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1. Introduction 
 

The main concern of civil engineering is to diminish 

undesired vibrations of the structures caused by lateral 

excitations such as wind and earthquake. Different theories 

and methods have been proposed and directed to overcome 

this concern over the years. One of these methods is to 

implement the control devices, which enhance the structural 

performance against vibration excitations and diminish the 

structural dynamic responses (Ghaffarzadeh and 

Younespour 2014, Saaed et al. 2015). The control devices 

can be categorized into either, passive, semi-active, active 

or hybrid control systems (Fisco and Adeli 2011a, Fisco and 

Adeli 2011b, Younespour and Ghaffarzadeh 2015, Han et 

al. 2019, Azar et al. 2020b, Aghabalaei et al. 2019). Among 

these systems, TMD, which is a passive device, is the most 

popular and reliable one due to different reasons such as its 

simple formulation and its successful applications in real 

life (Chey and Kim 2012). TMD is consisted of a mass, a 

spring and a damper, which is usually installed on the upper 

floors of the building to diminish the structural vibrations.  
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By tuning the frequency of the damper to a specific 

structural frequency, the damper starts to resonate out of 

phase with the structural motion when that specific 

frequency is excited. Therefore, the damper inertia force 

reacting to the building will dissipate the energy.  

It is clear that by defining the optimum mechanical 

parameters such as the optimum tuning frequency, damping 

and mass ratio of TMD, the efficiency of the control device 

will be improved. It means that a key point to design a 

TMD to mitigate dynamic responses of a structure is to 

determine its optimal parameters. Intensive researches 

worked on TMD have been focused on finding optimum 

parameters and evaluating the efficiency of the system 

under various dynamic actions. 

On the other hand, many new natural evolutionary 

algorithms have been developed with the purpose of solving 

different engineering problems, such as imperialist 

competitive algorithm (ICA) (Ghaffarzadeh and Raeisi 

2016), charged system search (CSS) (Kaveh and Talatahari 

2010), grey wolf optimizer (GWO) (Mirjalili et al. 2014, 

Azar et al. 2020a), grasshopper optimization algorithm 

(GOA) (Arora and Anand 2019, Raeesi et al. 2020), salp 

swarm algorithm (SSA) (Mirjalili et al. 2017) and so on. In 

this paper SSA, one of the recent swarm optimization 

algorithms, is selected as an optimization algorithm. SSA 

proved its superiority and outperformance in comparison 

with other well-known optimization algorithms over several 

types of problems. In addition, SSA has special 

characteristics such as simplicity and flexibility. However, 

SSA, like other optimization algorithms suffers from some 

problems such as population diversity and local optima. To 

overcome these problems, two methods such as opposition-

based learning (OBL) and merit function (MF) are added to 

standard SSA. 
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Abstract.  Recently, population based optimization algorithms are developed to deal with a variety of optimization problems. 

In this paper, the salp swarm algorithm (SSA) is dramatically enhanced and a new algorithm is named Enhanced Salp Swarm 

Algorithm (ESSA) which is effectively utilized in optimization problems. To generate the ESSA, an opposition-based learning 

and merit function methods are added to standard SSA to enhance both exploration and exploitation abilities. To have a clear 

judgment about the performance of the ESSA, firstly, it is employed to solve some mathematical benchmark test functions. 

Next, it is exploited to deal with engineering problems such as optimally designing the benchmark buildings equipped with 

multiple tuned mass damper (MTMD) under earthquake excitation. By comparing the obtained results with those obtained from 

other algorithms, it can be concluded that the proposed new ESSA algorithm not only provides very competitive results, but also 

it can be successfully applied to the optimal design of the MTMD. 
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There are many literatures exist in which OBL is used to 

improve different optimization algorithms which can be 

treated as a proof that using OBL can boost the performance 

of the algorithms. For example, Sarkhel et al. (2017) 

applied OBL to the Harmony Search (HS) to improve its 

convergence speed. Shan et al. (2016) used OBL to improve 

the population diversity and convergence speed of the Bat 

Algorithm (BA). Sapre and Mini (2019) utilized OBL to 

enhance the convergence rate of the moth flame 

optimization (MFO). Zhou et al. (2017) used OBL to 

improve the convergence speed and population diversity of 

the memetic algorithm (MA). In this paper, OBL is added to 

SSA to enhance the exploration and convergence rate. 

Moreover, to enhance the exploitation ability, MF is also 

added to SSA. In contrast with OBL, which is used in the 

majority of optimization algorithms, MF is rarely found in 

optimization algorithms. The concept of the MF is mostly 

used in reliability analyses to better converge to the design 

point (Hadidi et al. 2019, Der Kiureghian et al. 1994). This 

function is used to efficiently balance exploration and 

exploitation. In other words, it decreases the searching 

tendency nearby the best location with more iterations.  

