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1. Introduction  
 

The extended in plane configuration of suspension 

bridges makes them vulnerable against ambient vibration 

like traffic, wind and earthquake loading. In a suspension 

bridge, the vertical vibration can be created by the vertical 

component of ground motions and the longitudinal 

oscillation of support points due to horizontal component of 

the earthquake. Vibration problem of suspension bridges 

contains two distinct parts. In part one, the vibration of the 

pylon-pier system dominates while in the second part the 

vibration of suspended structure is dominant (Abdel-

Ghaffar and Rubin 1983).  

Nowadays, this fact is admitted that severe collapses are 

seen in the vicinity of fault (Maniatakis et al. 2008). The 

specifications of ground motions variate based on the fault 

distance, and according to distance they are divided to two 

various types called near and far-field ground motions. 

Also, there are other features distinguishing the near field 

ground motions, like directivity, hanging-wall, fling step, 

and velocity pulse, vertical and rotational component from 

far fault ones (Grimaz and MaliSan 2014). Vertical 

component of an earthquake tends to concentrate its energy 

on a high frequency narrow band that can be destructive for 

structures which their fundamental period lies between in 

the mentioned band (Elnashai and Papazoglou 2007). Peak  
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ground acceleration is one of the most important features of 

seismic excitation (Colliera and Elnashai 2010), and it 

minimizes based on the increasing of distance from the fault 

(Memarpour et al. 2016). 

In the last decades, vibration control of structures like 

tall buildings and bridges was studied by many researchers. 

Vibration control strategies are divided to four groups 

named active, semi-active, passive, and hybrid systems. 

TMD as a passive control system contains a mass, spring 

and damper in the simplest form (Elias and Matsagar 2017). 

Wong and Chee (2004) reported that TMD could reduce the 

maximum strain and kinetic energies of structures. 

Pourzeynali and Datta (2002a) addressed the effect of TMD 

parameters on increasing of flutter velocity, and finally 

provided the optimum value of each parameter to maximum 

increase. Wang et al. (2003) reported that TMD is a proper 

control strategy to decrease the vertical amplitude of 

vibration of bridges. Yau and Yang (2004) utilized multi 

TMD systems to reduce the multiple resonant response of 

cable stayed bridges due to oscillation caused by travelling 

of high speed train. Poorzeynali and Esteki (2008) used trial 

and error method to mitigate the vertical vibration of the 

Vincent Thomas suspension bridge under earthquake 

loading, and eventually they reported optimum value for 

each parameter. Chen and Wu (2008) studied the 

performance of MTMD in controlling of the vibration of 

bridges under wind load. Casciati and Giuliano (2009) 

purposed a multi TMD system needing an innovative 

parameter namely frequency rang instead of choosing single 

value to tuning frequency as customary procedure, and 

addressed its efficiency in the towers of suspension bridge 

under gust loading. It found out that selecting an 

appropriate frequency range having effective bandwidth can 
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considerably suppress the vibration. Tubino et al. (2016) 

attached two TMDs to the footbridge in order to control the 

vibration of it under various conditions of loading. The 

results indicated that TMDs could suitably reduce the 

ultimate responses in all conditions of loading. Alizadeh et 

al. (2018) investigated the sensitivity of flutter velocity into 

the gyration radius and placement of TMDs. 

Chen and Huang (2014) specified an upper limit for the 

mass ratio which was 15% and stated that exceeding from 

the mentioned limit decreased the performance of TMD. 

But too heavy TMDs are not recommended and change the 

natural characteristics of structures, so the optimum values 

should be selected (Tao et al. 2017). The performance of 

control systems is improved by minimizing of whole energy 

under specific condition or response quantities like 

displacement, and this minimization is the basis of 

optimization algorithms. Determination of characteristics of 

control system is the integral aid of optimization methods. 

Control systems can be classically optimized by gradient-

based search method. Meta-heuristic optimization algorithm 

like genetic is another method providing the optimum value 

in a feasible and complex discontinues space (Pourzeynali 

et al. 2007). Rao et al. (2011) firstly introduced the 

teaching-learning-based optimization as a Meta-heuristic 

algorithm. It includes two independent part namely teaching 

and learning phase. In the first part the mean scientific level 

of the students is improved by the teacher while in the 

second part the students improve their level by interaction 

between together. Although usefulness of the mentioned 

method, introducing a surplus phase called observer would 

provide a new solution to improve the level of the student 

briefly called OTLBO (Shahrouzi et al. 2017). 

