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1. Introduction  
 

Chen and Gurtin (1968), Chen and Williams (1968), 

Chen et al. (1969) introduced the two-temperature theory of 

thermoelasticity in the heat conduction equation which 

depends on two distinct temperatures, the conductive 

temperature  and the thermodynamic temperature T. The 

existence of conductive and thermodynamic temperatures is 

due to the thermal and mechanical processes, respectively 

occurring between the particles and the layers of the elastic 

material. For static problems, the difference between these 

two temperatures is proportional to the heat supply. 

However, in the absence of any heat supply, the two 

temperatures are identical (Chen and Gurtin 1968, Chen and 

Williams 1968). In contrast, for dynamic problems, 

particularly problems involving the phenomenon of wave 

propagation,  and T both temperatures are generally 

different irrespective of the presence of heat supply. Awad 

(2011) described the spatial decay estimates in non-classical 

linear thermoelastic semi-cylindrical bounded domains. 

Miranville and Quintanilla (2016) investigated the spatial 

behavior in two-temperature generalized thermoelastic 

theories. 

Kumar et al. (2018) studied the propagation of plane 

waves in an anisotropic thermoelastic medium with void 

and two-temperature in the context of three phase lag theory 

of thermoelasticity. Ezzat et al. (2018) studied the two-

temperature theory in Green–Naghdi thermoelasticity with 

fractional phase-lag heat transfer. Deswal et al. (2019) 

investigated the reflection of plane waves from the free 

surface of a homogeneous, anisotropic, fiber-reinforced  
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thermoelastic rotating medium with the consideration of 

effects of two-temperature and dual-phase-lag parameters. 

Lotfy (2019) discussed the interaction between thermal-

elastic-plasma waves through photothermal process under 

the effects of magnetic field and two-temperature 

parameter. 

Piezoelectricity as one of the branches of crystal physics 

is now the base of the modern engineering practice in 

various technologies like frequency control, signal 

processing, sound and ultrasound microphones and 

speakers, ultrasonic imaging, hydrophones, actuators and 

motors based on the converse effect, detection of pressure 

variations in the form of sound etc. By continuously 

monitoring deformation, the sensors can record operational 

loads, compute fatigue and estimate remaining component 

life. The theory of thermopiezoelectric material was first 

proposed by Mindlin (1974) and derived governing 

equations of a thermopiezoelectric plate. The physical laws 

for the thermopiezoelectric material have been explored by 

Nowacki (1978, 1979). Chandrasekharaiah (1984) used 

generalized Mindlin’s theory of thermopiezoelectricity to 

account for the finite speed of propagation of thermal 

disturbances. Majhi (1995) studied the transient thermal 

response of the semi-infinite piezoelectric rod subjected to 

the heat source. Sharma (2010a, 2010b) investigated the 

propagation of inhomogeneous waves in anisotropic piezo-

thermoelastic media and discussed the piezoelectric effect 

on the velocities of waves in an anisotropic piezo-

poroelastic medium. Vashishth and Sukhija (2014, 2015) 

studied the inhomogeneous waves at the boundary of an 

anisotropic piezo-thermoelastic medium and, reflection and 

transmission of plane waves from fluid piezothermoelastic 

solid interface. Marin and Nicaise (2016) studied the 

existence and stability results for thermoelastic dipolar 

bodies with double porosity. Vashishth and Sukhija (2017) 

also discussed the inhomogeneous waves in porous piezo-

thermoelastic solids Marin and Craciun (2017) derived the 
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uniqueness results for a boundary value problem in dipolar 

thermoelastic model. Marin (2017) also studied the effect of 

microtemperatures for micropolar thermoelastic bodies. 

