𝑥

𝑠 and Qxz are the stress resultants 

defined as  
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The strain energy of the foundation can be expressed as 
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where Kw and Kp are the transverse and shear stiffness 

coefficients of the foundation, respectively. 

The variation of work done by externally transverse load 

q can be expressed as 
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The variation of the kinetic energy can be expressed as 
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(16) 

Where dot-superscript convention indicates the 
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differentiation with respect to the time variable t; ρ(z) is the 

mass density; and (I0, I1, J1, I2, J2, K2) are the mass inertias 

defined as 
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2

2

22
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dzzfzfzfzKJIJII   (17) 

Hamilton’s principle is used herein to derive the 

equations of motion. The principle can be stated in 

analytical form as 
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Substituting the expressions for U , efU , V  and 

T  from Eqs. (12), (14), (15) and (17) into Eq. (18) and 

integrating the displacement gradients by parts and setting 

the coefficients of 0u , bw  and sw to zero separately, 

the following equations of motion are obtained 
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Introducing Eq. (13) into Eq. (19), the equations of 

motion can be expressed in terms of displacements (u0, wb, 

ws) and the appropriate equations take the form 
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Where A11, D11, etc., are the beam stiffness, defined by 

 

  



2

2

222 )(),( ),(,,,,1

,,,,,,

h

h

ij

s

ij

s

ij

s

ijijij

s

ijij

dzzfzfzzfzzzgQ

HDBDBAA

 (21) 

 
 

4. Analytical solution 
 
Navier-type analytical solutions are obtained for the 

bending and free vibration analysis of functionally graded 
beams resting on two parameter elastic foundation. 
According to the Navier-type solution technique, the 
unknown displacement variables are expanded in a Fourier 
series as given below 
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Where Um, Whm, and Wsm are arbitrary parameters to be 

determined, ω is the eigenfrequency associated with mth 

eigenmode, and a=mπ / L. 

The transverse load q is also expanded in Fourier series 

as 
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Where Qm is the load amplitude calculated from 
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The coefficients Qm are given below for some typical 

loads. For the case of a sinusoidally distributed load, we 

have 
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And for the case of uniform distributed load, we have 
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Substituting Eqs. (22) and (23) into Eq. (20), the 

analytical solutions can be obtained by the eigenvalue 

equations below, for any fixed value of m. 

For free vibration problem 
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5. Results and discussions 
 
Numerical results for displacements, stresses and natural 

frequencies of functionally graded beams resting on two 

parameter elastic foundation are presented in this section to 

verify the accuracy of the present formulation. The beam is 

made of the following material properties 

Ceramic : Alumina (Al2O3) : 380cE GPa; 3.0 ; 

3960c kg/m3. 

Metal: Aluminium (Al): 70mE GPa; 3.0 ; 

2702m kg/m3. 

For simplicity, the following non-dimensional 

parameters are used  

Axial displacement : ;
2

,0100
4

0

3











h
u

Lq

hE
u m

 

Transverse displacement : ;0,
2

100
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w
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w m

Axial stress : ;
2

,
20
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Transverse shear stress :  ;0,0
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Lq

h
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Fundamental frequency : ;
 2

m

m

Eh

L 
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Finally, the non-dimensional elastic foundation 

parameters are : ,
2

hE

lK

m

w
w 

hE

K

m

p

p  . 

 

5.1. Results of bending analysis for sinusoidal load 

 

In this example, the bending response of FG beam under 

sinusoidal load is investigated. Table 1 contains 

nondimensional deflection and stresses of FG beams for 

different values of power law index p and with foundation 

parameters  pw  , . Two values of span-to-depth ratio L/h 

are considered, 5 and 20. The obtained results are compared 

with various shear deformation beam theories (i.e., the 

inverse hyperbolic theory (IHBT) of Sayyad and Ghugal 

(2018), the parabolic beam theory (PSDBT) of Reddy 

(1984) and first order beam theory (FSDBT) of Timoshenko 

(1921)). It is seen that the displacements and stresses 

obtained from the present hyperbolic theory are in excellent 

agreement with those obtained from Sayyad and Ghugal 

(2018) and PSDBT. On the contrary, the FSDBT 

underestimates the displacements and stresses. Furthermore, 

it is observed from this table that the displacements increase 

with the increase in power-law index whereas stresses are 

identical when beam is made of fully ceramic (p=0) or fully 

metal(p=∞). This is due to the fact that an increase of the 

power-law index makes FG beams more flexible i.e. 

reduces their stiffness. It is also observed from Table 1 that 

the displacement and stresses of FG beam are reduced when 

it is resting on two parameter elastic foundation i.e. Winkler 

layer and shearing layer. 