Li et al. (2010) reported that efficiency of MTMDs 

optimized by the random optimization is more appropriate 

in compare to others optimized by classical methods. 

Ubertini et al. (2015) addressed different vibration control 

strategies single TMD, MTMD and MTMDs in 

deterministic and non-deterministic design conditions. Both 

design procedures eventuated about same value for 

optimum tuning frequency and position of TMD. Also, the 

non-deterministic method tended to increase the mass ratio 

of TMD in all of three conditions, because it would 

decrease the failure probability. Miguel et al. (2016) 

optimized TMDs in vehicle-bridge using robust design 

optimization. The results showed that two or three TMD 

could result in further improvement and caused ultimate 

less vertical displacement of the center span’s middle node 

in compare to using single TMD. Pisal and jungid (2016) 

reported that optimized MTMD placed at the middle point 

of span and distributed along bridge length is more effective 

than optimized STMD in response reduction of bridge. 

Miguel et al. investigated the robust optimized TMDs in 

controlling the vibration of buildings and bridges. 

In this paper, the performance of TMD is optimized 

under a complete set of ground motions compressing twenty 

near and far-field ground motions by OTLBO algorithm. In 

this regard, TMD devices are attached to the deck in three 

different cases. The Vincent Thomas, Tacoma Narrows and 

Golden Gate suspension bridges as the short, mean and long 

span bridges, respectively, are chosen for numerical  

 

Fig. 1 Finite element model of bridge 

 

 

analysis. The structural properties matrices and motion 

equations can be written by the finite element method and 

using energy principle. Finally, the numerical analysis is 

done and the results will be provided. 

 

 

2. Equation of motion 
 

In order to dynamic analysis of suspension bridges, 2-D 

and 3-D models can be utilized. When the behavior of all 

parts of bridge like suspended deck, main cables, towers 

and piers is considered as a unique system, the 3-D model 

will be mostly adapted (Hosseini Lavassani et. al. 2020). It 

has been indicated that 2-D model can successfully provide 

the natural modes shapes and frequencies (Pourzeynali and 

Datta 2002b). In this study, the lumped mass matrix is used 

to obtain the natural characteristics of 2-D models. In this 

regard, the suspended structure is discretized to some 

certain beam elements. Each element containing stiffening 

structure (girder), main cables, and at least two hangers 

shown in Fig. 1. The hangers are assumed to be inextensible, 

so the displacement of the main cables and stiffening 

structure is the same, and consequently considering one 

node at the centerline of the girder is enough. Hence, each 

element compresses two nodes at the end parts. Each node 

has two degrees of freedom that one of them is vertical 

displacement (𝑉1. 𝑉2 ) while another one is the bending 

rotation (𝑅1. 𝑅2).  

Total potential energy of the structure is divided into 

three independent parts which are (i) the strain energy 

stored in the girder due to effects of the bending moment, 

shear and normal forces, (ii) the strain energy stored in the 
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cables due to the tension load, and (iii) gravity energy of the 

cables resulted in by the lowered position of the dead loads 

(see the formulas stated by Abdel-Ghaffar (1980)).  

The interpolation functions related to the vertical and 

rotation degrees of freedom are presumed to be cubic 

Hermitian polynomials. In this regard, the deflection shape 

function of an element can be written as follows 

𝑣𝑒(𝑥. 𝑡) = {𝑓(𝑥)}𝑒
𝑇{𝑞(𝑡)}𝑒 (1) 

In which, f(x) and q(t) are the vector of polynomials and 

nodal displacement. In order to evaluate the structural 

property matrices of bridges, the potential and kinetic 

energies should be written in account to the nodal 

displacement. 