Kumar and Kaur (2017) investigated the reflection of plane 

waves at micropolar piezothermoelastic solids. Kumar and 

Sharma (2017) investigated the reflection and transmission 

of plane waves at an elastic half space and 

piezothermoelastic solid half space with fractional order 

derivative. Marin and Ochsner (2017) studied an initial 

boundary value problem for modeling a piezoelectric 

dipolar body. Sharma (2018) investigated the phenomenon 

of reflection–refraction of attenuated waves at the interface 

between a thermo-poroelastic medium and a thermoelastic 

medium. Wang (2018) studied transient responses of 

laminated anisotropic piezo-thermoelastic plates and 

cylindrical shells with interfacial diffusion and sliding in 

cylindrical bending. Sangwan et al. (2018) discussed the 

reflection and transmission of plane waves at an interface 

between elastic and micropolar piezoelectric solid half-

spaces. Kumar and Sharma (2019) studied the response of 

fractional order derivative on the energy ratios at the 

boundary surface of fluid-piezothermoelastic medium. 

Youssef and Bassiouny (2008) proposed the generalised 

two temperature theory of thermoelasticity to solve the 

boundary value problems of one dimensional 

piezothermoelastic half-space with heating its boundary 

with different types of heating. Ezzat et al. (2010) 

formulated two temperature theory of thermoelasticity for 

piezoelectric/piezomagnetic materials. Bassiouny and Sabry 

(2013) investigated the propagation of thermal wave 

through a semi-infinite slab subjected to thermal loading of 

fractional order of exponential type applied for finite period 

of time. 

In this paper, the problem of reflection and transmission 

of plane waves from a fluid-orthotropic piezothermoelastic 

solid interface with two-temperature is discussed. Energy 

ratios corresponding to the reflected and transmitted waves 

are computed with the aid of amplitude ratios. Further, 

effects of angle of incidence and two-temperature parameter 

on the energy ratios are observed analytically and shown 

graphically. A particular case of interest is also discussed. 
 

 

2. Basic equations 
 

Following Kumar et al. (2018) and Vashishth and 

Sukhija (2015), the basic equations for a homogeneous, 

anisotropic, thermally conducting, piezoelectric elastic 

medium in the absence of body forces and free charge 

density are as follows. 

Constitutive equations 

,    ij ijkl kl ijk k ijc e E T  (1) 

,    i ij j ijk jk iD E e T  (2) 

, , ( , , , 1,2,3). i iE i j k l  (3) 

Equations of motion: 

, u 0.  ij j i  (4) 

Equation of heat conduction 

2
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such that
, .ij ijT a    

Gauss equation: 

 , 0, , 1,2,3 . i iD i j  (6) 

Following Achenbach (1973), the constitutive relations for 

the inviscid fluid half space are  

,u , ( , , , 1,2,3),   f f

ij f k k ij i j k l  (7) 

and the equations of motion are 

 , u 0, , 1,2,3 ,   f f

ij j f i i j  (8) 

where Cijkl are elastic parameters, αij is tensor of thermal 

moduli respectively. ρ, Ce are, respectively , the density and 

specific heat at constant strain, T0 is the reference 

temperature, T is the absolute temperature and   is the 

conductive temperature of the medium, αij are the two-

temperature parameters, τo is the thermal relaxation time, 

which will ensure that the heat conduction equation will 

predict finite speeds of heat propagation of matter from one 

medium to other. ui, ui
fare the components of displacement 

vector in the solid and fluid half spaces, 

( ), ( )f f

ij ji ij ji     are the components of the stress 

tensor in the solid and fluid half spaces,

 , ,

1
(u u )

2
ij i j j i ji     are the components of the strain 

tensor, Kij(=Kji) are the components of thermal conductivity,
 

Ei is the electric field intensity, Di is the electric 

displacement, ϕ is the electric potential, τi are the 

pyroelectric constants, eijk, ξij are tensors of piezothermal 

moduli, ρf  and λf are the density and the bulk modulus of 

the fluid, respectively. The piezothermal coefficients cijk, Kij 

and Ce are positive. The symbol comma “,” followed by a 

suffix denotes differentiation with respect to spatial 

coordinate and a superposed dot “.” denotes the derivative 

with respect to time. 