Recently, the application of the optimization algorithm 

in the optimum design of the tuned mass damper has been 

focused by the control device researchers (Salvi and Rizzi 

2017, Salvi and Rizzi 2015). Utilizing the GA to get the 

optimized parameters of the TMD was proposed by Hadi 

and Arfiadi (1998). They employed the H2 norm of the 

transfer function from the external disturbance to a 

regulated output as a performance measure of the 

optimization criterion. Lee et al. (2006) suggested a 

numerical method to estimate the optimum parameters of 

TMD. In their study, by minimizing a performance index of 

the structural responses defined in the frequency domain, 

the optimal parameters of the damping coefficient and 

spring constant are determined for the TMD. Bekdaş and 

Nigdeli (2011) utilized harmony search (HS) algorithm to 

find optimum parameters of TMD. In their study, the 

objective function which is optimized by HS is based on the 

peak values of first story displacement and acceleration 

transfer function. The result of their work showed 

outstanding reduction in structural responses, however, 

these results are yet under discussion (Bekdaş and Nigdeli 

2013, Fadel Miguel et al. 2013). Applying CSS algorithm to 

estimate optimum parameters of TMD was proposed by 

Kaveh et al. (2015). They assumed the maximum values of 

the first story displacement with and without TMD, and the 

transfer function from input ground acceleration to the first 

story acceleration response as an optimization criteria. 

As mentioned above, TMD can suppress structural 

vibrations when its frequency is tuned to a specific 

structural frequency, but if excited frequency deviates from 

the structural frequency or TMD’s frequency, its control 

effect can be significantly reduced and even the structural 

response may be intensified. To overcome this problem, the 

concept of multiple tuned mass dampers (MTMDs) with 

frequencies tuned in the neighborhood of the natural 

frequency of an SDOF primary system to improve the 

performance of the TMD system was proposed by Xu and 

Igusa (1992). After that, numerous studies have been 

presented based on the behavior of MTMDs. Setareh (1994) 

proposed a doubly tuned mass damper (DTMD), which is 

consisted of two masses connected in series to the structure. 

Several MTMD models with different combinations of 

restrictions on MTMD physical or modal parameters were 

presented by Li (2002) and Li and Liu (2003). Rana and 

Soong (1998) investigated the effect of TMD and MTMD to 

control a particular structural mode and also to control a 

multi-degree-of-freedom (MDOF) structure, respectively. Li 

and Qu (2006) worked on the effect of changing the mass of 

MTMD in translational and torsional response reduction. In 

their study, a simplified two-degree-of-freedom (2DOF) 

structure with identical stiffness and damping coefficient for 

MTMD is considered. Also, their study had the capability of 

representing the dynamic characteristics of general 

asymmetric structures excited by earthquakes. 

This paper can be categorized into two main points of 

view. From the first point of view, the newly developed 

optimization algorithm (SSA) is selected as an optimization 

algorithm. To enhance the exploration and exploitation 

abilities of this algorithm, two methods such as opposition-

based learning (OBL) and merit function (MF) are added to 

the standard SSA and enhanced its performance (ESSA) in 

dealing with some mathematical benchmark test functions.  

From second point of view, the new ESSA algorithm is 

applied to the engineering problem. MTMD as a passive 

and reliable control device is selected to control the 

dynamic response of the structures. As it is important to 

design this control device correctly to achieve its best 

performance, ESSA is utilized to optimally design the 

MTMD. To investigate the performance of the optimum 

MTMD, two benchmark buildings are selected and their 

results are compared with some other papers. 

 

 

2. Optimization algorithm 
 

2.1 Standard Salp Swarm Algorithm (SSA) 
 

In 2017, Mirjalili et al. (2017) proposed a new meta-

heuristic algorithm which is inspired from the swarming 

behavior of the salps. Their movement and also tissues are 

so similar to jellyfishes. The main features of this type of 

animals are their ability to form a chain and searching for 

optimal locomotion based on rapid foraging and 

coordinated changes. The salp chain is divided into two 

categories: leader and followers. The leader is the salp at 

the front of the chain, however the rest of the salps are 

known as followers. The swarm is guided by the leader, 

while the followers follow each other. By defining the y as 

the position of a salp and denoting the F as the food source 

which is the target of the swarm in the search space, the 

position of the leader is updated using the following 

equation 

𝑦𝑗
𝑖 = {

𝐹𝑗 + 𝑟1((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑟2 + 𝑙𝑏𝑗),           𝑟3 ≥ 0

𝐹𝑗 − 𝑟1((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑟2 + 𝑙𝑏𝑗),           𝑟3 < 0
 (1) 

where 𝑦𝑗
i denotes as the leading salp’s position in the jth 

dimension. 𝑙𝑏𝑗 and 𝑢𝑏𝑗 are the lower boundary and upper 
boundary, respectively. 𝑟2 and 𝑟3 are randomly generated 
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numbers. The coefficient 𝑟1 is responsible for balancing 
between exploitation and exploration, and it is defined as 
follows 