The results are represented here and the more details of 

evaluation of matrices were stated by Abdel-Ghaffar 

(1980). The stiffness matrix is formed from three 

independent parts namely kcg, kce and kge denoting gravity 

stiffness and elastic stiffness matrices of cable, and elastic 

stiffness of girder, respectively. Also, the mass matrix has a 

single part and is represented by mt. 
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(2) 

In which, L, LE, Ac, and Ig are the span length, virtual 

length, Cross section of the cable and moment inertia of the 

girder, respectively. Wd and Hw are the Dead load of the 

whole suspended structure and Cable force. Also, Eg and Ec 

show the Modulus of elasticity of the girder and cable, 

respectively.  
In this regard, the structural properties matrices of one 

element should be evaluated using Eq. (2). the stiffness 

matrix is [kge]e + [kcg]e + [kce]e and mass matrix is [mt]e, and 

this computation should be done for another elements of left 

side span. Center and right side spans have the similar 

evaluation. Eventually, after assembling the computed 

matrices the rows and columns corresponded to vertical 

degree of freedom of final elements of each span should be 

eliminated from the matrices, because two-hinged girder are 

utilized.  
Now, by using the potential and kinetic energy of the 

structure and applying the Hamilton’s principal, the  

 
Fig. 2 Details of TMD’s attachment to the suspended 

structure 

 

 

equation of motion can be written as follows (Abdel-

Ghaffar, 1980) 

[M]{�̈�(𝑡)} + [𝐶]{�̇�(𝑡)} + [𝐾]{𝑢(𝑡)} = −[𝑀]{𝑟}�̈�𝑔(𝑡) (3) 

M. C and K represent the mass, damping and stiffness 

matrices. 𝑢(𝑡) represents the displacement response. By 

the way, number of dots signify the order of the derivation 

in account to time. Also, the stiffness matrix of the 

symmetric mode is as follows 

[𝐾] = [𝐾𝐶𝐺] + [𝐾𝐶𝐸] + [𝐾𝐺𝐸] (4) 

And for antisymmetric mode mentioned matrix is as 

follows 

[𝐾] = [𝐾𝐶𝐺] + [𝐾𝐺𝐸] (5) 

The motion equation can be comfortably solved in the 

state-space: 

{�̇�}
2𝑛∗1

= [
0𝑛∗𝑛 𝐼𝑛∗𝑛

−𝑀−1𝐾 −𝑀−1𝐶
]
2𝑛∗2𝑛

{𝑍}2𝑛∗1

+ {
0𝑛∗1

1𝑛∗1
}
2𝑛∗1

(𝑟)�̈�𝑔(𝑡).    {𝑍}

= {
𝑢𝑇

�̇�𝑇
} 

(6) 

In which, 𝑍 ans 𝐼 are the state vector and unit matrix. 

Also, the ultimate response can be stated as follows 

{𝑑} = [𝐶1]{𝑍}.   [𝐶1] = [
1 … 1 0 … 0
0 … 0 0 … 0

]
2∗2𝑛

 (7) 

 

 

3. Equation of motion with TMD 
 

A tuned mass damper is a passive control system 

containing a mass, spring and damper in the simplest form 

as seen in Fig. 2. It is attached to the structures to decrease 

the response of them under dynamic loads like ground 

motions, and wind. The natural frequency of TMD should 

be adjusted to the fundamental mode of the structures to 

occur resonance in order to dissipate the enormous part of 
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dynamic loading’s energies by dampers (Amini and 

Doroudi 2010, Debbarma and Das 2016). 

In Fig. 2, element i compresses nodes 𝑖 and 𝑖 + 1 and 

TMD can be attached to one of them while is distributed 

along the cross section. By the way, ℎ denotes the vertical 

displacement of TMD signifying the vertical degree of 

freedom. In the pure vertical mode of suspension bridges, 

TMD contains three main parameters called mass ratio (mT), 

damping ratio (ξT) and tuning frequency (ωN). 

