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 1. Introduction 
 

Building structures with irregularities are more 

vulnerable to seismic damage during strong earthquakes. In 

such buildings, the torsional behavior is one of the most 

frequent sources of structural damages and failures because 

the demanded strength and inter-story drift at certain parts 

of the structure increase due to torsion beyond those 

required when translational deformation occurs alone. 

Despite the fact that severe damages or failures of building 

structures in inelastic torsional responses are of major 

interest to engineers and researchers, regulations provided 

by current codes focus only on the elastic behavior. 

ASCE 7-10 (2010) specifies two elastic torsion design 

approaches. One uses an equivalent force (static) procedure, 

“Where diaphragms are not flexible, the design shall 

include the inherent torsional moment resulting from 

eccentricity between the locations of the center of mass 

(CM) and the center of rigidity (CR) plus the accidental 

torsional moments caused by assumed displacement of the 

center of mass each way from its actual location by a 

distance equal to 5% of the dimension of the structure 

perpendicular to the direction of the applied forces. Where  
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earthquake forces are applied concurrently in two 

orthogonal directions, the required 5% displacement of the 

center of mass need not be applied in both of the orthogonal 

directions at the same time but shall be applied in the 

direction that produces the greater effect.” 

The second uses dynamic analysis such as modal 

response spectrum analysis or time history analysis, where 

the CM at each story is shifted from its original location in 

each direction by a distance equal to the accidental 

eccentricity (ea). The most unfavorable results in terms of 

member deformations and forces of the structure from 

dynamic analyses of four positions of the CM in each floor 

are used for the design.  

Although ASCE 7-10 (2010) does not explicitly provide 

any equation for static design torsion moment, the static 

design eccentricity, ed, is defined with Eqs. (1) and (2) with 

the situation of static torsion described by Fig. 1(a) (De la 

Llera and Chopra 1995): 

d se e b    (1) 

d se e b    (2) 

where es is the static eccentricity representing the 

distance between the center of mass (CM) and the center of 

stiffness or rigidity (CS or CR); βb is the accidental 

eccentricity (ea) which is included in order to consider 

torsional effects caused by uncertainties of the CM and the 

CS, the rotational component of ground motion, and other 

uncertainties that are not particularly considered; b is the  
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plan dimension of the building perpendicular to the 

direction of ground motion; and α, β, and δ are code-

specified coefficients whose values vary among building 

codes: α =δ =1 and β = 0.05 in the ASCE 7-10 (2010); α 

=1.5, δ=1, and β=0.1 in the Mexico Federal District Code; 

and α =1.5, δ =0.5, and β = 0.1 in the National Building 

Code of Canada (De la Llera and Chopra 1995). 

Most researchers in the past conducted studies on the 

elastic behavior of earthquake-induced torsion in building 

structures based on simplified and idealized models. Some 

of the publications are discussed below:   

De la Llera and Chopra (1994a) have stated the concept 

and purpose of accidental torsion as “The accidental torsion 

is introduced to account for building torsion arising from 

discrepancies between the mass, stiffness, and strength 

distributions used in analysis and true distributions at the 

time of an earthquake; torsional vibrations induced by a 

rotational motion of the building base; and other sources of 

torsion not considered explicitly in analysis.” They have 

mentioned the impact of accidental torsion on design based 

on measured records of three nominally symmetric plan 

building structures: “Although conceptually appealing, the 

accidental torsion provision in building codes is a 

refinement that has a small influence on the sizing and 

detailing of members and joints for these buildings, 

especially when considered in the context of many larger 

approximations inherent in structural design. This 

investigation supports the experience of many practicing 

structural engineers that building design is influenced very 

little by considering the accidental eccentricity of ± 0.05b, a 

code requirement that is cumbersome to implement in 

design practice.” 

According to Basu et al. (2014), “Accidental torsion is 

used to indirectly account for: (a) plan distributions of 

reactive mass that differ from those assumed in design, (b) 

variations in the mechanical properties of structural 

components in the seismic force-resisting system, (c) non-

uniform yielding of components in the seismic force-

resisting system, and (d) torsional ground motion.” 

From this summary, it is somewhat surprising that the 

use of accidental torsion is extended to indirectly account 

for the non-uniform yielding of the component in the 

seismic force-resisting system in controlling inelasti 

deformations, although the static eccentricity model c  

 

 

including accidental eccentricity shown in Fig. 1(a) is 

entirely based on the linear elastic behavior. 

De la Llera and Chopra (1994b) have assessed 

differences between increase in building responses due to 

accidental eccentricity as estimated by code static and 

dynamic analyses for symmetric and asymmetric single and 

multi-story buildings. Their results have indicated that these 

two approaches predict significantly different increases in 

design forces resulting from accidental eccentricity. To 

avoid this discrepancy between design forces measured by 

code static and dynamic analyses, a new torsion design 

approach has been proposed by De la Llera and Chopra 

(1995). This approach can estimate an increase in 

displacements at the edge of a building resulting from all 

sources of accidental torsion as a function of the ratio of the 

plan dimension to the radius of gyration, b/r, and the 

fundamental frequency ratio of the uncoupled torsional and 

lateral motions, Ω. The normalized edge displacement, ub/2 

(which occur at the distance of the plan dimension, b/2, 

from the CM), due to accidental torsion was given as a 

function of Ω. The proposed new procedure has four 

advantages: (1) it avoids the need for additional structural 

analyses to account for the effect of accidental torsion; (2) it 

includes effects of all sources of accidental torsion; (3) it 

gives a unique value for the increase in a design force due 

to accidental torsion in the building; and (4) the procedure 

explicitly states what the expected increase is in design 

force due to accidental torsion. This approach was later 

examined by Lin et al. (2001) using measured accidental 

torsion obtained from recorded data of earthquake 

responses of 12 nominally symmetrical actual buildings. It 

appeared to be sufficiently accurate for use in design 

applications accounting for accidental torsion. However, 

these studies (De la Llera and Chopra 1994b, 1995, Lin et 

al. 2001) mainly focused on the effect of accidental torsion 

on symmetric-plan building structures with moderate and 

longer periods. 

Lumantarna et al. (2018) proposed a Generalized Force 

Method (GFM), which is essentially a static analysis 

procedure and is introduced to model the seismically 

induced displacement demand of low-rise, or medium-rise, 

buildings featuring uni-axial or bi-axial asymmetry based 

on the assumption of linear elastic behavior. 

Algebraic expressions have been presented to provide 

   
(a) Code static eccentricity model (b) FEMA 454 eccentricity model (c) Eccentricity model in this study 

Fig. 1 Eccentricity models 
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estimates for the edge displacement ratio taking into 

account the effects of dynamic torsional actions. The 

expressions have been developed for buildings featuring 

uni-axial and bi-axial asymmetry. A parametric study 

conducted by varying torsional stiffness properties and 

eccentricity values in both directions indicate that buildings 

with high torsional stiffness are less sensitive to the 

variations in the value of the eccentricity in both directions. 

The uni-axial asymmetrical building models is shown to 

generally result in a conservative prediction of the edge 

displacement. Also, the maximum displacement of bi-axial 

asymmetrical building models is shown to be less sensitive 

to the variations in the value of the eccentricity in the 

perpendicular direction. 