𝑟1 = 2𝑒−(
4𝑡
𝑇

)
2

 (2) 

where t is the current iteration number, and T is the 

maximum number of iterations. By considering the 

Newton’s law of motion, the followers update their position 

according to the following equation 

𝑦𝑗
𝑖 =

1

2
𝛼𝑙2 + 𝛽0𝑙 (3) 

where 𝑦𝑗
𝑖  shows the position of ith follower in jth 

dimension (𝑖 ≥ 2), 𝛽0 is the initial speed, 𝛼 =
𝛽𝑓𝑖𝑛𝑎𝑙

𝛽0
, 𝛽 =

𝑦−𝑦0

𝑡
 and 𝑙 is time. As the time is called an iteration in the 

optimization process, the discrepancy within iteration 

equals to one. By assuming the 𝛽0 = 0 , the updating 

position of followers in jth dimension can be represented as 

follows 

𝑦𝑗
𝑖 =

1

2
(𝑦𝑗

𝑖 + 𝑦𝑗
𝑖−1) (4) 

 

2.2 Opposition-based learning 
 

The opposition-based learning (OBL) method is firstly 

introduced by Tizhoosh (2005) for machine intelligence and 

it is based on proposing an opposite numtber. It means that 

an opposite solution is generated based on the current 

solution and the upper and lower bounds of a range. For 

example, the opposite of the real number ℎ  which is 

bounded between 𝑎 and 𝑏 (ℎ ∈ [𝑎, 𝑏]) can be obtained 

using the following equation. 

ℎ̅ = 𝑏 + 𝑎 − ℎ (5) 

To extend this definition into n–dimensions the 

following equation is used: 

ℎ̅𝑖 = 𝑏𝑖 + 𝑎𝑖 − ℎ𝑖 ,        𝑖 = 1, 2, … , 𝑁 (6) 

where ℎ̅ ∈ 𝑅𝑛 is the opposite vector from the real vector 

ℎ ∈ 𝑅𝑛. Moreover, the best solution will be stored after 

comparing the two solutions (ℎ and ℎ̅). Thus, the other one 

will be eliminated by comparing the fitness function. For 

example, if 𝑓(ℎ) ≤ 𝑓(ℎ̅) (for maximization), then ℎ̅ will 

be saved and ℎ will be eliminated. 

Recently, OBL has attracted considerable attention due 

to its ability to increase the convergence rate of an 

optimization algorithm. For more clarification, it doubles 

the population in each iteration which leads to achieve a 

better population. Among the newly generated initial 

population in every iteration, the better ones (half of the 

newly generated population) are stored and the others are 

deleted. This feature enhances the convergence rate of the 

optimization algorithm. 

 

2.3 Merit function 

 

The merit function (MF) is based on the concept which is  

 

Fig. 1 Pseudo-code for the Enhanced Salp Swarm 

Algorithm (ESSA) 

 

 

mostly used in reliability analyses to better converge to the 

design point (Hadidi et al. 2019; Der Kiureghian et al. 

1994; Shirgir et al. 2020). The aim of utilizing the MF in 

the optimization problems is to improve the exploitation 

properties such as increasing the convergence rate and 

decreasing the cost function. The MF should have a global 

minimum at the solution point of X𝑖
′ and it should decrease 

in each iteration step. The step size 𝑠′ is assumed to be set 

by the following equation. 

𝑠′
𝑖+1 = {

𝑚(X𝑖−1
′ )

𝑚(X𝑖
′)

𝑠′
𝑖      𝑚(X𝑖

′) ≥ 𝑚(X𝑖−1
′ )

 𝑠′
𝑖                        𝑚(X𝑖

′) < 𝑚(X𝑖−1
′ )

 (7) 

where 𝑚(X𝑖
′) is the MF and can be calculated according to 

the Eq. (8) 

𝑚(X𝑖
′) = ‖X𝑖

′ −
∇𝑇𝑔(X𝑖

′)X𝑖
′

∇𝑇𝑔(X𝑖
′)∇𝑔(X𝑖

′)
∇𝑔(X𝑖

′)‖

2

+
𝑔(X𝑖

′)2

𝑔(X0
′ )2 (8) 

in which ∇𝑔(X𝑖
′) is the gradient vector of the cost function 

𝑔(X𝑖
′ ) at point X𝑖

′ , and X0
′  is the initial random point. 

Obviously, the MF is a positive value which can be 

calculated according to the former results of the objective 

function 𝑚(X𝑖
′) ≥ 0. Also, the initial step size is assumed 

to be 1 (i.e 𝑠′
0 = 1). According to the above adaptive step 

size in Eq. (7), it is clear that 𝑠′
𝑖+1 ≤ 𝑠′

𝑖. 

