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1. Introduction 
 

Structures with non-centrally stiffness center and mass 

center, which called asymmetric or irregular systems in the 

plane, have been considered from the 70th. Plane 

irregularity is the most reason for damages in past 

earthquakes. In addition to storey drifts, the factor of 

damages is a torsional answer of lateral dynamic actuating 

of a storey. The storey drift factor of lateral torsion, 

significantly increase the maximum local responsiveness in 

structure (corner displacement of the structure). Generally, 

plane irregularities are produced by asymmetric mass 

distribution, stiffness, and resistance along with weak and 

unworkable members in the symmetric plane structure 

during the earthquake, and its damage can lead to structure 

irregularity. The lateral nonparallel resistant system which 

has been studied in this research causes asymmetric 

stiffness distribution in structure plane. In seismic 

performance studies, about plane irregular structures with 

the shear wall, in order to simple evaluation of response 

parameters, unit storey models are most intended (Tso et al. 

1986, Ghersi et al. 2001). Due to accurate numerical 

structural analysis tools, more studies on medium and high  
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rise plan-irregular structures have been taken in recent 

years. Also, in some cases, the focus is on structures 

accompany with Concrete shear wall (Hidalgo et al. 2002, 

Ghaleini et al. 2019). In later studies, probabilistic analysis 

of irregular structures has been performed, which generally 

concentrates on height irregularity (Varadharajan et al. 

2014). In general, torsional distortions cause damages in 

irregular structures; therefore, the following codes tried to 

control this issue. These controls are constrained to static 

and dynamic elastic analysis. Artificial intelligence and 

classic numerical approaches like optimization techniques 

have been combined together and this leads to making new 

hybrid techniques that can both optimize and predict the 

proposed characteristics. The hybrid algorithms serve like 

prediction and optimization tools for scholars, which could 

be successfully employed to eliminate the time-consuming 

and costly process of experimental studies. Different types 

of algorithms have been used to perform numerical 

processes on test results, which have acceptable results and 

estimation. Predicting the seismic behavior of the structural 

elements such as shear wall could be possible through the 

hybrid techniques, also the dynamic performances could be 

enhanced due to numerical optimizations on test results 

(Shariati et al., Arabnejad Khanouki et al. 2011, Daie et al. 

2011, Sinaei et al. 2011, Mohammadhassani et al. 2013, 

Mohammadhassani et al. 2014b, Toghroli et al. 2014, 

Aghakhani et al. 2015, Mohammadhassani et al. 2015, Shao 

et al. 2015, Toghroli 2015, Mansouri et al. 2016, Safa et al. 
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Abstract.  In this paper, irregularly designed planar reinforced concrete wall structures are investigated computationally. For 

this purpose, structures consisting of four regular and irregular models of short-order (two-class) and intermediate (five-class) 

types have been investigated. The probabilistic evaluation of seismic damage of these structures has been performed by using 

the incremental inelastic dynamic analysis to produce the seismic fragility curve at different levels of damage. The fragility 

curves are based on two classes of maximum damage indices and the Jeong-Nansha three-dimensional damage index. It was 

found that there is a significant increase in damage probability in irregular structures compared to regular ones. The rate of 

increase was higher in moderate and extensive damage levels. Also, the amount of damage calculated using the two damage 

indices shows that the Jeong-Nensha three-dimensional damage index in these types of structures provides superior results. 
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2016, Toghroli et al. 2016, Sadeghipour Chahnasir et al. 

2018, Sari et al. 2018, Sedghi et al. 2018, Shao et al. 2018b, 

Shariat et al. 2018, Toghroli et al. 2018a, Katebi et al. 2019, 

Luo et al. 2019, Mansouri et al. 2019, Milovancevic et al. 

2019, Shao et al. 2019b, Shariati et al. 2019b, Shariati et al. 

2019d, Shariati et al. 2019e, Shariati et al. 2019g, Shi et al. 

2019a, Xu et al. 2019, Armaghani et al. 2020, Safa et al. 

2020, Shariati et al. 2020e, Shariati et al. 2020f). Shear 

connectors are one of the most important parts of the 

composite structures which have been proposed to enhance 

the shear strength and load transmitting potential of the 

composite system. The shear wall as a composite system 

could be fortified with different types of shear connectors 

such as c-shaped and stud to enhance its shear strength and 

seismic performance (Shariati et al. 2010, Shariati et al. 