In addition to the above studies on the accidental torsion 

in the elastic responses of TB building structure, a major 

portion of research have been devoted to the inelastic 

behavior of TU structures, and some representative 

publications among them are introduced below:  

Chandler et al. (1995) have investigated the influence of 

accidental eccentricity on the inelastic seismic torsional 

effect in a building. When calculating the design 

eccentricity in Eqs. (1) and (2) for the purpose of 

conducting inelastic dynamic analyses, the eccentricity 

provision β = 0.05 is a reasonable value for torsionally-

balanced (TB) systems. However, for torsionally-

unbalanced (TU) systems subject to dynamic torsional 

effects, values of β > 0.05 are appropriate. Single-story TU 

structural models with three y-direction beam-column 

elements, which provide earthquake resistance and support 

a rigid floor diaphragm, were adapted in order to investigate 

effects of new approaches on the ductility and deformation 

demands. The authors suggested changing values of 

parameters α, δ, and β of the design eccentricity by reducing 

β to a minimum could accordingly increase α and δ. The 

deformation demands appeared to be satisfactory for 

systems with moderate torsional stiffness but somewhat 

over-conservative for systems with low torsional stiffness.  

DeBock et al. (2014) have quantified the effect of 

accidental torsion design requirements of codes such as 

ASCE/SEI 7 on building collapse capacities or collapse 

risks. To evaluate the building collapse capacity, dynamic 

analysis was performed for 230 archetypical buildings 

designed with and without accidental torsion design 

provisions. The conclusion of their study was “This study 

finds that the ASCE/SEI 7 accidental torsion design 

requirements are only significant (i.e., affecting collapse 

capacity by 5% or more) for seismic design Category B 

buildings with torsional irregularity ratio > 1.4 and for 

seismic design Category D buildings with torsional 

irregularity ratio > 1.2. When viewed in terms of need, this 

study found that accidental torsion design requirements are 

typically not needed (i.e., need < 5%) for any SDC until 

torsional irregularity ratio > 1.4.” 

Stathopoulos and Anagnostopoulos (2010) have 

investigated the significance and effectiveness of accidental 

eccentricity using the inelastic model and found that the 

effectiveness of accidental design eccentricity is limited, 

opposing the desired effects in the inelastic range. 

Furthermore, this provision imposes additional 

computational requirements on designers and increases 

structural costs. Hence, they have strongly suggested that 

the code should abolish accidental design eccentricity 

provisions for eccentric buildings and only keep them for 

symmetric buildings. This idea was further reinforced by 

statements of Anagnostopoulos et al. (2015), insisting that 

the accidental torsion has little effect on member sizing and 

on making the ductility demand distribution more uniform 

in the plan; and that “…more and more people are 

becoming aware that the vast majority of published work, 

including most of the papers with code assessment, was 

based until recently on crude oversimplification and 

assumption, leaving out essential properties and 

characteristics of actual buildings. As a consequence, even 

qualitative conclusions are now questionable and as it has 

been shown, erroneous trends were often predicted.” 

The effect of the transverse frames on the elastic and 

inelastic seismic demand of TU structures was studied and 

few researches are introduced as follows:   

Lam et al. (2016) have suggested a simplified method 

for assessing seismic drifts of low-rise torsionally-

unbalanced building structures in a low-to-moderate 

seismicity region using acceleration-displacement response 

spectrum (ADRS) diagrams. In their study, they ignored the 

contribution of the transverse frame perpendicular to the 

direction of the excitation to torsional resistance. Hwang et 

al. (2017) have investigated the effect of transverse frames 

on the seismic drift demand in an extension of the study by 

Lam et al. (2016). Comparing results from these two studies 

show that there is a significant difference in drift ratio due 

to the presence or absence of transverse frame 

perpendicular to the direction of the excitation. 

Humar and Kumar (1999) have conducted nonlinear 

dynamic analysis of a single-story building structure in 

order to investigate the effect of orthogonal frames in 

inelastic torsional responses. They also verified the simple 

static plastic mechanism approach suggested by Paulay first 

(1998) which could estimate the displacement pattern 

considering inelastic torsional effects on the seismic 

response of ductile building structures classified as either 

“torsionally unrestrained” or “restrained” systems based on 

the presence or absence of orthogonal frames, respectively. 

They indicated that displacements obtained by the static 

plastic mechanism approach for both torsionally 

unrestrained and torsionally restrained systems differ 

significantly from those obtained by dynamic analysis since 

the existence of inertial torsional moment (Ttotal) in Fig. 1(c) 

was ignored in the study by Paulay (1998). Furthermore, 

results of experimental investigations of a 17-story high-rise 

torsional unbalance piloti-type RC building (Ko and Lee 

2006) and a five-story low-rise torsional unbalanced RC 

structure (Lee and Hwang 2015) confirmed the existence of 

large Ttotal at the CM.  

The definition of eccentricity in the code static 

eccentricity model in Fig. 1(a) differs from the general 

conception of eccentricity by engineers as given in 

“designing for earthquake - a Manual for architects” 

(FEMA 454 2006) (see Fig. 1(b)): “Torsional forces are 

created in a building by a lack of balance between the 

location of the resisting elements and the arrangement of 
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the building mass. Engineers refer to this as eccentricity 

between the center of mass and the center of resistance, 

which makes a building subjected to ground motion rotate 

around its center of resistance, creating torsion a twisting 

action in plan, which results in undesirable and possibly 

dangerous concentrations of stress.” 

According to FEMA 454 (2006), eccentricity is referred 

to as the resistance eccentricity (ey) defined as the distance 

between the center of mass and the center of resistance as 

shown in Fig. 1(b), which is conceptually different from the 

code static design eccentricity, ed, defined as the arm length 

about the center of rotation as shown in Fig. 1(a). 

The code static eccentricity model has two critical 

shortcomings: (1) the negation of the inertial torsional 

moment, Ttotal, at the CM, particularly for TU building 

structures, and (2) the confusion caused by the discrepancy 

in the definition of eccentricity ed in codes and ey=Tx/Vx 

which is the eccentricity commonly used by engineers such 

as in FEMA454 (2006). To overcome these shortcomings, a 

resistance eccentricity model that can accommodate the 

inertial torsional moment, Ttotal, at the CM is developed in 

Fig. 1(c) with advantages of (1) the recognition of the 

existence of Ttotal at the CM, (2) the avoidance of the 

confusion by using ey instead of ed, and (3) a clear 

relationship of applied inertial forces at the CM and 

resisting forces as follows. 

      

total x y xi yi yi xi

y x x y

T T T V d V d

e V e V

   

 

   (3) 

/ ,  /  , /y x x x y y y total xe T V e T V T V    (4) 

where 
 and x xi y yiV V V V   ; i represents frame 

numbers in X and Y directions, respectively; Ttotal is the sum 

of torsional moments resisted to by X-directional (Tx) and 

Y-directional (Ty) frames; and dxi and dyi are distances of the 

i-th frame in X and Y directions, respectively, from the CM 

(see Fig. 1(c)). In the resistance eccentricity model outlined 

in Fig. 1(c), general relationships of forces in a single-story 

building under earthquake can be described with inertial 

forces (Vx, Vy, Ttotal) at the CM and resisting resultant shear 

forces located at eccentricities ex, ey and ηy as shown in Eqs. 

(3) and (4).  

Very few studies have examined the adequacy of the 

basic concept (or assumption) of the current code static 

torsional design approach in the elastic response, 

particularly for TU buildings. The direct relationship 

between elastic shear and torsion is also yet to be 

investigated in detail. In this study, using the resistance 

eccentricity model as described above (Fig. 1(c)), the 

following two interactive relations between shear and 

torsion are proposed: (1) seismic responses of a structure 

such as δedge/δcenter, μx=θt/δcenter, ηy=Ttotal/Vx, and Tx/Ttotal at 

instants of peak edge-frame drifts are given as functions of 

ey=Tx/Vx , and (2) hysteretic relationships between shear and 

torsion in forces and deformations are bounded by 

ellipsoids constructed by using two adjacent dominant 

modes. Demands estimated using these two interactive 

relations are compared with those from shake-table tests of 

two TU building structures (a 1:5-scale five-story 

reinforced concrete (RC) building model and a 1:12-scale 

17-story RC building model) under the service level 

earthquake (SLE). The significance of these findings is then 

discussed in detail with respect to the code static torsion 

design. 