 

2.4 Proposed Enhanced Salp Swarm Algorithm 
(ESSA) 

 

In this section, an opposition-based learning (OBL) and 

merit function (MF) based salp swarm algorithm (SSA) is 

proposed, where OBL and MF are both added to the SSA to 

enhance its performance. One of the parameters which 

affect the performance of the SSA is the 𝑟1 parameter, 

which balances between exploitation and exploration. 

Exploration concentrates on finding better new solutions by  
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Fig. 2 N-story shear building structure equipped with 

MTMD on top floor under earthquake excitation 

 

 

investigating the search space on a large scale, while 

exploitation concentrates on exploiting the data in the local 

region. In this paper, the 𝑟1 parameter is replaced by the 

step size 𝑠′  (Eq. (7)) to handle the exploitation and 

exploration abilities of the SSA. Also, OBL is added to SSA 

to enhance the exploration phase and to reach the optimal 

value quickly and repair the out-of-range values. The 

pseudo-code for the ESSA is given in Fig. 1. 

 

 

3. Outline for the optimum design of the MTMD 
 

To better understand how the proposed new ESSA 

performs in dealing with designing control devices, at first, 

it is needed to explain the governing equation of the 

structure equipped with control devices. In the following 

subsection, the equation of motion for the structure 

equipped with MTMD is presented. Also, in the next 

subsection, the procedure of utilizing the proposed ESSA in 

finding optimum MTMD parameters will be described. 

 

3.1 Equations of motion 
 
The equation governing dynamic response of the N-

story shear building structure equipped with MTMD on top 

floor and excited with earthquake which is depicted in Fig. 

2, is formulated as 

𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑋(𝑡) =  −𝑀𝐸�̈�𝑔 (9) 

where 𝑋 is the displacement vector which consists of the 

displacements of the N-story shear building structure, 𝑥𝑠𝑁
 

(N=1,..,N), and the displacements of the n TMDs, 𝑥𝑑𝑛
 

(n=1,…,n). That is 

𝑋 = [𝑥𝑠1  𝑥𝑠2  𝑥𝑠3 … 𝑥𝑠𝑁
  𝑥𝑑1

 𝑥𝑑2
 …  𝑥𝑑𝑛

]𝑇 (10) 

In Eq. (9), M, C, and K represent mass, damping, and 

stiffness matrices, respectively with following forms (Eqs. 

(11-13) 

𝑀 = 𝑑𝑖𝑎𝑔[𝑚1  𝑚2  𝑚3 … 𝑚𝑁   𝑚𝑑1
  …  𝑚𝑑𝑛

] (11) 

where 𝑚𝑖, 𝑐𝑖, 𝑘𝑖 and 𝑥𝑠𝑖
 are mass, damping coefficient, 

stiffness and displacement of ith story of building (i = 1, 2, . 

. . , N). 𝑚𝑑𝑖
, 𝑐𝑑𝑖

, 𝑘𝑑𝑖
 and 𝑥𝑑𝑖

 are mass, damping 

coefficient, stiffness and displacement of ith TMD with 

respect to the ground which is installed on top of the 

building as can be seen in Fig. 2. 

Solving Eq. (9) directly is not an easy task, so by 

transforming coupled dynamic equations into uncoupled 

form, it can be easily solved for each mode. The final form 

of uncoupled dynamic equation of motion can be seen in 

Eq. (14) or alternatively in Eq. (15). 

𝐶 =

[
 
 
 
 
 
 
 
 
(𝑐1 + 𝑐2) −𝑐2 0

−𝑐2 (𝑐2 + 𝑐3 ) −𝑐3

0 −𝑐3 ⋱
…

⋮

(𝑐𝑁 + ∑𝑐𝑑𝑖

𝑛

𝑖=1

) −𝑐𝑑1

−𝑐𝑑1
𝑐𝑑1

… −𝑐𝑑𝑛

⋮
−𝑐𝑑𝑛

⋱
𝑐𝑑𝑛 ]

 
 
 
 
 
 
 
 

(𝑁+𝑛)×(𝑁+𝑛)

 (12) 

𝐾 =

[
 
 
 
 
 
 
 
 
 
(𝑘1 + 𝑘2) −𝑘2 0

−𝑘2 (𝑘2 + 𝑘3 ) −𝑘3

0 −𝑘3 ⋱
…

⋮

(𝑘𝑁 + ∑𝑘𝑑𝑖

𝑛

𝑖=1

) −𝑘𝑑1

−𝑘𝑑1
𝑘𝑑1

… −𝑘𝑑𝑛

⋮
−𝑘𝑑𝑛

⋱
𝑘𝑑𝑛 ]

 
 
 
 
 
 
 
 
 

(𝑁+𝑛)×(𝑁+𝑛)

 (13) 

𝑀𝑖�̈�𝑖(𝑡) + 𝐶𝑖�̇�𝑖(𝑡) +  𝐾𝑖𝑌𝑖(𝑡) =  −𝐌{𝟏}�̈�𝑔(𝑡) (14) 

�̈�𝑖(𝑡) + 2𝜁𝑖𝜔𝑖�̇�𝑖(𝑡) +  𝜔𝑖
2𝑌𝑖(𝑡) =   

−𝐌{𝟏}�̈�𝑔(𝑡)

𝑀𝑖

 (15) 

in which 𝑀𝑖 , 𝐶𝑖 ,𝐾𝑖 , 𝑌𝑖 , 𝜔𝑖and 𝜁𝑖  are generalized mass, 

damping, stiffness, displacement, natural frequency and 

damping ratio of the ith normal mode, respectively. 