 

 

3. Formulation of the problem 
 

We consider an orthotropic piezothermoelastic half 

space (OPTHS) and the inviscid fluid half space (FHS) as 

shown in Fig 1. PTHS occupies the region 3 0x   , and the 

FHS occupies region 3 0x  . 
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Fig. 1 Geometrical representation of FHS and OPTHS 

 

 

Following Tzou and Bao (1995), the constitutive 

relations in an orthotropic piezothermoelastic medium in x1-

x3 plane are 

11 11 1 13 3 31 3 11 ,      c c e E T  (9a) 

33 13 1 33 3 33 3 33 ,      c c e E T  (9b) 

13 55 5 15 12 ,  c e E  (9c) 

1 11 1 15 52 ,  D E e  (9d) 

3 33 3 31 1 33 3 3 ,      D E e e T  (9e) 

1 ,1, E  (9f) 

3 ,3 , E  (9g) 

and, constitutive relations for fluid half space 

11 1,1 3,3(u u ),  f f f

f  (10a) 

33 1,1 3,3(u u ).  f f f

f
 (10b) 

Substituting the constitutive relations (9a) - (9g) into the 

field Eqs. (4) - (6) without body forces, heat sources, yield 

11 1,11 13 3,13 31 ,31 55 1,33 3,13u u (u u )    c c e c  
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(11c) 
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33 3,33 3 11 ,11 33 ,33 ,3u ( ) 0.      e a a  

(11d) 

Using constitutive Eqs. (10a, 10b) in Eq. (8), the field 

equations for fluid half space can be written as 

 

 

1,11 3,31 1

1,13 3,33 3

u u u 0,

u u u 0.

 
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We introduce the following dimensionless quantities 
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where

2

111
1 1

11
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




  eC cc
c

K
 

Introducing the dimensionless quantities (13), in the 
system of Eqs. (11a) - (12), with the removal of prime ( ' ), 
reduces to the following form 
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1
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  2
11,11 3,31 1u u u 0,   

f f f
f fc  (15a) 

  2
11,13 3,33 3u u u 0.   

f f f
f fc  (15b) 

For the solution of the plane harmonic waves 

propagating in x1-x3 plane, the displacement components, 

electric potential and temperature are written as follows 

    1
1 3 3u ,u , , , , , exp ,  

  
     

  

x
U A B C i qx t

c
 (16) 

where   is the circular frequency, c  is the apparent 

phase velocity and
 

q  is the unknown slowness parameter.  

, , andU A B C are the unknown amplitude vectors with 

respect to the waves and that are independent of time t  

and spatial coordinates. The system of Eqs. (14a) - (14d), 

with the aid of Eq. (16), yield another system of equations 

2 2 211
55 1 13 552

( ) 
 

     
 

c q
c q c U c c A

cc
 

211 0
31 15 1

31

( )
 




  


T q i
e e B c

e c c
 

2
2 2

11 332
1 0,




 
    

 

a a q C
c

 

(17a) 

2 2 255
55 13 33 12

( ) 
  

       
 

cq
c c U c q c A

c c
 

2 211 0 15 33
33 12

31 11

 
 



  
  

  

T e
e q B i q c

e c
 

2
2 2

11 332
1 0,




 
    

 

a a q C
c

 

(17b) 

11 11 3 011 11
33 11

31 11

  
 



  
   

  

t Tt
i U t qA q B

c e
 

2
2 2 2 2 211

1 33 11 1 11 332 2
1


  
    

            

K
K q t rc a a q

c c

0,C  

(17c) 

2 215 11 0
15 31 332

31

( )



  

      
  

e Tq
e e U e q A

c ec
 

2 2 311
33 12

11


  



 
  

  
q B i q c

c
 

2
2 2

11 332
1 0,




 
    

 

a a q C
c

 

(17d) 

where 
2

11 0 0( ).t T i     

The above system of the equations can be written in the 

matrix form as VS=o, where 

2 2
55 11 12 13 15 14

2 2 3
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2
22 23 24 30 29
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  
 

   
  

 
 

   

c q x x q x q x q x

x q c q x x x q x q x q

x x q x q x q x
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And S = [U, A, B, C]tr. Here, superscript symbol “tr” 

represents transpose of the matrix. The symbols used in 

matrix V are mentioned in the Appendix A. This system of 

the equations has a non- trivial solution if the determinant 

of the matrix Vvanishes i.e. 

det 0.V  (19) 