 

 

2. Basic concepts for prediction of seismic elastic 
torsional demand 

 
2.1 Prediction of critical torsional behaviors as 

functions of resistance eccentricity 
 

For a general single-story two-way asymmetric 

structural system, the story force vector {Vx, Vy, Ttotal} at the 

CM is related to the inter-story drift vector {δx, δy, θt} at the 

CM as shown in Eq. (5) at instants of peak edge-frame 

drifts when the velocity becomes zero and, therefore, the 

resisting force by frames becomes equal to the inertia force 

in the dynamic equilibrium equation. Using Eq. (5), ratios 

of the peak edge-frame drifts to the central drift 

(δedge/δcenter), the total torsional moment to the shear force 

(ηy = Ttotal/Vx), and the torsional moment resisted by X-

directional frames to the total torsional moment (Tx/Ttotal) 

are derived as functions of the resistance eccentricity, ey = 

Tx/Vx in Eqs. (7) - (12) (For details, refer to Appendix A). 

Even when the structure has a bi-directional asymmetric 

plan, γy = Vx/Vy affects only ey = Tx/Vx, ηy = Ttotal/Vx and 

Tx/Ttotal as shown in Eqs. (8) - (10). 

0

0

x X X x

y Y Y y
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x

X
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


  (6a) 

y t Y

y

Y
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K
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


  (6b) 

total sy x sx y

t

s

T e V e V

K


 

  (6c) 

where KX and KY are the story lateral stiffness in X and Y 

directions, respectively; KθX = esyKX and KθY = esxKY are the 

coupled lateral and torsional stiffness in X and Y directions, 

respectively; Kθθ is the torsional stiffness about the CM, 

which is the sum of KθθX and KθθY, the contributions by X 

and Y directional frames, respectively; KθS=( KθθX - 

esy
2KX)+(KθθY - esx

2KY) is the torsional stiffness about the CS, 

which is the sum of KθSX and KθSY, the contributions by X 

and Y directional frames, respectively. 

x x X t X
y

x x X t X

T K K
e

V K K

 



 

 


 



 
(7) 

Substituting Eqs. (6a) and (6c) and using ηy=Ttotal/Vx to  
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Table 1 Values of P1, P2, Ae1 and Be1 for five-story and 17-

story models 

 Five-story model 17-story model 

Vx (kN) 
P1 29.9 18.8 

P2 15 9.85 

Tx (kNm) 
P1 11.3 3.57 

P2 -7.59 -3.29 

Ae1 1.41 1.41 

Be1 0.83 1.06 

 

 

Eq. (7), the following equations are obtained: 
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where  

γy=Vx/Vy , 
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, ,1   or  1
stiff flex

x y stiff x y flex

x x

d d
 

 
 

     (12) 

where δstiff and δflex are story drifts at the stiff edge and the  

flexible edge, respectively; and dy,stiff and dy,flex are distances 

of the stiff edge and flexible edge, respectively, from the 

CM. The reliability of Eqs. (7) - (12) is evaluated by  

 

 

comparing with experimental data. 

 

2.2 Bounding of seismic demands with ellipses 
 

Lee and Hwang (2015) have suggested that instead of 

using a specific value of eccentricity as a design parameter, 

the demand in torsion can be determined in the direct 

relationship with the base or story shear represented as an 

ellipse constructed with the maximum points in its principal 

axes located by two adjacent dominant modal spectral 

values. In this study, hysteretic relationships between shear 

and torsion in forces and deformations are bounded by the 

ellipsoids constructed using two adjacent dominant modes. 

This approach can provide a simple but transparent 

conceptual design tool.  

The elliptical boundaries given in Figs. 2(b) and 2(c) are 

derived in 4 steps: (1) normalize the coordinates of the 

maximum points P1(Vx1, Tx1) and P2 (Vx2, Tx2) of ellipsoid 

by (Vx1/ Vx1, Tx1/ Tx1) and (Vx2/ Vx1, Tx2/ Tx1), respectively; 

(2) construct the ellipse e1 (with ϕ=0) with 

2 2

1 1 1 1 1( / ) ( / ) 2e x x x xA V V T T  
 and 

2 2

1 2 1 2 1( / ) ( / )e x x x xB V V T T 
in 

Fig. 2(a); and the coordinates Xe1(t) and Ye1(t) of ellipse e1 

for the range of t , 0 ≤ t ≤ 2π, will be  Ae1cos(t) and 

Be1sin(t), respectively, shown as the blue ellipsoid in Fig. 

2(a); (3) the coordinates of ellipse e2, Xe2(t) and Ye2(t), are 

determined by Eq. (13) for an angle of ϕ= 45° (or 135° if 

Vx1 is negative) shown as the red ellipsoid in Fig. 2(a); and 

finally (4) the elliptical boundary for the hysteretic relation 

of Tx-Vx will be obtain by multiplying Xe2(t) by the Vx1 and 

Ye2(t) by Tx1. Elliptical boundaries for the five-story model 

and the 17-story model are constructed by using the 

information in Table 1. The determination of points P1 and 

P2 in Table 1 will be explained in detail later in this paper. 
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(13) 

where t is the parametric angle which will go to full circle, 

0 ≤ t ≤ 2π; Ae1 is the radius in the major axis; Be1 is  

   
(a) (b) (c) 

Fig. 2 (a) Typical ellipse with ϕ=0 and 45°, (b) relationships between Tx-Vx for five-story model and (c) relationships between 

Tx-Vx for 17-story model 
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(a) Original model 

 
(b) Strengthened model 

Fig. 3 Overview of earthquake simulation test set-up for the 

five-story model: (a) Original model and (b) Strengthened 

model (Lee et al. 2011, 2013) 

 

 

the radius in the minor axis; and ϕ is the angle between the 

X-axis and the major axis of the ellipse. 

 

 

3. Description of experimental RC TU building 
structure models 

 
3.1 Five-story RC building structure model 
 

A prototype building was determined based on 

inventory data on low-rise piloti-type RC residential 

buildings in Korea (Lee et al. 2011). Reinforcement details 

are non-seismic according to typical construction practices 

in Korea. The prototype has extreme irregularities of a 

soft/weak story and torsion at the ground story. To reduce 

these irregularities, the model was strengthened by 

implementing buckling-restrained braces (BRBs) and fiber-

reinforced polymer (FRP) sheets in peripheral frames at the 

ground story, thereby satisfying the seismic design code, 

Korean Building Code (KBC) 2005 (AIK 2005). The lowest 

two stories of the 1:5-scale test specimens were designed 

and constructed in order to strictly satisfy the similitude-law  

 

 

requirements, while the upper three stories were replaced 

with concrete blocks of similar volumes as shown in Fig. 3. 

This modified model reduced both the time and cost needed 

for the construction without causing a significant loss of 

similitude in the response. The seismic weight, W, of the 

1:5-scaled strengthened specimen is 267.4 kN and the 

design base shear is Vd = 47.1 kN. Detailed information on 

the design of the strengthened model is provided in the 

study of Lee et al. (2013). Values of torsional irregularity in 

accordance with KBC 2005 (AIK 2005) and ASCE 7-10 

(2010) for the original prototype are given as 1.18 and 1.82 

in the X-direction and the Y-direction, respectively. For the 

strengthened prototype, these values are given as 1.26 and 

1.31 in the X-direction and the Y-direction, respectively. 

Results of assessment of irregularity at the ground floor for 

the five-story prototype according to KBC 2005 (AIK 2005) 

are summarized in Table 2. The range of the design 

eccentricity of the strengthened prototype in the X direction 

is ed = 16.3% ± 1.1×5% = 10.8% to 21.8% of the plan width 

as calculated from the design stiffness. 