2011a, Shariati et al. 2011c, Shariati et al. 2011d, Shariati et 

al. 2012a, Shariati et al. 2012b, Shariati et al. 2012d, 

Shariati et al. 2012c, Shariati et al. 2012e, Shariati 2013, 

Shariati et al. 2013, Shariati 2014, Shariati et al. 2014a, 

Shariati et al. 2014b, Shariati et al. 2015, Khorramian et al. 

2016, Shah et al. 2016a, Shahabi et al. 2016a, Shahabi et al. 

2016b, Shariati et al. 2016, Tahmasbi et al. 2016, 

Khorramian et al. 2017, Shariati et al. 2017, Hosseinpour et 

al. 2018, Ismail et al. 2018, Nasrollahi et al. 2018, 

Paknahad et al. 2018, Wei et al. 2018, Davoodnabi et al. 

2019). Different types of elements are designed to absorb 

the released energy of the seismic events which could be the 

most devastating event for structures. Dampers and reduced 

section connections (RBS) are the two most applicable 

schemes of designers to enhance the dynamic performance 

and energy absorption of the building. It has been also 

proposed to employ specific bracing systems such as 

buckling restrained and composite steel-concrete systems to 

improve the shear strength and lateral stiffness of the 

structures against the seismic waves (Shariati et al. , 

Shariati 2008, Arabnejad Khanouki et al. 2010, Hamidian et 

al. 2012, Jalali et al. 2012, Shao and Vesel 2015, Khorami 

et al. 2017a, Khorami et al. 2017b, Shao et al. 2018a, 

Sajedi et al. 2019, Shao et al. 2019a, Shao et al. 2019b, Shi 

et al. 2019a, Shi et al. 2019b, Shariati et al. 2020a, Shariati 

et al. 2020b, Shariati et al. 2020d). Cold-formed upright 

systems have been employed in industrial applications, 

especially for store cases. These systems are vulnerable to 

seismic loads and lateral forces. Different studies have been 

conducted on the characteristics of new upright systems, 

which employed bracing systems and other reinforcing 

provisions. Shear wall operation could be useful to enhance 

the lateral stiffness and shear strength of these systems, 

however, the use of typical shear walls are not applicable 

due to their executive procedure and heavy weight. 

Accordingly employing new shear walls with lower unit 

weight and handy installing process is an appealing way to 

reinforce the rack systems (Mohammadhassani et al. 2014a, 

Shah et al. 2015, Shah et al. 2016b, Shah et al. 2016c, 

Shariati et al. 2018, Chen et al. 2019, Taheri et al. 2019, 

Trung et al. 2019, Naghipour et al. 2020). Since the 

concrete is an important part of the shear walls, the 

performance of concrete could directly affect the shear wall 

behavior. Accordingly, employing a suitable mixture and 

concrete type always is important step in the shear wall  

 

Fig. 1 Regular structure plan 

 

 

Fig. 2 Irregular structure plan 

 

Table 1 Plane modality 

Model No. of stories 
Irregular and Regular 

Classification 

2stRSW 2 Regularity 

2stISW 2 Horizontal Irregularity 

5stRSW 5 Regularity 

5stISW 5 Horizontal Irregularity 

 

design. Different types of the concrete mixes are available, 

where have been categorized in order of aggregates types 

and sizes, cement type, additive powders and 

supplementary or reinforcing materials. Shear walls are 

typically consisting of a dense reinforcement lattice which 

could challenge the concrete cast or executive process, 

hence using self-consolidating concrete could be a smart 

choice not only for better workability but also for its 

enhanced mechanical properties (Suhatril et al., Hamidian 

et al. 2011, Shariati et al. 2011b, Sinaei et al. 2012, 

Mohammadhassani et al. 2014c, Arabnejad Khanouki et al. 

2016, Toghroli et al. 2017, Heydari et al. 2018, Nosrati et 

al. 2018, Toghroli et al. 2018b, Ziaei-Nia et al. 2018, Li et 

al. 2019, Safa et al. 2019, Shariati et al. 2019a, Shariati et 

al. 2019c, Shariati et al. 2019f, Shi et al. 2019b, Xie et al. 

2019, Shariati et al. 2020c). 