Figs. 2 and 3 show effect of power-law index and 

foundation parameter on axial displacement of FG beam 

subjected to sinusoidal load using the present hyperbolic 

beam theory (HBT). Figs. 4 and 5 show non-linear variation 

of bending stress for p=1, 5 and 10 and linear variation for 

p=0 and ∞. Through-the-thickness variations of transverse 

shear stresses are shown in Figs. 6 and 7 for various values 

of power law index and foundation parameters. 
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Fig. 2 Non-dimensional axial displacement through the 

thickness (L/h = 5, non-dimensional elastic foundation 

parameters are : w=0.1 and p=0) 
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Fig. 3 Non-dimensional axial displacement through the 

thickness (L/h = 5, non-dimensional elastic foundation 

parameters are : w=0.1 and p=0.1) 

 

-0,50

-0,25

0,00

0,25

0,50

-4 -2 0 2 4 6 8


w
=0.1, 

p
=0

 Ceramic

 p=1

 p=5

 p=10

 Metal

 

Fig. 4 Non-dimensional axial stress through the thickness 

(L/h = 5, non-dimensional elastic foundation parameters 

are : w=0.1 and p=0) 
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Fig. 5 Non-dimensional axial stress through the thickness 

(L/h = 5, non-dimensional elastic foundation parameters 

are : w=0.1 and p=0.1) 
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Fig. 6 Non-dimensional transverse shear stress through the 

thickness (L/h = 5, non-dimensional elastic foundation 

parameters are : w=0.1 and p=0) 
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Fig. 7 Non-dimensional transverse shear stress through the 

thickness (L/h = 5, non-dimensional elastic foundation 

parameters are : w=0.1 and p=0.1) 
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5.2 Results for free vibration analysis 
 

The non-dimensional natural frequencies of a simply 

supported FG beam obtained from the present hyperbolic 

theory (HSDBT) are given in Table 1 for different values of 

power-law index p. The present results are compared with 

those presented by Sayyad and Ghugal (2018), Reddy 

(1984), Simsek (2010), Timoshenko (1921) and Bernoulli-

Euler (1744). An excellent agreement between the present 

solutions with the previously published results are obtained. 

Table 3 show the first nondimensional frequencies 𝜔̅ of 

FG beams resting on two parameters elastic foundation 

obtained from the present hyperbolic beam theory 

(HSDBT) for different values of power law index p and 

span-to-depth ratio L/h. The present results are compared 

with those presented by Sayyad and Ghugal (2018). The 

examination of table 3 reveal that the frequencies obtained 

using the present theory are in excellent agreement with the 

previously published results. It is observed that an increase 

in the value of the p index leads to a reduction of 

fundamental frequencies and a decrease in the value of 

elasticity modulud. Also, it is observed that the natural 

frequencies are increased when beam is resting on two 

parameters elastic foundation. 

 

 

6. Conclusions 
 

A New hyperbolic shear deformation beam theory is 

proposed for bending and free vibration analysis of 

functionally graded beams under sinusoidal loads resting on 

two parameters elastic foundation. The theory gives 

hyperbolic cosine variation of transverse shear stress across 

the thickness of the beam. Effects of the power-law index, 

length-to-thickness ratio and foundation parameter on the 

displacements, stresses, and natural frequencies of FG 

beams are investigated. Numerical examples show that the 

proposed theory gives solutions which are almost identical 

with those obtained using other shear deformation theories. 

Consequently, the present model can be used as a reference 

to check the efficiency of approximate numerical methods.  