Initial stiffness values of strengthened frames X3, Y1, 

and Y4 as obtained from shake-table tests were significantly 

lower than design values, being rather close to those of 

original frames (Lee et al. 2013, Lee and Hwang 2015). The 

strengthened experimental model revealed torsionally-

flexible two-way asymmetric behaviors with esy = 1.33% 

and esx = −2.9%. 

The first series of earthquake simulation tests of the 

original model were conducted up to the level of the design 

earthquake (DE) in Korea in 2009, at the Korea Institute of 

Machinery and Materials as shown in Fig. 3(a) (Lee et al. 

2011). The second series of earthquake simulation tests of 

the strengthened model were carried out at the Seismic 

Simulation Test Center at Pusan National University, Korea 

in 2010 (Fig. 3(b)) (Lee et al. 2013, Lee and Hwang 2015). 

The experimental set-up and instrumentation to measure 

displacements, accelerations, and forces of strengthened 

model are shown in Fig. 4. 

The target or input accelerogram of the table was based 

on the recorded 1952 Taft N21E (X direction) and Taft 

S69E (Y direction) components. It was formulated by 

compressing the time axis with a scale factor of 1/√5 and 

adjusting the peak ground acceleration (PGA) to match the 

corresponding elastic design spectrum in KBC 2005 (AIK 

2005). A service level earthquake (SLE) is defined as the 

level of PGA = 0.07 g with 1952 Taft N21E and S69E  

Table 2 Assessment of irregularities according to KBC 2005 (AIK 2005) and KBC 2000 (AIK 2000) for the five-story 

and 17-story prototype 

Irregularity Criteria* 

Five-story 17-story 

prototype Original prototype Strengthened prototype 

X-dir. Y-dir. X-dir. Y-dir. X-dir. 

Stiffness If Ki/Ki+1< 0.7, irregular 0.159 0.160 0.218 0.213 0.430 

Strength  If Fi/Fi+1< 0.8, irregular 0.181 0.284 0.260 0.326 0.40 

Torsion If δmax/δavg>1.2, irregular 1.18 1.82 1.26 1.31 1.72 

* where Ki/Ki+1: stiffness of ith story/ stiffness of (i+1)th story; Fi/Fi+1: strength of ith story/ strength of (i+1)th story; and δmax/ δavg: 

maximum edge-frame drift / average drift at one story. 
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(a) 

 
(b) 

Fig. 4 Dimensions and instrumentation of the five-story 

model (unit: mm). (a) Plan at the ground floor, and (b) 

Elevation view A (D: displacement, A: acceleration) 

(Lee et al. 2013) 

 

 
(a) 

 
(b) 

Fig. 5 Comparison of shake-table output response spectra 

with elastic design spectra of (a) DE and MCE (AIK 2005) 

for the five-story model and (b) DE (AIK 2000, UBC 1997) 

for the 17-story model (Ko and Lee 2006) 

components. The corresponding test is designated R0.07XY 

in the shake-table test. Detailed information on results of 

earthquake simulation tests with the original model and the 

strengthened model is given in the study of Lee et al. (2011, 

2013). 

The shake-table output response spectra for the five-

story model (R0.07XY and R0.3XY) are given with respect 

to the elastic design spectra of DE and the maximum 

considered earthquake (MCE) in Korea (AIK 2005) as 

shown in Fig. 5(a). 

 

2.1 17- Story RC building structure model 
  

The prototype structure used for the earthquake 

simulation test is a common piloti-type multi-purpose high-

rise building. It was selected from an inventory study in 

Korea. The model has 17 stories. Its bottom two stories 

provide a commercial space consisting of a 2 by 2 bay 

moment-resisting RC frame system with an infilled shear 

wall in one of the exterior frames, while the above 15 

stories have an RC bearing-wall system. Results of 

assessment of irregularity at the ground story for the 17-

story prototype according to KBC 2000 (AIK 2000) are 

summarized in Table 2.  

The structure has irregularities of weak stories, soft 

stories, and torsion in bottom stories. Although the plan 

layout at lower stories appear to be unrealistic, the degree of 

irregularity in the prototype structure is found to be 

representative of some extreme cases that have actually 

been constructed in Korea (Ko and Lee 2006). The 

prototype structure was designed according to two old 

Korean design codes: (1) design code for concrete 

structures (KCI 2000), and (2) standard design loads for 

buildings (AIK 2000). The design base shear force, V, is 

0.048×W, where W is the seismic weight of the prototype 

structure in kN (W = 23,770 kN) and the fundamental 

period, T, is 0.920 sec. 

The target or input accelerogram of the table was based 

on the recorded 1952 Taft N21E (X direction) components. 

Due to the available capacity of the shake table, the total 

mass of the true replica 1:12 scale model (184kN) was 

reduced by half and, thereby, the input ground motion 

formulated by compressing the time axis with a scale factor 

of 1/√24 and increasing twice the PGA from 0.15g to 0.30g 

in order to match the design earthquake (DE) with a return 

period of 500 years in Korea (AIK 2000) as shown in Fig. 

5(b). Detailed information on the results of earthquake 

simulation tests are given in the study of Ko and Lee 

(2006). The elastic design spectrum of the KBC 2000 is 

compared with that of the UBC 97 (UBC 1997) and the 

elastic response spectrum based on the table acceleration 

history of Taft030 in Fig. 5(b). The elastic response 

spectrum based on the table acceleration history is 

significantly different from the elastic design spectrum of 

KBC 2000 but similar to the elastic design spectrum of the 

UBC 97 (UBC 1997). The experiment results for the five-

story model and for the 17-story model under SLE are 

named R0.07XY and Taft030, respectively. 

The drifts and accelerations were measured only in the 

direction of table excitations (X-direction) in Fig. 6(b).  
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Fig. 7 Hysteretic relations between (a) Vx-δx and (b) Ttotal-θt 

for the five-story model 

 

 

Fig. 8 Hysteretic relations between (a) Vx-δx and (b) Ttotal-θt 

for the 17-story model 

 

 

Custom-made load cells were installed at mid-heights of all 

columns in the first story to measure shear forces. The  

 

 

elevation and plan of the model as well as the experimental 

set-up and the instrumentation used to measure 

displacements, accelerations, and forces are shown 

schematically in Figs. 6(a), 6(b) and 6(c). The reference 

frame for measuring the lateral displacement of the model 
was established outside the shaking table as shown in Fig. 

6(d). 

 

 

4. Experimental performances of the two structure 
models 

 

Hysteretic responses from experimental results of the 

five-story model and the 17-story model are presented in 

Figs. 7 and 8, respectively. As shown in Fig. 7(a), shear 

hysteretic curves of Vx-δx exhibit an elastic response with 

lateral stiffness Kx = 81 kN/mm. The torsional hysteretic 

curve of Ttotal-θt in Fig. 7(b) also shows an elastic response 

with Kθθ = 43.6 MNm/rad. The ratio of the maximum base 

shear force to the weight of the model (= 29.8 kN/247.4 kN 

= 0.12) is 12% under the SLE. In Fig. 8(a), shear hysteretic 

curves of Vx-δx exhibit an elastic response with lateral 

stiffness Kx = 11 kN/mm. The torsional hysteretic curve of 

Ttotal-θt in Fig. 8(b) also shows an elastic response with Kθθ 

= 4 MNm/rad. The ratio of the maximum base shear force 

to the weight of the model (= 24.5 kN/ (92×2 kN) = 0.135) 

is 13.5%, corresponding to the DE with a return period of 

500 years in the old Korean seismic code KBC 2000 (AIK 

2000). 