Eq. (19) yields a characteristic equation in q2

 
On 

Solving this characteristic equation, we obtain q1, q2, q3, q4 

correspond to the roots of the Eq. (18) whose imaginary 

parts are positive, and 5 6 7 8, , ,q q q q  denote the roots 

whose imaginary parts are negative. The eigen values are 

arranged in descending order such that q1, q2 and q3 

corresponds to the propagating quasi longitudinal (qP) wave 

mode, quasi transverse (qS) wave mode, quasi thermal (qT) 

wave mode and q4 corresponds to the electric potential 

component wave mode (eP) of wave propagation, 

respectively. For each qi(i=1,2,…,8), the corresponding 

eigen vectors Ui, Ai, Bi and Ci can be written as  

 

 

 

 

 

 

42 43 44
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i i i

q q q

i i i

q q q

cof V cof V cof V
W

cof V cof V cof V
 (20) 

where 
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, , ,    i i i
i i i

i i i

A B C
W

U U U
 (21) 

and cof(Vij)qi denotes the cofactor of Vij to the eigen value 

qi. The amplitudes (Ui, Ai, Bi and Ci) of the plane harmonic 

waves decrease as these waves propagates in a 

piezothermoelastic medium. The amplitudes of the plane 

harmonic waves propagating in a piezothermoelastic 

medium also depend on the frequency. The formal solution 

for the mechanical displacement, the electric potential, 

temperature, the stress components and electric 

displacement becomes 

 1 3u ,u , ,    

  1
31, , , exp ,
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(22) 

The solution of wave in the fluid medium can be expressed 

as 

1
1 3 3(u ,u ) ( , )exp ,

  
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where 

2

2

1
1f

f

c
q

c c
  is the unknown slowness 

parameter, 
fU and

fA are the associated amplitudes, and 

fc  is the longitudinal wave velocity in the fluid medium. 

The formal solution for the displacements in fluid medium 

become 

1
1 3 3
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x
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where 1p  corresponds to the incident wave, 2p   

corresponds to the reflected wave, and

1 2, , .
sin

ff f

f f

c
W q c W q c c


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The normal stress becomes 
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(25) 

 

Fig. 2 Reflection and transmission of plane wave 
 
 
4. Reflection and transmission coefficients 

 

4.1 Amplitude ratios 

 

We consider an OPTHS which is in contact with FHS at

3 0x  . One reflected longitudinal wave in FHS and four 

transmitted waves in OPTHS are observed when a plane 

longitudinal wave is incident at the interface by an angle   

to the normal. These transmitted waves are quasi 

longitudinal (qP) mode, quasi transverse (qS) mode, quasi 

thermal (qT) mode and electric potential (eP) mode. 

The boundary conditions at the interface 3 0x  are as 

follows:  

Continuity of normal stress 

33 33,  f
 (26a) 

(i) Vanishing of the tangential stress 

13 0,   (26b) 

(iii) Continuity of normal velocity component 

3 3u u , f
 (26c) 

(iv) Vanishing of electric displacement 

3 0,D  (26d) 

(v) Isothermal boundary 

0.T  (26e) 

Using Eqs. (22), (24) and (25) and, the constitutive Eqs. (1) 

– (3), the boundary conditions (26a) - (26e) result in a non-

homogeneous system 

,AX = B  (27) 

where 
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

51 52 53 54

0

,

0

0

 
 
 
 
 
 
 
 

f

f

D D D D c

D D D D

D D D D q c

D D D D

D D D D

A  

1 2 3 4 5, , , , ,   
tr

fX X X X XX  

,0, ,0,0 .   
tr

f fc q cB  

The elements of 5 5 matrix A and notations used in X are 

given in the Appendix B. After solving the system (27), the 

transmitted and the reflected amplitude ratios are obtained. 

 

4.2 Energy ratios 
 

Energy ratios are used to describe system energy output 

related to the system energy input. The average energy flux 

of the incident, reflected and transmitted waves helps in 

knowing the distribution of energy between reflected and 

transmitted waves across a surface element of unit area. 

Following Vashishth and Sukhija (2015), the normal 

acoustic flux P in a piezothermoelastic solid is 

31 1 33 3 3 33 ,3

0

Re u u .  
 