 

3.2 ESSA for MTMD parameters optimization 
 

To obtain the optimum parameters of MTMD such as 

mass, damping, and stiffness, the salp swarm algorithm is 

selected and enhanced (ESSA) and utilized. To reach this 

goal, at first a building without MTMD is modeled in 

MATLAB R2014a program to get its dynamic response 

such as displacements of different floors. For this purpose, 

the Newmark average acceleration method (c = 1/2 and b = 

1/4) was employed to solve the uncoupled form of the 

dynamic equation of motion (Eq. (15)). In the next step the 

building in which MTMD are implemented on the top floor 

is modeled and their parameters such as mass, damping and 

stiffness are adjusted by ESSA. It searches random TMD 

parameters around upper and lower bound values in each  
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Fig. 3 Flowchart for the optimum design of the MTMD 

using ESSA 

 

 

iteration. All results are checked until the objective function 

is satisfied. If the objective function is not satisfied, a new 

vector must be generated. The objective function which is 

used in this paper is the minimization of the maximum 

displacement and acceleration of the all story with and 

without MTMD as following: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 

∑ |max (𝑥𝑖)|𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑
𝑛
𝑖=1

∑ |max (𝑥𝑖)|𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑
𝑛
𝑖=1

+
∑ |max (�̈�𝑖)|𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑

𝑛
𝑖=1

∑ |max (�̈�𝑖)|𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑
𝑛
𝑖=1

 

(16) 

where 𝑛 represents the number of stories. Also, 𝑥𝑖 and �̈�𝑖 

are the ith story’s displacement and acceleration, 

respectively. The flowchart of the proposed method is 

illustrated in Fig. 3. 

 

 

4. Numerical examples 
 

In the following subsections, ESSA is applied to two kinds 

of problems. At first, some mathematical benchmark test 

functions are selected to examine the efficiency of the new 

algorithm. Next, to generalize the ESSA in dealing with 

engineering problems, an optimum design for the 

benchmark buildings equipped with MTMD is tested. 

 

4.1 Verifying ESSA using mathematical test functions 
 

To compare the performance of ESSA with original 

SSA, eight benchmark test functions are selected in which 

the first four functions are related to uni-modal test 

functions and others are related to muti-modal test function. 

It is worth mentioning that, the multimodal test functions, in 

contrast with uni-modal ones, have more than one optimum 

value, and therefore the exploration ability of the algorithms 

to avoid trapping in local optima can be examined. The uni-

modal and multi-modal mathematical descriptions are 

presented in Table 1 and their 3-D graphs are all depicted in 

Fig. 4. It should be noted that the dimension of the search 

space for all of the test functions is equal to 10. To have a 

fair judgment, the number of search agents and the 

maximum number of iterations are assumed to be as 40 and  

600, respectively. After running the program for 25 times 

for independent tests for each algorithm, the comparison 

results are summarized in Table 2. As can be seen from 

Table 2, the original SSA optimization somehow fails to 

find the minimum of the functions, however, the ESSA can 

find the optimum values, better than its original one. 

Moreover, to make the results much more understandable, 

convergence history of the test functions for the SSA and 

ESSA are all illustrated in Fig. 5. 

 

4.2 Verifying ESSA using engineering problem 

 

In this subsection, to check the efficiency of the 

proposed optimization algorithm in handling the 

engineering problems, two benchmark buildings (Hadi and 

Arfiadi 1998, Lee et al. 2006, Bekdaş and Nigdeli 2011, 

Kaveh et al. 2015) are selected. In these examples, ESSA is 

applied to find the optimum parameters of the MTMDs for 

dynamic response reduction. For the both following 

examples, the parameters used in the ESSA including 

number of population size and maximum number of 

iteration are taken as 35 and 300 respectively. 

 

4.2.1 Example 1 
A ten-story shear building (Hadi and Arfiadi 1998, Lee 

et al. 2006, Bekdaş and Nigdeli 2011, Kaveh et al. 2015) 

with uniform properties for all stories in which MTMD is 

installed on the top floor is selected as a first engineering 

example. For this example, the structural properties such as 

elastic stiffness, mass, and linear viscous damping 

coefficient are considered as k= 650 MN/m, 360 tons and 

6.2 MN s/m, respectively. To examine the effectiveness of 

the proposed optimization algorithm (ESSA), three cases of 

using TMDs which including two, four and six-TMDs are 

considered. The lower and upper bounds for TMD 

parameters for each case are indicated in Table 3.  