  
(a) (b) 

  
(c) (d) 

Fig. 6 Experimental arrangement (unit: mm) for the 17-story model. (a) Front view and side view; (b) Plan; (c) 

Instrumentation for wall and columns and (d) Overview of the experimental arrangement (Ko and Lee 2006) 
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Fig. 9 Time histories of (a) δx1, δx3, δx; (b) δy1, δy4, δy; (c) θt; 

(d) Vx; (e) Vy; and (f) Ttotal and Tx for the five-story model 

 

 

Fig. 10 Time histories of (a) δx1, δx3, δx; (b) θt; (c) Vx, and (d) 

Ttotal and Tx for the 17-story model 

 

 

For the five-story model, Figs. 9(a), 9(b) and 9(c) show 

time histories of inter-story drifts, δx = (δx1+ δx3)/2, δx1, and 

δx3 in the X-direction, δy = (δy1+ δy4)/2, δy1, and δy4 in the Y-

direction, and the torsional deformation, θt, of the model at 

the ground story. Figs. 9(d), 9(e) and 9(f) show time  

 

Fig. 11 Shear hysteretic curves (V-δ) of all the frames of the 

five-story model 

 

 

histories of base shears, Vx and Vy, and base torsional 

moments, Ttotal and Tx. For the 17-story model, Figs. 10(a) 

and 10(b) show time histories of inter-story drifts, δx, δx1, 

and δx3 in the X-direction and the torsional deformation, θt, 

of the model at lower two stories beneath the transfer floor 

in Fig. 6(a). Figs. 10(c) and 10(d) show time histories of 

base shear, Vx, and base torsional moments, Ttotal and Tx. 

 

 

5. Verification of proposed concepts through 
comparison with test results 
 

5.1 Global responses 
 

For the five-story model, shear forces in each frame 

were obtained from load cells in both X and Y directions. 

For the 17-story model, only shear forces in Frame X2 and 

Frame X3 were obtained from load cells while the shear 

force in Frame X1 was calculated by subtracting shear 

forces in X2 and X3 from the total inertial force in the X 

direction. As properties of columns in Frames X2 and X3 

are the same as those of all columns in frames in the Y-

direction, the stiffness in each frame is assumed to be equal 

to that in Frames X2 and X3 (KX2= KX3= KY1= KY2= KY3).  
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Fig. 12 Shear hysteretic curves (V-δ) of frames X1, X2 and 

X3 of the 17-story model 

 

 

Fig. 13 Time history of edge-frame drifts (δx1 and δx3) for 

(a) the five-story and (b) the 17-story models 

 

 

Values of elastic stiffness presented in Table 3 are 

estimated from shear hysteretic curves (V-δ) of each frame 

of the five-story and the 17-story models shown in Figs. 11 

and 12, respectively.  

In the time history of displacement shown in Fig. 13, the 

data points represent the peak edge-frame drifts in Frames 

X1 (blue diamond markers) and X3 (black square markers) 

at the ground story for both models, which correspond to 

time instants of zero velocity; that is, the state when the 

resisting force by the frames is equal to the inertia force. 

They are selected only if the peak edge-frame drifts exceed 

one-half of the maximum positive and negative drifts for 

the five-story and 17-story models. The maximum peak 

points are denoted as blue solid diamond for δx1 and green 

solid rectangle for δx3. Elastic time history analyses were 

performed using an equivalent single-story three-degree-of-

freedom system with the stiffness given in Table 3. Modal 

periods for both models obtained by applying Fast Fourier 

transform (FFT) to experimental data and modal analyses 

for equivalent single-story models are given in Table 4. 

For the five-story model, the first mode is a torsional 

mode whereas the second is a X-directional translational 

mode as shown in Fig. 14(a). However, for the 17-story  

Table 3 Values of elastic stiffness in Eq. (5) for five- and 

17-story models 

 
Models 

Five-story 17-story 

KX (kN) 81 22.8 

KY (kN) 120 8.64 

KθX=esyKX (kN/rad) 
2050 

(esy=25.3=1.33%) 

-7085 

(esy=-311=-31.1%) 

KθY=esxKY (kN/rad) 
-9003 

(esx=-75.1=-2.9%) 

216 

(esx=25.0=2.17%) 

KθθX (kNmm/rad) 19.1×106 4.98×106 

KθθY (kNmm/rad) 24.5×106 1.92×106 

Kθθ (kNmm/rad) 43.6×106 6.90×106 

 

Table 4 Periods of five-and 17-story models 

 
Period in sec 

Experiment Modal analysis 

Five-story 

model 

Mode 1 0.18 0.182 

Mode 2 0.171 0.138 

Mode 3 0.161 0.113 

17-story 

model 

Mode 1 0.203 0.225 

Mode 2 0.195 0.191 

Mode 3 0.092 0.106 

 

 
(a) 

 
(b) 

Fig. 14 Analytical results compared with experimental 

response histories of Vx-δx, Ttotal-θt, Tx-Vx, and   θt-δx for: 

(a) the five-story model and (b) the 17-story model 
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model, the first mode is a translational mode in the Y 

direction which is not of interest and the second mode is the 

predominant mode coupled by the translation in the X-

direction and minor torsion while the third mode is the 

major mode governing torsion that can be noticed in Fig. 

14(b). For the five-story model, the shear stiffness of the 

second mode with the torsional stiffness of the first mode 

represents the overall shear and torsional stiffnesses in 

experiment as shown in Fig. 14(a). However, for the 17-

story model, the second mode represents both the shear 

stiffness and the torsional stiffness in the experiment as 

shown in Fig. 14(b), although the influence of the third 

mode is not negligible in the hysteretic curve of Tx-Vx. It is 

interesting to note that the combination of only two adjacent 

governing modes for five-story and 17-story models 

simulates experimental behaviors very well in Fig. 14. For 

the five-story model, modal eccentricities (ey,i= Tx,i/Vx,i for 

the i-th mode) are ey,1=-189% and ey,2= 1.1% for  the first 

mode and the second mode, respectively. For the 17-story 

model, modal eccentricities are ey,2=4.8% and ey,3= -51.1%  

 

 

for the second mode and the third mode, respectively. 

 

5.2 Comparison of experimental responses at peak 
edge-frame drifts with prediction equations  

 
In Eq. (9), the ratio ηy=Ttotal/Vx is given as a linear 

function of ey=Tx/Vx with the term of γ=Vx/Vy. For the five-

story model, the black, blue and red dashed lines are plotted 

in Fig. 15 (a)-i for γ = 0, +2, and −2, respectively. The range 

of Ttotal/Vx within boundaries corresponding to γ = ± 2 cover 

experimental data. Also, it is found that γ has a negligible 

effect on the overall linearity of Ttotal/Vx with respect to ey. 

For the 17-story model, more scatters could be seen. 

However, the general trend of experimental data coincides 

with the dashed lines of Eq. (9) in Fig. 15 (a) -ii. 

Distributions of responses at instants of peak edge-frame 

drifts are compared with prediction Eqs. (8) - (12) for the 

five-story model and the 17-story model in Figs. 15(b)-(d). 

Ratios of δstiff/δx, δflex/δx, and μx=θt/δx asymptotically 

approach to 1-dystiff/esy, 1-dyflex/esy, and -1/esy, respectively,  

  
Fig. 15 Distributions of critical responses of (a) Ttotal/Vx; Tx/Vx; Ty/Vx; (b) δedge/δx; (c) θt/δx; and (d) Tx/Ttotal at instants of 

peak δedge compared to prediction equations for: i) the five-story and ii) the 17-story models 
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Table 5 Experimental values of responses at the maximum 

or minimum edge-frame drifts 

 
Models 

Five-story 17-story 

δedge δx1,min δx3,min 
both (δx1,min and 

δx3,min) 

ey (%) -11.6 20.5 8.06 

ηy (%) -32.4 49.5 3.64 

δx1 (mm) -0.79 0.125 -0.86 

δx3 (mm) 0.127 -0.67 -3.34 

δx (mm) -0.33 -0.27 -2.1 

Vx (kN) -17.6 -25.5 -21.3 

Tx (kNm) 3.89 -9.9 -1.72 

Ttotal (kNm) 10.9 -23.9 -0.78 

θt (×10-4rad) 4.9 -4.2 -24.9 

δedge/δx 2.4 2.5 1.59 

 

 

when ey goes to the negative infinity for the five-story 

model and when ey goes to the positive infinity for the 17-

story model in Fig. 15(b). 