𝐾𝑇 = 𝑚𝑇(⍵𝑁)2 (8) 

𝐶𝑇 = 2
𝑇
𝑚𝑇⍵𝑁 (9) 

N represents the specific mode that TMD should be 

adjusted to it. Adding of per TMD to the bridge increase 

one more degree of freedom. The stiffness, damping and 

mass matrices with the presence of one TMD have a little 

changes given by following equations 

[𝐾𝑆]

=

[
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[𝐶𝑆]

=
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(𝑛+1)×(𝑛+1)

 (11) 

[𝑀𝑆] = [
[𝑀]𝑛×𝑛 {0}𝑛×1

{0}1×𝑛 𝑚𝑇(𝑛+1)×(𝑛+1)
]
(𝑛+1)×(𝑛+1)

 (12) 

𝑃𝑈 denotes the pure component of bridge’s structural 

properties and sub-index 𝑠  shows combined system of 

bridge and TMD. Also, the configuration can be simply 

generalized for using more TMDs. 

 

 

4. OTLBO algorithm 
 

Meta-heuristic optimization algorithm starts with an 

initial population of solutions and continuously moves to 

optimum solution from one generation to another (Vallada 

and Ruiz 2011). TLBO is a population based algorithm 

inspired from the scientific progress of the learners 

improved by teacher and interaction of the learners. A 

teacher is a person with high level of science trying to 

promote the scientific level of students and as far as he can 

bring them to his level. In each iteration, the best solution is 

selected as the teacher. The scientific level of learner is 

improved by training of teacher and also interaction 

between all members of the class. So, TLBO has two 

independent phase namely teacher and learners.  

 
4.1 Teacher phase 
 
In each iteration a solution causing the best solution is 

selected as the teacher responsible to upgrade the mean 
scientific level of the leaners making to generation the 
novel learners. Let 𝑋 represents the learners (Rao et al.) 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖

𝑜𝑙𝑑 + 𝑟𝑖(𝑋𝑡 − 𝑇𝐹𝑋𝑚𝑒𝑎𝑛
𝑜𝑙𝑑 ) (13) 

𝑇𝐹  is the teaching factor and is either 1 or 2 and 𝑟 is a 

random variable placing between [0,1]. Also, Eq. (13) 

expresses that all the learners promote up to difference of 

teacher level from the mean level of the learner. Of course, 

𝑟 and 𝑇𝑓  specify how of the success of the teacher in 

upgrading of the learners. 

 

4.2 Learner phase 
 
Learner or learning phase is the second part of TBLO in 

which learners try to enhance their level by interplay with 

together. If Xi and Xj be randomly selected through the 

population such that i ≠ j the learner phase will be 

completed by flowing loop (Rao et al. 2011): 

𝑓𝑜𝑟   𝑖 = 1:𝑁𝑝 

𝑖𝑓   𝑓(𝑥𝑖) < 𝑓(𝑥𝑗) 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖

𝑜𝑙𝑑 + 𝑟(𝑋𝑖 − 𝑋𝑗) 

𝑒𝑙𝑠𝑒 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖

𝑜𝑙𝑑 + 𝑟(𝑋𝑗 − 𝑋𝑖) 

𝑒𝑛𝑑 

𝑒𝑛𝑑 

In order to prevent from trap of local extremums, one 

independent phase called observer is added to the algorithm. 

The new improved algorithm is called OTLBO. 

 

4.3 Observer phase 
 

The observer is produced by combination of all 

learners through following loop (Shahrouzi et al. 

2017) 

𝑓𝑜𝑟   𝑗 = 1:𝑁𝑉 

𝑙 = is a random number between 1 up to 𝑁𝑃 

𝑋𝑙
𝑒𝑥𝑝

= 𝑋𝑙
𝑗
 

𝑒𝑛𝑑 

Now a new solution is defined that can be accepted 

if the following condition occur: 

𝑖𝑓   𝑓(𝑥𝑖) < 𝑓(𝑋𝑛𝑒𝑤) →    𝑥𝑖 = 𝑋𝑛𝑒𝑤 

 

 
5. Problem definition 

 
Four independent parameters called mass ratio, damping 

ratio, tuning frequency and position of TMD should be 
optimized by OTLBO algorithm. Mentioned parameters are 
optimized in account to each span’s features vice versa to 
tradition procedure that first three parameters are optimized 
considering to the whole structure. Due to symmetricity 
between left and right spans all parameters are optimized 
according to the one side and center spans. Three  
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independent condition are defined to optimize the TMDs.  

• one TMD in the left, center and right spans. 

• one TMD in the left and right spans and two TMDs in 

the center span. 