It should be mentioned about Table 3 that, the total mass 

of TMDs in different cases for upper bound are equal to 60 

ton. The convergence histories for all three cases using both 

ESSA and standard SSA under El-Centro 1940 NS 

excitation, regarding the objective function in Eq. (16), is 

depicted in Fig. 6.  
 
4.2.2 Example 2 
To investigate the efficiency of the ESSA, another 10-

story building which is investigated by different researchers 

(Den Hartog 1985, Hadi and Arfiadi 1998, Bekdaş and 

Nigdeli 2011, Warburton 1982, Sadek et al. 1997, Kaveh et 

al. 2015) with each floor’s property as Table 6, is selected. 

In this example, the damping matrix is assumed to be 𝑪 =
0.0129𝑲 and also the first mode of building is considered. 

By assuming the same conditions of Example 1 for 
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Table 1 Benchmark test functions 

Function Dim Range fmin 

Unimodal 

𝑓1(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1
 10 [-100,100] 0 

𝑓2(𝑥) = ∑ |𝑥𝑖| + ∏ |𝑥𝑖|
𝑛

𝑖=1

𝑛

𝑖=1
 10 [-10,10] 0 

𝑓3(𝑥) = ∑ (∑ 𝑥𝑗

𝑖

𝑗−1
)

2𝑛

𝑖=1
 10 [-100,100] 0 

𝑓4(𝑥) = max
𝑖

{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} 10 [-100,100] 0 

Multimodal  

𝑓5(𝑥) = ∑ [𝑥𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1
 10 [-5.12,5.12] 0 

𝑓6(𝑥) = 20 (1 − 𝑒−0.2√0.5(𝑥2+𝑦2)) − 𝑒0.5(𝑐𝑜𝑠(2𝜋𝑥)+cos (2𝜋𝑦)) + 𝑒 10 [-32,32] 0 

𝑓7(𝑥) = 1 +
1

4000
∑ 𝑥𝑖

2
𝑛

𝑖=1
− ∏ cos (

𝑥𝑖

√𝑖
)

𝑛

𝑖=1
 10 [-600,600] 0 

𝑓8(𝑥) = 0.1 {𝑠𝑖𝑛2(3𝜋𝑥1) + ∑ (𝑥𝑖 − 1)2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)] + (𝑥𝑛 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]
𝑛

𝑖=1
}

+ ∑ 𝑢(𝑥𝑖 , 5100,4)
𝑛

𝑖=1
 

10 [-50,50] 0 

Table 2 Performance of the SSA and ESSA dealing with mathematical test functions 

Function Algorithm Best Worst Mean Standard deviation 

𝑓1(𝑥) 
SSA 9.1254e-11 4.9835e-10 3.2390e-10 1.2016e-10 

ESSA 2.1805e-18 2.848e-15 1.291e-16 1.975e-17 

𝑓2(𝑥) 
SSA 2.4118e-06 6.9724e-06 5.0412e-06 1.1500e-06 

ESSA 8.3657e-10 4.9143e-07 1.7595e-09 5.7539e-08 

𝑓3(𝑥) 
SSA 1.3195e-10 7.7713e-09 1.9703e-09 1.7439e-09 

ESSA 2.0409e-15 5.4951e-13 2.1897e-14 9.3223e-14 

𝑓4(𝑥) 
SSA 5.7923e-06 1.7733e-04 1.2112e-05 2.7079e-06 

ESSA 5.5391e-09 6.2547e-07 6.5640e-08 1.9754e-09 

𝑓5(𝑥) 
SSA 4.7049e-12 1.0023e-10 3.6184e-11 6.1637e-11 

ESSA 6.8369e-18 3.5474e-14 7.3182e-16 4.5427e-17 

𝑓6(𝑥) 
SSA 4.5956e-06 9.4020e-06 7.1905e-06 1.3411e-06 

ESSA 5.2879e-10 4.6295e-07 1.4873e-09 2.7930e-10 

𝑓7(𝑥) 
SSA 1.0623e-07 1.002e-05 3.618e-06 6.163e-05 

ESSA 7.8648e-12 2.6832e-10 3.9053e-11 6.1930e-11 

𝑓8(𝑥) 
SSA 8.4688e-12 1.2798e-10 2.5814e-11 4.4547e-10 

ESSA 7.3105e-17 4.9825e-14 4.3445e-15 8.4893e-16 

 

Fig. 4 The 3-D graphs for the benchmark test functions 
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Fig. 5 Convergence history of the test functions using the SSA and ESSA 

   

Fig. 6 Convergence histories using ESSA and SSA for optimum parameter design of MTMD in 3 cases 
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Table 3 Upper and lower bounds for each TMD parameters 

 𝑚𝑑 𝑐𝑑 𝑘𝑑 

Number of TMDs 
Case 1 

(n=2) 