These ratios, δstiff/δx and δflex/δx, become infinite when 

rotation with no translation become predominant movement 

at ey =-69.6% for the 17-story model in Figs. 15 (b)-ii and 

(c)-ii shown as a vertical line, but not visible for the five-

story model due to the given range of ey in Figs. 15 (b)-i 

and (c)-i being exceeded by ey = 490%, the eccentricity 

representing the torsional movement only.  

The data point corresponding to the ratio of δx3/δx=20.0 

(0.327 mm/0.016 mm) at ey=+36.6% (the data point inside 

the red circle in Fig. 15 (b)-i) is far from the prediction 

(δx3/δx=3.90). This is because, at the instant, the drift at the 

center, δx, is so small and values of drifts at Frames X1 and 

X3 are almost similar but opposite in the direction (δflex= − 

0.29 mm and δstiff   = 0.33 mm). Also, in Fig. 15 (c) - (i), 

experimental data points of θt/δx inside the red rectangle 

appear to be far from the prediction for the similar reason. 

Experimental data of forces and drifts at instants of the 

maximum and minimum peak edge-frame drifts in Table 

5 are denoted as blue solid diamond (δx1) and green solid 

rectangle (δx3) markers in Figs. 13 and 15 for the five-story 

model and the 17-story model. For the five-story model, in 

Table 5, the value of δx3 is relatively smaller in the opposite 

direction when δx1 attains its maximum and vice versa. For 

the 17-story model both maximum δx1 and δx3 occur at the 

same instant, with a very small Ttotal (see also the red circle 

in Fig. 18 (d)-ii), leading to a large ratio of Tx/Ttotal (see the 

red circle in Fig. 15 (d)-ii). Maximum drifts ratios, δedge/δx, 

for the five-story model are 2.4 and 2.5 in the Table 5. They 

are much larger than the values of drift ratios obtained by 

using the 5% accidental torsion in Table 2, 1.26. But for the 

17-story model, the maximum drift ratio 1.59 in Table 5 

appears to be comparable to 1.72 in Table 2. 

Fig. 15 (d) shows that Tx/T to ta l asymptotically 

approaches to Tx/Ttotal = bx = 44% and 59% for the five-story 

model and the 17-story model, respectively, when values of 

ey go to ±infinity. It diverges to ±infinity when Ttotal 

approaches to 0 at ey = 0.74% for the five-story model and 

at ey = -12.7% for the 17-story model. Dashed lines 

corresponding to γ = +2 and −2 in Fig. 15(d) cover the  

 

Fig. 16 Elliptical bounding of (a) Tx-Vx; (b) Ttotal-Vx; (c) θt 

δx; (d) δx1-δx; and (e) δx3-δx for the five-story model 

 

 

Fig. 17 Elliptical bounding of (a) Tx-Vx; (b) Ttotal-Vx; (c) θt-

δx; (d) δx1-δx; and (e) δx3-δx for the 17-story model 

 

 

range of Tx/Ttotal in the experimental data fairly well. In 

summary, the dashed curves of Eqs. (8) - (12) in Fig. 15 are 

fairly consistent with data points from experimental results 

of five-story and 17-story models despite some scatters and 

outliers. 
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5.3 Use of ellipse for bounding responses at peak 

drifts 
 
Because the behavior of the five-story model is 

governed by the combination of mode 1 and mode 2 in Fig. 

14(a), the maximum point P1 is located on the major axis of 

the ellipsoid representing the half angle between the two 

modal eccentricities, ey1 and ey2, with P2 located on the 

minor axis perpendicular to the major axis in Fig. 2(b). 

Similarly, because the 17-story model is predominantly 

governed by the second mode as shown in Fig. 14(b), the 

ellipse was constructed by assuming that P1 is tentatively 

located on the major axis of the second modal eccentricity, 

ey2, in Fig. 2(c). 

However, because of a small, but non-negligible 

contribution from the third mode, the ellipse with the major 

axis given by the second modal eccentricity does not 

represent the actual relationship between Tx-Vx. Thus, the 

major axis was adjusted by trial and error, with P2 being 

located on the minor axis perpendicular to the adjusted 

major axis in Fig. 2(c). 

 

 

Elliptical boundaries for the five-story model and the 

17-story model have different overall shapes in Figs. 16 and 

17. Especially, the ratio of the length of the major axis to 

that of the minor axis of the ellipse for the five-story model 

is 1.7 while that of the 17-story model is 3.8. The difference 

is because the two consecutive modes (first and second 

modes) have a combined contribution for the five-story 

model in contrast to the predominance of the second mode 

for the 17-story model. In Fig. 16(a), the maximum edge-

frame drift points in Tx-Vx of the five-story model denoted 

by green solid rectangles and blue solid diamonds are 

located along the major and minor axes of the ellipse, 

respectively, which lie between the two slopes representing 

modal eccentricities of the first mode and the second mode. 

The maximum δx3 represents the major axis while the 

maximum δx1 represents the minor axis of the ellipse. In 

Fig. 17(a), all maximum edge-frame drift points in Tx-Vx of 

the 17-story model are near the slope of the eccentricity of 

the second mode, ey2 = 4.8%, which is the predominant 

mode.  

Grey peaks and valleys extruding outside the elliptical  

  
Fig. 18 Distributions of critical responses of (a) Ttotal/Vx; Tx/Vx; Ty/Vx; (b) δedge/δx; (c) θt/δx; and (d) Tx/Ttotal at instants of peak 

δedge compared to prediction equations for: i) the five-story and ii) the 17-story models 
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boundary in Fig. 17(a) are due to the raggedness of the time 

history of shear force in Frame X1 since it was determined 

by subtracting shear forces in frames X2 and X3 from the 

total inertial shear force which has noise in the time history 

(Ko and Lee 2006). As shown in Fig. 17, positive maximum 

values of δx1 and δx3 occur at instants close to each other 

whereas negative maximum values of δx1 and δx3 occur at 

the same instant. 

The green region representing the range of the 

accidental torsion, ηy=Ttotal/Vx=-5% to +5% in Fig. 16(b) has 

a range of ey=Tx/Vx=-1.48% to +2.96% for the five-story 

model in Fig. 16(a). However, the range of ηy=Ttotal/Vx=-5% 

to +5% in Fig. 17(b) has a range quite different from 

the corresponding range of ey=Tx/Vx =-15.6% to -9.7% for 

the 17-story model shown in Fig. 17(a). This is because of 

the difference in the static eccentricity of esy=1.33% and 

esy=31.6% for the five-story model and the 17-story model, 

respectively.  Both Figs. 16 and 17 show that the elliptical 

boundaries of Ttotal-Vx are not influenced significantly by the 

value of γ, which varies from -2, via 0 to +2, and that those 

of Tx-Vx, θt-δx, δx1-δx and δx3-δx are independent of γ. 