• one TMD in the left and right spans and three TMDs in 

the center span. 

Suspension bridges are famous to have more spaced 

modes and this matter causes difficulty to choose dominant 

mode for tuning the frequency of TMD. On the other hand, 

an earthquake spreads its energy along a relatively wide 

frequency range. By the way, due to fortuitous inherent of 

earthquake, predicting the dominant frequency is not 

possible. Hence, rather than to use tuning frequency 

parameter, an innovative parameter namely frequency ratio 

is defined to specify the optimum ratio of mode one. Also, 

mass ratio is defined as dividing of TMD mass to mass of 

each span, so two discrete mass ratio should be informed. 

Here, minimizing of root mean square of displacement 

response of all vertical degrees of freedom is considered as 

the objective function. 

𝐹 = √∑𝐷𝑖
2

𝑛

𝑖=2

 . 𝑖 = 2.4.6. … .100 (14) 

𝐷  is the vertical displacement of the suspended 

structure and sub-index 𝑖 denotes the number of degree of 

freedom. 

In this regard, twenty ground motions records divided to 

two various groups namely near and far-field ones 

individually including ten records are gathered and are 

provided in Table 1. The records cover wide range of peak 

ground accelerations and frequency content. 
Two characteristics which are fault distance and velocity 

parameters are used to distinguish the near-field records  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

from the far ones. By increasing the fault distance the PGV 

reduces which is the sign of the decreasing of the kinetic 

energy of recor 
 

 
6. Numerical analysis 

 

The Vincent Thomas, second Tacoma Narrows and 

Golden Gate suspension bridges placed in Los Angeles, 

Washington and San Francisco, respectively as a short, 

mean and long span bridges, are selected for case studies. 

All of them have three spans i.e. one central and two 

symmetric side spans, vertical hangers, steel pylons and 

externally-anchored type system. Also, the suspended 

structure of them compresses two-hinged stiffening girders 

truss type. The structural parameters of all bridges are 

summarized in Table 2 (Rubin et al. 1983). 

In all bridges the side and center spans are divided to 11 

and 28 elements, respectively. It is worth noting that the 

shear effect is neglected through the computation.  

Table 3 provides the periods of bridges and Fig. 3 shows 

first two symmetric and antisymmetric mode shapes of 

them. 

 
6.1 Optimized parameters  
 

In this study, the mentioned set of ground motions are 

subjected to the suspended structure of bridges through the 

piers, and response of it is evaluated. It is worth noting that 

records are continuously imposed and also, optimizing is 

done considering the set and no individual records. Table 4 

represents the outputs.  

It is found during computation that by increasing the 

mass ratio the performance of TMD will be improved. But, 

too heavy TMDs can change the structural properties of  

Table 1 information of selected ground motions 

Type No. Earthquake Station Year 
Distance to 

Fault (m) 
magnitude PGA(g) PGV(cm) PGV/ PGA 

Near-

Field 

ground 

motions 

1 Bam Bam 2003 0.05 6.6 0.97 39.21 0.04 

2 Northridge Rinaldi 1994 7.1 6.7 0.852 51 0.059 

3 Landers Lucern 1992 2.19 7.28 0.823 41.07 0.049 

4 Tabas Tabas 1978 1.79 7.35 0.688 44.4 0.064 

5 Imperial valley El Centro #7 1979 0.56 6.53 0.544 56.28 0.103 

6 Kobe Kobe University 1995 0.9 6.9 0.452 18.47 0.04 

7 Chi-Chi TCU129 1999 1.83 7.62 0.342 39 0.114 

8 Northridge Newhall 1978 1.79 6.7 0.29 37.21 0.128 

9 Erzincan Erzincan 1992 2 6.7 0.248 18.33 0.073 

10 Kocaeli Izmit 1999 3.62 7.51 0.145 12 0.082 

Far-

Field 

ground 

motions 

11 Chi-Chi TCU045 1999 26 7.62 0.356 21 0.058 

12 Montenegro Herceg Novi 1979 23.59 7.1 0.21 4.87 0.023 

13 Duzci Bolu 1999 17.6 7.1 0.203 17.36 0.085 

14 Irpinia Brienza 1980 22.54 6.9 0.203 12 0.059 

15 Kobe Kakogawa 1995 22.5 6.9 0.171 10.94 0.063 

16 Tottori OKY004 2000 19.72 6.61 0.173 6.93 0.04 

17 Landers Coolwater 1992 19.74 7.28 0.17 10 0.058 

18 San Fernando Castic-Old Ridge 1971 19.33 6.61 0.167 4 0.023 

19 Kocaeli Faith 1999 53.34 7.51 0.133 9 0.067 

20 Parkfield Temblo Pre  15.96 6 0.13 2 0.015 
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Table 3 periods of bridges (second) 