The extension of this study is also envisaged for general 

boundary conditions and different types of FG beams 

subjected to different loading (mechanical, thermal, 

buckling, etc.). 
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Table 1 Non-dimensional displacements and stresses of functionally graded beam resting on two parameter 

elastic foundation and subjected to sinusoidal load 

p ξw ξp Theory 
L/h=5 L/h=20 

𝑢̅ 𝑤̅ 𝜎̅𝑥 𝜏̅𝑥𝑧 𝑢̅ 𝑤̅ 𝜎̅𝑥 𝜏̅𝑥𝑧 

0 

0 0 

Present 0.7244 2.5018 3.0888 0.4641 0.1784 2.2839 12.171 0.4645 

Sayyad et al. (2018) 0.7253 2.5019 3.0922 0.4800 0.1784 2.2839 12.171 0.4806 
Reddy 1984 0.7251 2.5020 3.0916 0.4769 0.1784 2.2838 12.171 0.4774 

Timoshenko (1921) 0.7129 2.0523 3.0396 0.2653 0.1782 2.2839 12.158 0.2653 

0.1 0 

Present 0.6818 2.3545 2.9069 0.4368 0.0932 1.1935 6.3604 0.2428 
Sayyad et al. (2018) 0.6826 2.3547 2.9102 0.4517 0.0932 1.1935 6.3608 0.2511 

Reddy 1984 0.6824 2.3547 2.9096 0.4488 0.0932 1.1935 6.3606 0.2495 

Timoshenko (1921) 0.6716 2.3205 2.8607 0.2499 0.0932 1.1929 6.3539 0.1387 

0.1 0.1 

Present 0.4313 1.4893 1.8387 0.2763 0.0163 0.2089 1.1135 0.0425 

Sayyad et al. (2018) 0.4317 1.4894 1.8407 0.2857 0.0163 0.2090 1.1136 0.0440 

Reddy 1984 0.4316 1.4894 1.8403 0.2839 0.0163 0.2090 1.1136 0.0437 
Timoshenko (1921) 0.4271 1.4756 1.8093 0.1589 0.0163 0.2089 1.1124 0.0243 

1 

0 

0 

 

 

Present 1.7782 4.9455 4.7809 0.4641 0.4399 4.5774 18.813 0.4645 

Sayyad et al. (2018) 1.7796 4.9441 4.7867 0.5248 0.4400 4.5774 18.814 0.5245 
Reddy 1984 1.7793 4.9458 4.7857 0.5243 0.4400 4.5773 18.813 0.5249 

Timoshenko (1921) 1.7588 4.8807 4.6979 0.5376 0.4397 4.5734 18.792 0.5376 

0.1 0 

Present 1.5826 4.4013 4.2548 0.4130 0.1554 1.6169 6.6453 0.1641 
Sayyad et al. (2018) 1.5838 4.4015 4.2600 0.4657 0.1554 1.6169 6.6458 0.1851 

Reddy 1984 1.5835 4.4015 4.2591 0.4666 0.1554 1.6169 6.6456 0.1854 

Timoshenko (1921) 1.5675 4.3499 4.1871 0.4791 0.1554 1.6164 6.6418 0.1900 

0.1 0.1 

Present 0.7587 2.1099 2.0397 0.1980 0.0211 0.2189 0.9000 0.0222 

Sayyad et al. (2018) 0.7592 2.1100 2.0422 0.2232 0.0211 0.2190 0.9001 0.0251 

Reddy 1984 0.7591 2.1100 2.0417 0.2237 0.0211 0.2190 0.9001 0.0251 
Timoshenko (1921) 0.7560 2.0981 2.0195 0.2311 0.0211 0.2190 0.8998 0.0257 

5 

0 

0 

 

 

Present 2.8621 7.7643 6.5960 0.3713 0.7068 6.9535 25.792 0.3718 

Sayyad et al. (2018) 2.8649 7.7739 6.6079 0.5274 0.7069 6.9541 25.795 0.5313 
Reddy 1984 2.8644 7.7723 6.6057 0.5314 0.7069 6.9540 25.794 0.5323 

Timoshenko (1921) 2.8250 7.5056 6.4382 0.9942 0.7062 6.9373 25.752 0.9942 

0.1 0 

Present 2.3968 6.5022 5.5238 0.3109 0.1869 1.8389 6.8208 0.0983 
Sayyad et al. (2018) 2.3987 6.5089 5.5327 0.4416 0.1869 1.8389 6.8212 0.1397 