     
 

T
P D K T

T
 (28) 

The time average of P  over a period denoted by P   

represents the average energy transmission per unit surface 

area per unit time. The average energy flux of the 

(a) Incident wave is 

2
2 2

1

1
,

2
  f

I f fP q c U  (29) 

(b) Reflected wave is 

2
2 2

2

1
,

2
   f

R f fP q c U  (30) 

(c) Transmitted waves are  

2

2 1 4

1
Re

2
     s s s s s sP D D W D  

 
2233

6 14 15

0

, 1, 2,3, 4.



  


s s s s

Ki
D t t q U s

T
 

(31) 

The energy ratios of the reflected and transmitted waves 

are defined as 

, , 1,2,3,4.  
R s

R s

I I

P P
E E s

P P
 (32) 

Due to interaction between different fields and 

displacements corresponding to transmitted waves, the 

interaction energy ratios are described as ,
st

st

I

P
E

P
  

where 

2

2 1

1
Re

2
   st s s t s t s tP D U U D WU U  

 233
4 6 14 15

0

,



    


s t t s s s t s t

Ki
D U U D t t q U U

T
 

1,2,3,4.s  

(33) 

The resultant interaction energy between the transmitted 

waves is 

4

int

, 1

.st

s t
s t

E E




  

Since 

4

int

1

1,


   s R

s

E E E  (34) 

therefore, the law of conservation is verified. 

 

Particular case  
 

If we put a11=a33=0, in system of equations (11) then the 

matrix V reduces to 

2

55 11 12 13

2 2

12 33 17 18 19

2

22 23 24 26 25

2 2

31 33 32 34 33

0

0
,

0

 
 

  
 
 

   

c q x x q x q

x q c q x x x q

x x q x q x q x

x q e q x x q x

V  

such that for the non-trivial solution, |𝑽|=0, yielding a 

characteristic equation 
8 6 4 2

11 12 13 14 15 0,m q m q m q m q m     where the 

notations 1 , ( 1,2,3,4,5)im i   are mentioned in the 

Appendix A. Solving the characteristic equation we obtain 

the unknown amplitude of the respective waves and hence, 

energy ratios at the interface of elastic and orthotropic 

piezothermoelastic half spaces can be obtained verifying the 

law of conservation of energy. 

 

 

5. Numerical results and discussion 

For the purpose of numerical calculation, we consider 

the homogeneous orthotropic piezothermoelastic media. 

The amplitude ratios and energy ratios for the reflected and 

transmitted waves and the interaction energy ratios are 

computed with the help of the software Matlab 9.0 and 

Origin 6.1 and, graphs of energy ratios are shown depicting 

the effect of two temperature. Further, the law of 

conservation of energy is verified. Following Vashishth and 

Sukhija (2015), the numerical values of cadmium selenide 

(CdSe) have been taken. Elastic constants (in units of GPa)  
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(a) Reflected wave 

 
(b) Transmitted qP wave 

Fig. 3 Variation of energy ratio with respect to   

 

 
(a) Transmitted qS wave 

 
(b) Transmitted qT wave 

Fig. 4 Variation of energy ratio with respect to   

are 11 74.1,c  13 33 5539.3, 83.6, 15.1.c c c  

Thermoelastic coupling constants (
6 110 PaK 

) are given 

by 11 330.621, 0.551.    Electric permittivity 

constants (
11 110 Fm 

) are given by 11 8.26, 

33 9.03.  Thermal conductivity constants (
1 1Wm K 

) 

are given by 11 339, 9.K K   Piezoelectric constants 

(
3 210 Cm 

) are given by 15 3,e  31 3335, 34.e e   

Pyroelectric constant is
6 2 1

3 2.6 10 Cm K      . 

Numerical values for the remaining constants are
1 1260 ,eC JKg K 

1 20

111500 , 10 ,  fc ms a

22 5

033 2 10 , 2 10 ,    a s
32 10 Hz,  

3 35504 , 1500 ,   fKgm Kgm  0 298 .T K
 

In all the graphs, notations  WTT, 

WOTTdenote the energy ratio curves corresponding to 

orthotropic piezothermoelastic solid with two-temperature 

and orthotropic piezothermoelastic solid, respectively.  