Mode No.  1 2 3 4 5 6 7 8 

Vincent 

Thomas 
 5.07 4.55 2.93 2.87 2.16 1.81 1.24 0.93 

Tacoma 

Narrows 
 7.18 6.88 4.94 4 3.13 2.46 1.68 1.63 

Golden Gate  10.56 8.12 6.45 5.51 4.92 3.93 3.49 2.97 

 

 

bridges like natural frequencies and this is not 

recommended. So certain limitation bound seems to be 

necessary and here, mentioned bound is determined 

according to each span and are compared with whole 

structure. In all bridges, mass ratio is taken the most 

allowable value.  

It is recognizable from table that frequency ratio for center 

span of short bridges is less than corresponding values to 

the mean and long bridges, and for side spans any 

difference is not seen. Damping ratio like to mass ratio 

adopts the most value permitted. Just damping ratios of 

TMDs in the center span of short bridge are different 

numbers. At 3TMD case, placing a TMD at the middle 

point of each span is considered as the optimum condition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The optimum location of TMDs for side spans in cases 

4TMD and 5TMD are similar to case 3TMD. But for center 

span, it is recognizable that in case 4TMD by increasing the 

span’s length two TMDs recede each other and come close 

to pylons. Adverse result is expressible for case 5TMD. 
 

6.2 Controlled responses 
 

In order to investigate the performance of each 

optimized case, the results of bridge’s responses to the 

fourteen (seven out of ten near and far-field) ground 

motions records from the available set are summarized in 

Table 5 in appendix. Table 6 resulted from Table 5 provides 

the responses reduction of bridges. In addition to three 

different cases and length parameter due to different 

suspension bridges, three various conditions specified based 

on the proximity to the fault and velocity parameters. So, all 

the controlled responses of all bridges should be addressed 

under near-field, far-field, and combined records. 
Fig. 4 shows the average of maximum respons reduction 

of each bridge in account to the number of used TMDs. 

For the center span of short span bridges located in the 

Table 2 structural and geometrical specification of bridges 

Parameter Vincent Thomas Bridge Tacoma Narrows Bridge Golden Gate Bridge 

𝐿 (𝑚) 
S* 154.38 335.28 342.9 

C 457.2 853.44 1280.16 

𝑊𝑑  (
𝑘𝑔

𝑚
) 

S 
5341.03 6443.75 

17188.33 

C 17039.5 

𝐸𝑔 (
𝑁

𝑚
) 

S 
200016662533.32 204154938309.87 200016662533.32 

C 

𝐼 (𝑚4) 
S 0.3746 

2.8482 
1.6782 

C 0.3626 2.5893 

𝑑 (𝑚) 
S 

4.572 10.0584 7.62 
C 

𝐸𝑐 (
𝑁

𝑚
) 

S 
186222409944.81 182773846797.69 200016662533.32 

C 

𝐴𝐶  (𝑐𝑚2) 
S 

783.8694 1625.80 5367.08 
C 

𝐿𝑒 (𝑚) 
S 

1054.61 1853.18 2346.35 
C 

𝐻𝑤 (𝑘𝑁) 
S 

30035.8125 67435.96125 237914.78325 
C 

*S: side span; C: center span 

   

Fig. 3 Mode shapes of bridges 
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Table 4 optimized parameters  