  Fig. 18 shows distributions of δx1, δx3, θt, Vx, and Ttotal 

at peak edge-frame drifts with respect to ey for five-story 

and 17-story models. For the five-story model, ranges of 

seismic responses at the ground story are δx1=-0.79 ~ 

0.79mm, δx3=-0.67~ 0.61mm, θt =-0.00046 ~ 0.00066 rad, 

Vx=-29.0~ 29.5 kN, and Ttotal=-23.9 ~ 21.6 kNm, with ey 

ranging from -58.6% to 74.6%. Similarly, for the 17-story 

model, ranges of seismic responses are δx1=-0.86 ~ 0.57 

mm, δx3=-3.34 ~ 2.75 mm, θt = -0.00249 ~ 0.00247 rad, 

Vx=-21.3~18.2 kN, and Ttotal=-7.57~9.08 kNm, with ey 

ranging from -40.3% to 74.8%. The maximum and 

minimum responses in Fig. 18 occur with similar 

eccentricities of same signs for both five-story model and 

the 17-story model. Although the maximum value of δx1 is 

larger than that of δx3 for the five-story model in Fig. 18 (a)-

i, the shear force and the torsional moment corresponding 

to the maximum δx3 are greater than those corresponding 

to the maximum δx1 in Figs. 18 (c)-i and (d)-i. This is due to 

larger lateral and torsional stiffness values of the first mode, 

that controls δx3, than those of the second mode as shown in 

Fig. 14 (a).   

Dashed curves of critical responses versus ey in Fig. 18  

 

 

are determined based on elliptical boundaries in Figs. 16 

and 17. In Fig. 18(a), theoretical curves reasonably predict 

the maximum edge-frame drifts from experimental results 

for both five-story and 17-story models. When ey goes to 

infinity, drifts at the edge frame asymptotically approach to 

a constant value. In Fig. 18(c), the trend of curves of Vx 

versus ey creates a curved bell shape whereas that of Ttotal 

creates a shape of an hourglass with zero Ttotal as the neck in 

Fig 18(d). The maximum shear force and zero torsional 

moments (inherent torsion) occur at different eccentricities 

for both five-story and 17-story models in contrast to the 

simultaneity assumption in the static torsion 

design approach. The maximum edge-frame drifts do not 

increase infinitely but are bounded. They can be estimated 

using Eqs. (7) - (13). More details about this will be 

discussed in the following subsection. 

 

5.4 The significance of the proposed concepts  
 
Relationships shown in Figs. 19(a), 19(b) and 19(c) 

define different states, (a) to (g), representing different 

responses of interest in the space of shear force and 

torsional moment or in the space of δcenter and δedge with the 

corresponding information in Table 6. 

Instant (a) is the state of inherent torsion with the value 

of Ttotal = 0. Ratios of δstiff/δx and δflex/δx are equal to 1 at 

instant (b) when the structure experiences translational 

movement only. The range from instants (c) to (d) in Figs. 

19(a), 19(b) and 19(c) represent the range of ηy=Ttotal/Vx= -

5%/+5% corresponding to the accidental torsion in current 

design codes. At instant (e), only the rotational movement 

occurs without translational movements. δx3 and δx1 reach 

their maximum at instants (f) and (g) in Figs. 19(b) and (c), 

respectively. When δx3 reaches the maximum, the 

corresponding δx1 becomes small and vice versa. The range 

of the accidental torsion (±5%) is very limited range. The 

maximum edge-frame drifts occur outside of this range. 

Fig. 19(d) shows the detailed relationship between 

Ttotal/Vx, Ty/Vx and Tx/Vx =ey around the inherent torsion, 

Ttotal = 0, with the range of accidental torsion ηy = ± 5%. At 

the static eccentricity, ey=esy=1.33%, all torsional 

resistances come from X-directional frames, i.e., Ttotal=Tx. 

There is no torsional deformation, δedge/δx =1.0 in Fig.  

Table 6 Values of drifts and forces at critical instants for the five-story model 

 

(a) 

Inherent torsion 

(Ttotal=0) 

(b) 

X-dir. translation 

Accidental torsion 
(e) 

Rotation only 

(f) 

δx3,max 

(g) 

δx1,max (c) (-5%) (d) (+5%) 

ey (%) 0.74 1.33 -1.48 2.96 490 46.8 -24.1 

ηy (%) 0 1.33 -5 5 1102 104 -47.7 

δx1 (mm) 0.443 -0.464 -0.354 0.533 -0.569 -0.114 0.908 

δx3 (mm) 0.478 -0.464 -0.510 0.433 0.569 0.579 -0.227 

δx (mm) 0.460 -0.464 -0.432 0.483 0 0.233 0.340 

Vx (kN) 31.1 -31.3 -29.3 32.5 1.23 14.1 17.4 

Tx (kNm) 0.44 -0.790 0.82 1.83 11.4 12.5 -7.97 

Ttotal (kNm) 0 -0.790 2.78 3.08 25.7 28.6 -15.8 

θt (×10-4rad) 0.18 0 -0.82 -0.53 5.99 4.90 -5.97 

δedge/δx 1.01 1 1.18 1.10 ∞ 5.08 2.67 

* The value of Ttotal corresponds to γ = 0 
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19(g). At the eccentricity corresponding to the inherent 

torsion, ey=0.74%, the torsional moment from X-directional 

frames, Tx, is equal to that from Y-directional frames, Ty, in 

the opposite direction, leading to zero Ttotal=Tx+Ty. 

However, at this inherent torsion, the δedge/δx becomes 1.03 

(not 1.0). Over the range of ηy=-5% to +5% (ey=-1.48% to 

+2.96%), relations of Tx, Ty, and Ttotal are shown in Fig. 

19(d) with δedge/δx shown in Fig. 19(g).  

The maximum edge-frame drifts of δx1 and δx3 are 

plotted as a function of the resistance eccentricity, ey, in 

Figs. 19(e) and 19(h), where δx3 has the maximum drift of ± 

0.58 mm at ey=46.8% denoted as (f) and δx1 has the 

maximum drift of ± 0.91mm at ey=-24.1% denoted as (g) 

with all other related information given in Table 6. Fig. 

19(e) shows not only the maximum drift, but also the 

overall distribution of the drift approaching to δx1= δx3=0.58 

mm at the ±infinite eccentricity. 

Fig. 19(f) shows the trend of the ratio δedge/δx with the 

eccentricity. When the eccentricity increases to the negative 

infinity, δedge/δx asymptotically approaches to certain values, 

δx1/δx = 36 and δx3/δx = -39. 

However, when the eccentricity increases in the positive 

sense up to the state of rotational deformation only without 

translation movement which corresponds to instant (e) in 

Figs. 19(a), 19(b) and 19(c), δedge/δx approaches to ± infinity 

at ey = 490%. Eccentricities corresponding to the maximum 

δx1 and the maximum δx3, -24.1% and 46.8%, respectively, 

are quite outside of the range of ey = -1.48% to 2.96% 

corresponding to the accidental eccentricity, ηy=-5% to 

+5%, as shown in Figs. 19(h) and 19(i). Also, in Fig. 19(i),  

 

 

torsional deformations at the maximum edge-frame drifts 

corresponding to instant (f) and instant (g) are substantially 

larger than those at the accidental torsion corresponding to 

instant (c) and instant (d). 

By adopting the proposed two concepts, engineers not 

only can visualize the clear picture of the overall 

relationship between shear and torsion with the range of 

forces and deformations, but also can easily pinpoint the 

information about critical responses of structures such as 

the maximum and minimum edge-frame drifts and the 

corresponding shear force and torsion moment with the 

eccentricity. 

 

5.5 Evaluation of validity of code static torsion design   
 
The inherent torsion in the current code static 

eccentricity model represents a very specific instant of zero 

inertial torsional moment at the CM in contrast to the 

general state of the inertial torsion moment which can be 

very large in TU structures as shown in Fig. 19. Therefore, 

it is evident that the code static eccentricity model is not 

able to take the real torsional behavior of particularly TU 

structures into consideration.  In Figs. 15-18, the range of 

accidental torsion eccentricity, ηa=Ttotal/V (-5% to +5%), 

represented by the green region is very limited compared to 

the actual ranges of ηy, -125% to 81% for the five-story 

model and -60% to 100% for the 17-story model, which 

correspond to the peak drift demands exceeding one-half of 

the maximum. The comparison of the green regions 

representing the accidental torsion with the overall range of 

 
Fig. 19 Relationships of Ttotal /Vx, Tx/Vx, Ty /Vx, δedge, δedge/δx and θt versus ey for five-story model 
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responses also clearly manifests why the accidental torsion 

causes only a negligible design impact despite the code-

required cumbersome design procedure. 