It is noticed from Fig. 3(a) that the energy ratio ( RE ) of the 

reflected P wave attains constant magnitude values for
00 40  . For WTT, it increases when 

0 040 60  and 
080   while decreases for

0 060 80  .  In case of WOTT model, it increases 

when angle of incidence varies from 
040  to 

060  and for
060  , it shows decreasing behaviour. It implies that 

when the medium is considered with two temperature effect, 

energy ratio of reflected wave gains energy. Fig. 3(b) 

illustrates that the behaviour of energy ratio ( 1ES ) of the 

transmitted wave (qP) is similar for both models with 

different magnitude values. At
080  , its magnitude 

value for WOTT is greater than for WTT. As   increases 

above
080 , it shows monotonically decreasing behaviour. 

Fig. 4(a) shows that the energy ratio ( 2ES ) of the 

transmitted wave (qS) varies as angle of incidence increases. 

For both mediums, it shows similar behaviour with 

variations in magnitude values with respect to .  At
080  , in the absence of two temperature effect the 

numerical value of 2ES is greater than for WTT. In the 

beginning, for
060  , the plot shows constant behaviour 

of 2ES then its value increases when   varies from 

060 to
080 . As   increases above

080 , it shows 

monotonically decreasing behaviour. Fig. 4(b) depicts that 

for WTT, the energy ratio ( 3ES ) of the transmitted wave 

(qT) shows similar behaviour with variations in magnitude 

values for
00 40  . For WTT, it increases  
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(a)Transmitted energy ratio of eP wave mode 

 
(b) Interaction energy 

Fig. 5 Variation of energy ratio and energy with respect to   

 

 

monotonically as angle of incidence increases above
040 .  

In case of WOTT, it shows variations in behaviour when 

  varies from
040  to

060 . As   increases above
080 , it 

shows monotonically increasing behaviour.  

Fig. 5(a) illustrates that for both models the energy ratio 

( )4ES  of the transmitted wave (eP) initially decreases for 

lower values of   and further, for
0 020 60  , the 

plot is stationary in case of both with slight difference in 

magnitude values. However, when   varies from 
060  to

080 , 4ES   is still showing stationary mode in the 

absence of two temperature effect. Then, it shows 

monotonically behaviour for 
060    in case of WTT 

medium and for
080   , when WOTT medium is 

considered.  It is noticed that
080  , energy ratio of the 

transmitted wave (eP) gains higher energy in case of WOTT 

in comparison to WTT. Fig. 5(b) clearly shows that the 

interaction energy intE shows the similar behaviour with 

different numerical values for both WTT and WOTT 

mediums as of 1ES  and  2ES  illustrated by figures 3(b) 

and 4(a). As angle of incidence varies from 0 to
080 , it 

shows monotonically decreasing behaviour but increases as 

  increases above
080 . 

 
 
6. Conclusions 

 

The mathematical study is to discuss the reflection and 

transmission phenomenon of elastic waves at an interface of 

fluid half space – orthotropic piezothermoelastic half space. 

This phenomenon is studied with the consideration of two 

temperature theory. The energy ratios of various reflected 

and transmitted waves are obtained by using the amplitude 

ratios and these energy ratios are discussed analytically and 

represented graphically to show the effect of two-

temperature. The following conclusions are made from the 

above study.  

• Amplitude ratios and energy ratios are affected by the 

frequency, angle of incidence, two- temperature 

parameter and piezothermoelastic properties of the 

material. The nature of this dependence is different for 

reflected and transmitted waves. 

• Piezothermoelastic and two-temperature parameter 

have a significant influence on the energy ratios. 

• Principle of conservation of energy has been justified.  

• It is found that sum of these energy ratios is 

approximately unity at each angle of incidence. This 

shows that there is no dissipation of energy during 

reflection and transmission phenomenon. 

• Energy ratio of the transmitted qP wave possesses the 

maximum value for WOTT model. As angle of 

incidence increases, the energy ratio of the transmitted 

waves increases in comparison to the reflected wave and 

interaction energy ratio. 

• Numerical results show that the reflection and 

transmission coefficient along with energy ratios of 

various reflected and transmitted waves are affected 

significantly by the two-temperature parameter. 
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