No. Case Bridge 

Parameter 

Mass ratio account to (%) 
Frequency ratio Damping ratio Number of node 

Side Center 

Itself Total Itself Total Side Center Side Center side center 

1 3TMD 

V* 15 3 0.08 4.7 1.5 0.88 0.3 0.13 5,45 25 

T 15 3.3 0.08 4.4 1.5 1.5 0.3 0.3 5,45 25 

G 15 2.6 0.08 5.1 1.5 1.5 0.3 0.3 5,45 25 

2 4TMD 

V 15 3 0.08 4.7 1.5 0.7 0.3 0.15 5,45 27,27 

T 15 3.3 0.08 4.4 1.5 1.5 0.3 0.3 5,45 20,34 

G 15 2.6 0.08 5.1 1.5 1.5 0.3 0.3 5,45 17,37 

3 5TMD 

V 15 3 0.08 4.7 1.5 0.73 0.3 0.14 5,45 21,27,33 

T 15 3.3 0.08 4.4 1.5 1.5 0.3 0.3 5,45 22,27,32 

G 15 2.6 0.08 5.1 1.5 1.5 0.3 0.3 5,45 23,27,31 
*V: Vincent Thomas; T: Tacoma Narrows; G: Golden Gate 

  

  

  
(a) near-field (b) far-field 

Fig. 4 Average maximum response reduction of bridges 
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Fig. 5 performance of TMD on average of maximum response reduction 

  
(a) Vincent Thomas 

  
(b) Tacoma Narrows 

  
(c) Golden Gate 

Fig. 6 Controlled and uncontrolled responses of bridges 
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near-field region, by increasing the number of used TMDs 

average response reduction is increased. But about side 

spans, increasing of TMDs provide the reverse result, and 

case 4TMD is the optimum solution. Also, about far-field 

region, by increasing of the number of TMDs more average 

response reduction is occurred. About mean suspension 

bridges by increasing the number of TMDs, average 

response reduction is firstly raised and then is decreased 

such that case 4TMD is the best choice. Mentioned 

expression is acceptable for both side and center spans 

placed whether in the near-field or far-field region. For the 

side span of long span suspension bridges located in the 

near-field region similar result of mean span bridges is  

 

 

authentic. For the center span mentioned result is credible 

with a few connivances. As seen case 4TMD provides the 

most appropriate average response reduction for all bridges 

in near-field, far-field, and combined condition. 

Fig. 5 demonstrates the affectivity and performance of 

three, four and five TMDs on all bridges for both side and 

center spans in near-field, far-field and combined conditions. 

About bridges containing both near and far-field 

conditions, for both side and center span of bridges with 

any length, case 4TMD results in the average maximum 

response reduction. Also, by increasing length of the bridge 

average maximum response reduction decreases indicating 

the decrement of the efficiency of TMD. 

Table 5 response of bridges 

parameter Case Bridge 

Ground motions record 

Near-Field Far-Field 

Bam Rinaldi Lucern Tabas TCU129 Erzincan Izmit TCU045 Bolu Kakogava OKY004 coolwater Fatih Brienza 

Maximum 

displacement 

response 

(cm) 