Reddy 1984 2.3984 6.5078 5.5310 0.4450 0.1869 1.8389 6.8211 0.1408 

Timoshenko (1921) 2.3786 6.3198 5.4210 0.8371 0.1871 1.8377 6.8221 0.2634 

0.1 0.1 

Present 0.9203 2.4967 2.1209 0.1194 0.0226 0.2226 0.8258 0.0119 

Sayyad et al. (2018) 0.9205 2.4976 2.1231 0.1694 0.0226 0.2226 0.8258 0.0170 

Reddy 1984 0.9204 2.4975 2.1226 0.1708 0.0226 0.2226 0.8258 0.0170 
Timoshenko (1921) 0.9294 2.4693 2.1181 0.3271 0.0227 0.2226 0.8264 0.0319 

10 

0 
0 
 

 

Present 2.9961 8.6475 7.8981 0.4082 0.7379 7.6417 30.921 0.4088 

Sayyad et al. (2018) 2.9995 8.6539 7.9102 0.4237 0.7380 7.6422 30.923 0.4263 

Reddy 1984 2.9989 8.6530 7.9080 0.4226 0.7379 7.6421 30.999 0.4233 
Timoshenko (1921) 2.9488 8.3259 7.7189 1.2320 0.7372 7.6215 30.875 1.2320 

0.1 0 

Present 2.4635 7.1104 6.4942 0.3356 0.1819 1.8837 7.6221 0.1008 

Sayyad et al. (2018) 2.4659 7.1147 6.5033 0.3484 0.1819 1.8838 7.6225 0.1051 
Reddy 1984 2.4655 7.1141 6.5016 0.3474 0.1819 1.8838 7.5606 0.1043 

Timoshenko (1921) 2.4408 6.8914 6.3891 1.0197 0.1821 1.8825 7.6262 0.3043 

0.1 0.1 

Present 0.8944 2.5814 2.3577 0.1219 0.0216 0.2233 0.9034 0.0119 
Sayyad et al. (2018) 0.8950 2.5820 2.3601 0.1264 0.0216 0.2233 0.9035 0.0125 

Reddy 1984 0.8948 2.5819 2.3596 0.1261 0.0215 0.2233 0.8934 0.0124 

Timoshenko (1921) 0.9039 2.5520 2.3660 0.3776 0.0216 0.2233 0.9045 0.0361 

  

0 
0 
 

 

Present 3.9327 13.581 3.0888 0.4641 0.9685 12.398 12.171 0.4645 

Sayyad et al. (2018) 3.9371 13.582 3.0922 0.4800 0.9677 12.329 12.171 0.4806 

Reddy 1984 3.9363 13.582 3.0916 0.4769 0.9686 12.398 12.171 0.4774 
Timoshenko (1921) 3.8702 12.552 3.0396 0.3183 0.9676 12.398 12.158 0.3183 

0.1 0 

Present 2.9359 10.139 2.3058 0.3465 0.1625 2.0805 2.0423 0.0779 

Sayyad et al. (2018) 2.9391 10.139 2.3084 0.3583 0.1631 2.0785 2.0425 0.0806 

Reddy 1984 2.9385 10.139 2.3079 0.3560 0.1625 2.0805 2.0424 0.0801 

Timoshenko (1921) 2.8891 10.140 2.2691 0.2376 0.1624 2.0805 2.0403 0.0534 

0.1 0.1 

Present 0.8384 2.8954 0.6585 0.0989 0.0176 0.2258 0.2217 0.0085 
Sayyad et al. (2018) 0.8393 2.8955 0.6592 0.1023 0.0177 0.2258 0.2217 0.0088 

Reddy 1984 0.8392 2.8955 0.6591 0.1017 0.0176 0.2258 0.2217 0.0087 

Timoshenko (1921) 0.8250 2.8955 0.6479 0.0679 0.0176 0.2258 0.2214 0.0058 
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Table 2 Non-dimensional natural frequencies of simply supported functionally graded beam 