 

 

6. Conclusions 
 

Current building codes require structures to be designed 

to be able to resist an elastic design torsional moment which 

includes the inherent torsional moment resulting from the 

static eccentricity, es, between the CM and the CR (CS) and 

the accidental torsional moment which considers many 

different types of uncertainty regarding torsion. The static 

torsion design procedure (see Fig. 1(a)) in these codes 

negates the possible existence of the inertial torsional 

moment, Ttotal, at the CM and only considers the accidental 

torsion at the CM.  

The resistance eccentricity, ey, commonly used by 

engineers as shown in Fig. 1(b) in FEMA 454 (2006), does 

not coincide with the es used for design eccentricity, ed, in 

current codes. ey is the distance between resultant inertial 

forces at the CM and the resultant resisting force of the 

structure in the specific direction of earthquake ground 

excitations as shown in Fig. 1(c). On the other hand, es and 

ed = es ± ea in the code static eccentricity model are the 

rotational arm length of the inertial shear force at the CM 

with respect to the center of rotation, i.e., the CS in Fig. 

1(a). This discrepancy in the definition of eccentricity may 

lead to substantial confusion among engineers.  

Using the resistance eccentricity model in Fig. 1(c), the 

following two concepts regarding the interaction between 

shear and torsion are proposed. First, for a general single-

story two-way asymmetric structure, the story force {Vx, Vy, 

Ttotal} is related to the story drift {δx, δy, θt} at the CM by 

Eq. (5) at instants of peak edge-frame drifts when the 

velocity is zero. That is, the resisting force by frames 

becomes equal to inertia forces in the dynamic equilibrium 

equation as given in Eq. (5). ηy=Ttotal/Vx, μx=θt/δx, δedge/δx are 

given as a function of resistance eccentricity, ey, in Eqs. (7) 

- (12). Secondly, hysteretic relationships between shear and 

torsion in forces and deformations are bounded by 

ellipsoids with corresponding major axes determined 

considering predominant modal eccentricities. Demands 

estimated using these two concepts are compared with 

demands from shake-table tests of two TU building 

structures under the SLE (a 1:5-scale five-story RC building 

model and a 1:12-scale 17-story RC building model) 

represented by the diamond markers and square markers in 

Fig. 13, which are selected only if the peak edge-frame 

drifts exceed one-half of the maximum positive and 

negative edge-frame drifts for the five-story and 17-story 

models. 

The following conclusions are drawn from this study: 

• The prediction of the critical torsional behavior by 

Eqs. (7) - (12) reveals the following characteristics: 

Ttotal/Vx is linearly proportional to ey (= Tx/Vx); Tx/Ttotal 

approaches to a constant ratio when the absolute value 

of ey is relatively large; Tx/Ttotal diverges to a positive or 

negative infinity value when Ttotal approaches to zero. 

Trends of data points, δedge/δx and θt/δx, at instants of 

peak edge-frame drifts for the five-story model and the 

17-story model under the SLE match the curves from 

prediction equations fairly well despite some scatters. 

These overall results prove that these prediction 

equations can serve as useful references for predictions 

of Ttotal/Vx, Tx/Ttotal, δedge/δx, and θt/δx.  

• Instead of using any specific value of resistance 

eccentricity as a design parameter, seismic torsion 

demands are determined through a direct relationship 

with the base or story shear represented as an ellipse. 

These elliptical relationships bound actual experimental 

peak responses of the structure reasonably well. In 

particular, the hysteretic relationship between the drift at 

the edge frame with respect to the drift at the center of 

story can be conveniently visualized using an ellipsoidal 

model. However, further research is needed to elaborate 

methodologies in the construction of ellipsoidal 

boundaries. 

• Concepts proposed in this study enable engineers to 

not only visualize the overall picture of torsional 

behavior including the relationship between shear and 

torsion with the range of forces and deformations, but 

also pinpoint easily the information about critical 

responses of structures such as the maximum and 

minimum edge-frame drifts and the corresponding shear 

force and torsion moment with the eccentricity. 

• The inherent torsion in the current code static 

eccentricity model represents a very specific instant of 

zero inertial torsional moment at the CM in contrast to 

the general state of the inertial torsion moment which 

can be very large in TU structures. Therefore, it is 

evident that the code static eccentricity model is not able 

to take the real torsional behavior of particularly TU 

structures into consideration.  

• The range of accidental torsion eccentricity, ηa=Ttotal/V 

(-5% to +5%) is very limited compared to the actual 

ranges of ηy, -125% to 81% for the five-story model and 

-60% to 100% for the 17-story model, which represent 

all the peak drift demands exceeding one-half of the 

maximum. The comparison of the range of responses 

representing the accidental torsion with the overall range 

of responses also clearly manifests why the accidental 

torsion causes only a negligible design impact despite 

the code-required cumbersome design procedure. 
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Appendix  
 

Derivation of prediction equations as a function of 

resistance eccentricity for a single-story two-way asymmetric-

plan structure system  

 

For a general single-story two-way asymmetric 

structural system, the story force vector {Vx, Vy, Ttotal} at the 

CM is related to the inter-story drift vector {δx, δy, θt} at the 

CM as shown in Eq. (A1) (Eq. (5)) at instants of peak edge-

frame drifts when the velocity becomes zero and, therefore, 

the resisting force by frames becomes equal to the inertia 

force in the dynamic equilibrium equation. 

0
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(A1) 

(5) 

Using Eq. (A1) (Eq. (5)), the forces, Vx, Vy, Ttotal, at the 

CM can be expressed as follows: 

X x X t xK K V    (A2a) 

Y y Y t yK K V    (A2b) 

X x Y y t totalK K K T        (A2c) 

Ttotal in Eq. (A2c) can be rewritten as a sum of Tx and Ty 

as 

 

(A3) 

From Eq. (A1) (Eq. (5)), the displacements δx, δy, and θt 

at the CM can be expressed as follows: 
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(6-a) 

(A4b) 

(6-b) 

(A4c) 

(6-c) 

The resistance eccentricity, ey=Tx/Vx, in Eq. (A5) (Eq. 

(7)) is determined by using Eq. (A2a) and Eq. (A3) 
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(A5) 

(7) 

θt in Eqs. (A2a), (A2b) and (A2c) can be expressed as 

follows: 
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δx can be represented in Eq. (A7) by substituting Eq. 

(A6a) into Eq. (A6b), 

Y x X y Y X y

x

X Y

K V K V K K

K K

  






 


 

(A7) 

θt can be rewritten in Eq. (A8) by substituting Eq. (A7) 

into Eq. (A6c), 
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(A8) 

δx, δy and θt at the CM can be expressed using Eqs. (A6), 

(A7), and (A8) as follows: 
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ey in Eq. (A10) (Eq. (8)) can be obtained by substituting 

Eqs. (A9a) and (A9c) into Eq. (A5), 
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(8) 

ηy =Ttotal/Vx in Eq. (A11) (Eq. (9)) can be expressed with 
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Estimation of elastic seismic demands in TU structures using interactive relations between shear and torsion 

respect to ey using Eq. (A10) (Eq. (8)) 
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(9) 

μx = θt/δx with respect to ey in Eq. (A12) (Eq. (11)) can be 

derived by using Eqs. (A4a) (Eq. (6a)) and (A9c), 
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