Uncontrolled 

V 
s 31 34 40 68 46 25 18 19 15 8 5 9 5 4 

c 18 30 27 47 77 27 14 16 13 6 5 7 9 4 

T 
s 25 28 46 85 47 31 28 22 31 7 5 8 9 4 

c 21 22 40 80 44 26 26 18 29 5 5 6 9 4 

G 
s 24 41 48 79 74 46 27 27 31 8 6 11 16 4 

c 20 24 42 85 66 48 37 45 43 7 4 8 15 3 

3TMD 

V 
s 22 21 29 31 17 14 11 15 9 6 4 6 3 3 

c 18 16 23 29 21 15 10 12 12 5 3 6 5 3 

T 
s 19 20 41 55 34 20 14 20 23 6 3 7 7 3 

c 20 20 27 50 35 21 14 19 18 5 4 6 8 3 

G 
s 20 29 34 67 48 33 19 22 20 5 6 6 10 2 

c 17 23 42 55 46 24 19 29 28 7 4 10 11 3 

4TMD 

V 
s 22 20 29 31 17 14 10 16 9 6 2 6 3 3 

c 18 17 22 27 21 14 9 11 13 5 2 5 5 2 

T 
s 18 20 37 39 34 19 15 18 19 7 3 7 8 2 

c 17 18 27 30 31 13 11 19 16 4 2 6 6 2 

G 
s 19 28 37 60 44 30 17 19 22 7 5 8 11 3 

c 15 19 48 48 48 26 20 25 28 6 3 8 12 2 

5TMD 

V 
s 21 22 31 29 21 16 10 15 9 5 3 6 4 3 

c 16 15 23 23 22 13 8 11 12 5 2 5 5 2 

T 
s 18 20 45 44 37 18 16 23 25 6 4 8 9 2 

c 18 18 30 43 45 18 15 23 16 5 4 6 9 3 

G 
s 23 25 37 67 44 30 18 25 21 5 5 5 10 3 

c 18 23 55 54 58 23 23 37 29 6 4 9 13 2 

Maximum 

response 

reduction 

(%) 

3TMD 

V 
s 29 38 27 54 63 44 39 21 40 25 20 33 40 40 

c 0 47 15 38 73 44 29 25 8 17 40 14 44 25 

T 
s 24 29 11 35 28 35 50 9 26 14 40 12 22 25 

c 5 9 32 37 20 19 46 -6 38 0 20 0 11 25 

G 
s 17 29 29 15 35 28 30 19 35 37 0 45 37 50 

c 15 4 0 35 30 50 49 36 35 0 0 -25 27 0 

4TMD 

V 
s 29 41 27 54 63 44 44 16 40 25 60 33 40 40 

c 0 43 19 43 73 48 36 31 0 17 60 29 44 50 

T 
s 28 29 20 54 28 39 46 18 39 0 40 12 11 50 

c 19 18 32 62 30 50 58 -6 45 20 60 0 33 50 

G 
s 21 32 22 24 41 35 37 33 29 12 17 27 31 25 

c 25 21 -14 44 27 46 46 44 35 14 25 0 20 33 

5TMD 

V 
s 32 35 22 57 54 36 44 21 40 37 40 33 20 40 

c 11 50 15 51 71 52 43 31 8 17 60 29 44 50 

T 
s 28 29 2 48 21 42 43 -5 19 14 20 0 0 50 

c 14 18 25 46 -2 31 42 -28 45 0 20 0 0 25 

G 
s 4 39 22 15 41 35 33 7 32 37 16 54 37 25 

c 10 4 -31 36 12 52 38 18 33 14 0 -12 13 33 
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Fig. 6 shows the response of the Vincent Thomas, 

Tacoma Narrows and Golden Gate suspension bridges 

controlled by suitable cases stated in the former parts. 

As seen in Fig. 6, case 4TMD remarkably reduce the 

ultimate response of bridges which is more uniform in short 

and mean span bridges in compare to long ones. 

 

 
7. Conclusions  

 

In this study, the performance of TMD device for 

controlling of vertical vibration of suspension bridges was 

optimized under set of near and far-field ground motions. In 

this regard, OTLBO algorithm was chosen as the meta-

heuristic optimization algorithm. Also, the Vincent Thomas, 

Tacoma Narrows, and Golden gate suspension bridges were 

selected as the short, mean, and long span bridges, 

respectively, for case studies. After fulfilling the numerical 

analysis, the most important results are listed as follows: 

• All cases of used TMDs resulted in response reduction 

and placing one TMD at the middle point of side spans 

is essential and is independent from the number of used 

TMDs. When case 4TMD is used as the control strategy, 

by increasing the length of bridge, optimum host nodes 

of two TMDs located at the center span recede each 

other and accede to the towers. But when case 5TMD is 

used, while one of TMDs is placed at the middle point 

of center span, other two optimum host nodes accede 

each other by increasing the length. 

• In suspension bridges with any length, the 

performance of TMD will improve by increasing the 

mass ratio, and the upper bound which does not disturb 

the efficiency of TMD should be chosen as the optimum 

value. By decreasing the length of bridges more close 

modes will reduce, and optimum frequency ratio of 

center span of short suspension bridges takes lower 

value than corresponded values of mean  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and long ones. Similar result is expressible about the 

damping ratio. 

• Considering the average response reduction as the 

basis of decision case 4TMD can provide the best 

performance in the response reduction for the bridges 

with any length of span placed in the near-field, far-field, 

and combined region. 
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