Plane-irregularity buildings which have been described 

in ASCE/SEI7-10 (Engineers 2010), are characterized as 

buildings contain bents nonparallel with the orthogonal 

axis, or asymmetrical buildings causes by nonparallel lateral 

bearing systems. This kind of irregularity in structures has  

568



 

Computational earthquake performance of plan-irregular shear wall structures subjected to different earthquake shock situations 

 

Table 2 Material  properties 

Density 2500 Kg/ m3 

Concrete compressive strength, fc 21 N/ mm2 

Concrete modulus of elasticity, Ec 21540 N/ mm2 

Poisson’s ratio, ν 0.2 

Specified yield strength of Longitudinal 

reinforcements, FY 
400 Mpa 

Specified yield strength of   transverse 

reinforcements, fish 
300 MPa 

 

Table 3 Design parameters 

Seismic design category Type 

Site class D 

Occupancy Residential 

Risk category II 

Structural system Bearing wall system 

Seismic force-resisting system 
Special reinforced Concrete 

shear wall 

 

Table 4 Shear walls section properties 

Model Storey 

Inner walls Corner walls 

lTot tw lf tf lTot tw 

[cm] [cm] [cm] [cm] [cm] [cm] 

2stRSW, 

2stISW 

1 Varies 25 -- -- 60 25 

2 Varies 25 -- -- 60 25 

5stRSW, 

5stISW 

1 Varies 30 30 40 60 25 

2 Varies 30 30 30 60 25 

3 ~ 5 Varies 30 -- -- 60 25 

 

Table 5 Shear walls reinforcement details 

Model Storey 

Mid walls Corner walls 

ρl.w ρt.w ρl.BE ρl.w ρt.w 

[%] [%] [%] [%] [%] 

2stRSW, 

2stISW 

1 0.25 0.25 -- 0.25 0.25 

2 0.25 0.25 -- 0.25 0.25 

5stRSW, 

5stISW 

1 0.75 0.3 1.65 0.75 0.3 

2 0.6 0.3 1.0 0.6 0.3 

3 ~ 5 0.3 0.3 -- 0.3 0.3 

 

 

not been noted yet. Hence this studies, investigate 

irregularity caused by nonparallel systems. 

 

 

2. Modelling details  
 
2.1 Investigation on models  
 
In this study, a group of reinforcement buildings with 

the concrete shear wall and flat slab without beam has been 

considered. They are plane-regular or irregular buildings, 

which are classified into two groups, including two-storey 

low rise buildings and five-storey medium-rise buildings. 

Regular Plane is shown in Fig. 1 with 9 × 5.2 dimension 

and width/length ration of 1.73. Irregular Plane is indicated 

in Fig. 2 which has a knee angle trapezoidal rule of 600. 

Storey heights are equal to three meters. Plane modalities 

are shown in Table1. 

The dimensions have been selected in a way that floors  

lf

tf tw

lw

lTot

Pl.wPt.w

Pl.BE

 

Fig. 3 Shear walls section 

 

 

Fig. 4 Perform-3D Covered and uncovered 

 

 

mass is almost identical.  In structures design, bearing 

reinforcement Concrete shear walls are selected for the 

bearing system. Structures have been modelled in ETABS 

2016 and designed with an elastic analysis approach. 

Material specifications and design assumptions are 

characterized in Table 2 and Table 3, respectively. Design 

results detail is indicated in Fig. 3 and Table 4. Also, 

reinforcement details are shown in Table 5. 
 
2.2 Unelastic former material model 
 
In order to model the shear wall in PERFORM-3D, 

vertical unelastic fibre elements, boundary, and web 

elements of walls have been selected as Covered and 

Uncovered Concrete models, respectively. 

Mander optimised model used for stress-strain relations 

in covered concrete (Mander et al. 1988) and neglected 

tension strength and regarding stress-strain diagrams are 

characterised by four hotspots. Therefore, it is essential to 

have four nodes to satisfy this requirement. Also, due to the 

selection of wall elements as fibre elements in the program, 

sufficient stiffness is not regenerated. The unelastic shear 

behaviour has been described as double line stress-strain 

shear material. Elasticity Modulus has been recommended 

as 0.4 (ASCE41-13, Table 10, and 5). However, this value 

is considered 0.3 due to program guidance. Reinforcement 

stress-strain behaviour is modelled as the double diagram. 