Case 2 

(n=4) 

Case 3 

(n=6) 
n=2,4,6 n=2,4,6 

Lower bound 3 3 3 0.01 0.5 

Upper bound 30 15 10 0.3 3.5 

Table 4 Optimum MTMD parameters obtained from ESSA 

 Case 1 (n=2) Case 2 (n=4) Case 3 (n=6) 

𝑚𝑑(𝑡) 13.18 15.78 10.05 12.73 11.13 5 10 5.29 5.69 8.77 10 5.48 

𝑐𝑑  (𝑀𝑁
𝑠

𝑚
) 0.29 0.01 0.01 0.3 0.28 0.27 0.3 0.12 0.095 0.09 0.3 0.05 

𝑘𝑑  (
𝑀𝑁

𝑚
) 0.52 1.04 2.67 0.5 0.5 1.79 0.5 2.96 2.06 1.87 0.5 1.40 

 

 

 

Fig. 7 Maximum first and top stories displacement response of building with and without MTMD under El-Centro 1940 NS 

 

Fig. 8 Maximum displacements of uncontrolled and controlled structure 
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maximum number of iteration, population size and number 

of TMD, and also by adjusting the upper and lower bound 

for the TMD parameters to be used in ESSA (shown in 

Table 7), optimum MTMD parameters for all three cases 

under El-Centro 1940 NS ground acceleration record, are 

obtained as Table 8. 

By setting optimum parameters of MTMD in each case, 

maximum first and top story displacement response of 

building and also the maximum displacements of each floor 

with and without MTMD in three cases are shown in Fig. 9 

and Fig. 10, respectively. 

To compare the results of this model with other 

researcher’s results, Table 9 is collected. It can be deduced  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

from Table 9 that, the ESSA has an acceptable performance 

in dealing with the optimization of the MTMD parameters, 

and can better control the structural response in comparison 

with other optimization algorithms. For example, the 

maximum top story displacement using classical design 

method by Den Hartog (1985), Warburton (1982) and Sadek 

et al. (1997) are reduced from 0.327m to 0.276 (15.5%), 

0.310 (5.2%) and 0.281 (14.0%), respectively. Also, using 

GA (Hadi and Arfiadi 1998), HS (Bekdaş and Nigdeli 2011) 

and CSS (Kaveh et al. 2015), the maximum top story 

displacement is reduced from 0.327m to 0.272 (16.8%), 

0.205 (37.3%) and 0.242 (25.9%), respectively. However, 

using ESSA, the maximum top story displacement is  

Table 5 Maximum displacements respect to ground El Centro (1940) NS earthquake 

 

Story 

Maximum absolute displacement respect to ground (m) 

Without 

TMD 
With TMD  

 
GA (Hadi 

and Arfiadi 1998) 

Numerical method 

(Lee et al. 2006) 

HS (Bekdaş and 

Nigdeli 2011) 

CSS (Kaveh et 

al. 2015) 

Present study (ESSA) 

2TMDs 4TMDs 6TMDs 

1 0.031 0.019 0.020 0.016 0.0185 0.0054 0.0044 0.0088 

2 0.060 0.037 0.039 0.031 0.0362 0.0100 0.0082 0.0170 

3 0.087 0.058 0.057 0.044 0.0525 0.0136 0.0114 0.0244 

4 0.112 0.068 0.073 0.057 0.0682 0.0163 0.0142 0.0313 

5 0.133 0.082 0.087 0.068 0.0825 0.0187 0.0164 0.0377 

6 0.151 0.094 0.099 0.078 0.0950 0.0205 0.0181 0.0436 

7 0.166 0.104 0.108 0.087 0.1056 0.0223 0.0194 0.0487 

8 0.177 0.113 0.117 0.094 0.1139 0.0237 0.0202 0.0528 

9 0.184 0.119 0.123 0.099 0.1196 0.0248 0.0207 0.0558 

10 0.188 0.122 0.126 0.102 0.1225 0.0254 0.0209 0.0575 

Table 6 Properties of 10 story building (Ex. 2) 

Story Mass (ton) Stiffness (M N/m) 

1 179 62.470 

2 170 52.260 

3 161 56.140 

4 152 53.020 

5 143 49.910 

6 134 46.790 

7 125 43.670 

8 116 40.550 

9 107 37.430 

10 98 34.310 

Table 7 Upper and lower bounds for each TMD parameters (Ex. 2) 

 𝑚𝑑 𝑐𝑑 𝑘𝑑 

Number of TMDs n=2,4,6 n=2,4,6 n=2,4,6 

Lower bound 2 0.01 0.1 

Upper bound 18 0.4 2.5 

Table 8 Optimum MTMD parameters obtained from ESSA (Ex. 2) 

 
Case 1 

(n=2) 

Case 2 

(n=4) 

Case 3 

(n=6) 