p 

L/h Theory 0 1 2 5 10   

5 

Present 5.1529 3.9905 3.6269 3.4028 3.2826 2.6774 

Sayyad et al. (2018) 5.1453 3.9826 3.6184 3.3917 3.2727 2.6734 

Reddy (1984) 5.1527 3.9904 3.6264 3.4012 3.2816 2.6773 

Simsek (2010) 5.1527 3.9904 3.6261 3.4012 3.2816 2.6773 

Timoshenko (1921) 5.1524 3.9902 3.6343 3.4311 3.3134 2.6771 

Bernoulli–Euler (1744) 5.3953 4.1484 3.7793 3.5949 3.4921 2.8033 

20 

Present 5.4603 4.2051 3.8362 3.6486 3.5390 2.8371 

Sayyad et al. (2018) 5.4603 4.2050 3.8361 3.6485 3.5389 2.8371 

Reddy (1984) 5.4603 4.2050 3.8361 3.6485 3.5389 2.8371 

Simsek (2010) 5.4603 4.2050 3.8361 3.6485 3.5389 2.8371 

Timoshenko (1921) 5.4603 4.2050 3.8367 3.6508 3.5415 2.8371 

Bernoulli–Euler (1744) 5.4777 4.2163 3.8472 3.6628 3.5547 2.8461 

Table 3 Non-dimensional flexural natural frequencies of functionally graded beams resting on elastic 

foundation 

p 

L/h Mode ξw ξp Theory 0 1 2 5 10   

5 

1 

0 0 
Present 5.1529 3.9905 3.6269 3.4028 3.2826 2.6774 

Sayyad et al. (2018) 5.1453 3.9826 3.6184 3.3917 3.2727 2.6734 

0.1 0 
Present 5.3116 4.2299 3.9051 3.7183 3.6199 3.0987 

Sayyad et al. (2018) 5.3038 4.2216 3.8961 3.7066 3.6094 3.0942 

0.1 0.1 
Present 6.6785 6.1088 5.9937 5.9989 6.0063 5.7979 

Sayyad et al. (2018) 6.6689 6.0973 5.9810 5.9830 5.9909 5.7903 

2 

0 0 
Present 17.8816 14.0102 12.644 11.556 11.031 9.2911 

Sayyad et al. (2018) 17.589 13.754 12.388 11.260 10.748 9.1392 

0.1 0 
Present 17.926 14.077 12.722 11.649 11.132 9.4160 

Sayyad et al. (2018) 17.633 13.820 12.465 11.351 10.848 9.2623 

0.1 0.1 
Present 19.603 16.492 15.498 14.845 14.573 13.444 

Sayyad et al. (2018) 19.287 16.200 15.200 14.493 14.224 13.240 

3 

0 0 
Present 34.205 27.095 24.319 21.747 20.569 17.773 

Sayyad et al. (2018) 32.324 25.538 22.812 20.117 19.003 16.794 

0.1 0 
Present 34.228 27.128 24.359 21.796 20.623 17.837 

Sayyad et al. (2018) 32.346 25.570 22.849 20.163 19.053 16.855 

0.1 0.1 
Present 36.194 29.939 27.628 25.718 24.929 22.812 

Sayyad et al. (2018) 34.223 28.261 25.980 23.881 23.1.7 21.626 

20 

1 

0 0 
Present 5.4603 4.2051 3.8362 3.6486 3.5390 2.8371 

Sayyad et al. (2018) 5.4603 4.2050 3.8361 3.6484 3.5389 2.8371 

0.1 0 
Present 7.5533 7.0752 7.0185 7.0950 7.1281 6.9259 

Sayyad et al. (2018) 7.5533 7.0751 7.0184 7.0948 7.1279 6.9259 

0.1 0.1 
Present 18.052 19.225 19.753 20.390 20.704 21.023 

Sayyad et al. (2018) 18.052 19.224 19.752 20.390 20.703 21.022 

2 

0 0 
Present 21.573 16.635 15.162 14.377 13.928 11.209 

Sayyad et al. (2018) 21.571 16.631 15.158 14.370 13.922 11.208 

0.1 0 
Present 22.192 17.575 16.255 15.603 15.232 12.858 

Sayyad et al. (2018) 22.189 17.571 16.250 15.596 15.226 12.857 

0.1 0.1 
Present 39.517 39.737 40.232 41.168 41.634 41.619 

Sayyad et al. (2018) 39.513 39.730 40.223 41.157 41.624 41.615 

3 

0 0 
Present 47.594 36.769 33.471 31.587 30.542 24.729 

Sayyad et al. (2018) 47.569 36.740 33.440 31.543 30.505 24.716 

0.1 0 
Present 47.875 37.199 33.975 32.158 31.153 25.513 

Sayyad et al. (2018) 47.851 37.171 33.943 32.114 31.116 25.499 

0.1 0.1 
Present 68.387 64.919 64.576 65.312 65.696 64.387 

Sayyad et al. (2018) 68.353 64.871 64.523 65.245 65.633 64.358 
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