𝑚𝑑(𝑡) 14.9 7 17.58 6.67 11.02 2.65 2 7.09 8.37 7.50 4.6 8.65 

𝑐𝑑  (𝑀𝑁
𝑠

𝑚
) 0.162 0.03 0.39 0.3 0.39 0.38 0.22 0.19 0.24 0.24 0.07 0.206 

𝑘𝑑  (
𝑀𝑁

𝑚
) 0.165 1.52 0.185 2.36 0.71 0.47 0.12 1.37 1.18 0.1 0.77 2.14 
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Fig. 9 Maximum first and top story displacement response of building with and without MTMD under El-Centro 1940 NS 

record (Ex. 2) 

Table 9 Maximum displacements respect to ground El Centro (1940) NS earthquake (Ex. 2) 

 Maximum absolute displacement respect to ground (m) 

Story 
Without 

TMD 

Den 

Hartog 

(1985) 

Warburton 

(1982) 

Sadek 

et al. 

(1997) 

GA (Hadi 

and Arfiadi 

1998) 

HS (Bekdaş 

and Nigdeli 

2011) 

 

Present study (ESSA) 

2TMDs 4TMDs 6TMDs 

1 0.041 0.034 0.036 0.036 0.034 0.027 0.030 0.010 0.009 0.017 

2 0.088 0.074 0.079 0.077 0.072 0.058 0.655 0.022 0.016 0.038 

3 0.129 0.106 0.114 0.113 0.0525 0.083 0.094 0.033 0.023 0.057 

4 0.166 0.136 0.147 0.145 0.134 0.105 0.120 0.043 0.027 0.075 

5 0.197 0.163 0.177 0.172 0.160 0.124 0.143 0.053 0.031 0.092 

6 0.222 0.187 0.206 0.194 0.184 0.140 0.163 0.062 0.034 0.106 

7 0.252 0.213 0.236 0.219 0.210 0.157 0.186 0.070 0.037 0.119 

8 0.286 0.239 0.267 0.245 0.236 0.177 0.209 0.077 0.039 0.130 

9 0.313 0.261 0.292 0.266 0.258 0.195 0.229 0.083 0.040 0.138 

10 0.327 0.276 0.310 0.281 0.272 0.205 0.242 0.087 0.041 0.143 
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reduced to 0.087 (73.3%), 0.041 (87.4%) and 0.143 (56.2%) 

in the cases of using two, four and six TMDs. 

 

 

5. Conclusions 
 

This paper investigates the efficiency of the new 

proposed enhanced salp swarm algorithm (ESSA) in 

dealing with optimization problems. SSA like other 

optimization algorithms has some defects such as low 

convergence rate and sticking in the local optima. To 

overcome these problems, OBL and MF methods are added 

to SSA which enhanced its exploration and exploitation 

capabilities. To examine its performance, two kinds of 

problems, mathematical and engineering problems, are 

selected. Considering mathematical benchmark test 

functions, it is proved that ESSA has better performance 

than standard SSA in finding optimum values. Also, the 

convergence rate of the ESSA has become better than SSA. 

For the engineering problems, two benchmark buildings 

equipped with MTMD are chosen to find the optimum 

parameters of the control device. Reducing the structural 

response subjected to earthquake excitation considering the 

optimum parameters for the MTMD is the criterion for 

evaluating the performance of the proposed algorithm in 

these examples. 

In the first example, the maximum first story 

displacement of the building using GA (Hadi and Arfiadi 

(1998), numerical method (Lee et al. 2006), HS (Bekdaş 

and Nigdeli 2011) and CSS (Kaveh et al. 2015), are reduced 

from 0.031m to 0.019 (38.7%), 0.020 (35.5%), 0.016 

(48.38%) and 0.0185 (40.32%), respectively. However, the 

new ESSA can achieve a reduction to 0.0054 (82.5%), 

0.0044 (85.8%) and 0.0088 (71.6%) in the cases of using 

two, four and six TMDs. 

As the second engineering problem, a ten-story 

benchmark building equipped with TMD is considered and 

results of the investigation show that the maximum top 

story displacement using classical design method by Den 

Hartog (1985), Warburton (1982) and Sadek et al. (1997) 

are reduced from 0.327m to 0.276 (15.5%), 0.310 (5.2%) 

and 0.281 (14.0%), respectively. Also, using GA (Hadi and 

Arfiadi 1998), HS (Bekdaş and Nigdeli 2011) and CSS 

(Kaveh et al. 2015), the maximum top story displacement is 

reduced from 0.327m to 0.272 (16.8%), 0.205 (37.3%) and 

0.242 (25.9%), respectively. However, using ESSA, the 

maximum top story displacement is reduced to 0.087 

(73.3%), 0.041 (87.4%) and 0.143 (56.2%) in the cases of 

using two, four and six TMDs, which shows the superiority 

of the ESSA over other mentioned algorithms in facing with 

optimum design of the TMDs 
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