 
 

3. Verify program results 
 

Research by (Hidalgo et al. 2002) who worked on shear 

walls to verify the considered models and compare the 

experimental results with structural analysis program 

results. The 2nd specimen was selected from over 26  
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Fig. 5 Lateral loading sequence 

 

 

Fig. 6 Test setup 

 

 

Fig. 7 Verification of analysis results by test results 

 

Table 6 characteristics of the sample shear wall 

Sample 

(ID) 
tw (mm) lw (mm) hw (mm) ρh (%) ρv (%) fy (MPa) f'c (MPa) 

2 120 1000 2000 0.246 0.251 402 19.6 

 

 

specimens. The characterised shear wall parameters are 

shown in Table 6. The lateral loading sequence, test setup, 

and analysis results are indicated in Figs.5, 6 and 7, 

respectively. 

 
 

4. Select and modify applied accelerographs 
 
The demanded graphs have been selected concerning: 

(a). Seismic magnitude over 5, (b). Maximum ground 

acceleration for tremors over 0.2 times of gravity 

acceleration, (c). Soil type equivalent with D class of ASCE 

41-13 code and graphs, records related to far source ones 

with minimum 20 km distance from the hypocenter. For 

dynamic analysis, according to ASCE 41-13 

recommendation, nine double direct accelerographs (Table 

7) with the principal component in irregular axis direction 

have been described. Between each two-component, the 

graph with more significant maximum ground acceleration 

or with a bigger spectral response in a natural structural 

period with 5% damping is described as the main 

component. Recorded graphs of Christchurch and Tohoku 

tremors have a higher durability life of strong ground 

motions. Therefore by two conventional approaches, 

durability graphs time are modified first with Bracketed 

Duration (recommendation peak acceleration described as 

±0.05) and second with Significant Duration Method 

(according to Trifunc and Novikova recommendation 95%, 

5% as bounds described in order to modify the durability 

graphs time). The graphs are derived from three energetic 

ground motion data centres. This data insist on three 

groups: (a). Two graphs from Japan`s National Research 

Institute for Earth Science and Disaster Resilience website 

(www.kyoshin.bosai.go.jp), (b). Three graphs from the Offical 

Source of Geological Hazard Information for New Zealand  

(www.geonet.org.nz) and (c). Four graphs from PEER 

(Pacific Earthquake Engineering Research) website 

(www.peer.berkeley.edu). 

 
 

5. Damage index assessment  
 

In this research, in order to find the damage index of 

structures, two groups of damage index are described: (a). 

Damage index based on maximal storey drifts, (b). Jeong-

Elnashai recommended Three-dimensional damage index. 

In maximal storey drifts, Damage thresholds based on 

FEMA research (HAZUS) (Neighbors et al. 2012) 

presented by pre observations in federal status has been 

determined. In HAZUS, for high-risk zone structures, 

structural system, and the number of stories (in this case 

shear wall system with two storeys as C2L and with five 

storeys as C2M classified) parameters are tabulated in Table 

8. The new damage index by (Jeong et al. 2006) is one of 

the recommended approaches to consider the effect of 

structure torsion in-plane and bidirectional responses, which 

can describe the three-dimensional behaviour of the 

structure. First of all, in investigation procedure of the 

Jeong`s damage 3D structure are decomposed to plane 

frames, then local damage index will be calculated, and 

each frame concerning tributary area and local damage 

indices will be weighted by local energy absorption, latter 

with combining local damage indices with respect to the 

frame`s share of global damage index (in order to determine 

weight) the global damage index will be found. 

In the proposed local weight coefficient methodology, 

local damage index is defined by the following equation (1) 

( )i i C i iW w A D   (1) 
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Where, 𝒘𝒊= gravity load on contribution area (𝑨𝒄𝒊) which 

is a function of the local damage level (𝑫𝒊). The weighting 

factor is calculated by taking the ratio of 𝒘𝒊 ∑ 𝒘𝒊⁄ . By 

using local contribution (𝒘𝒊) global damage index (𝑫𝒈) in 

structure is expressed as follows (2) 

i i

g

total

W D
D

W





 (2) 

While there is neither torsion nor exterior response, the results 

of Park-Ang damage index and three-dimensional damage 

index in regular structures under unidirectional seismic are 

analogous. Also, the confined state classification of (Park et al. 

2016) has been used in this research. 

 

 

 

Fig. 8 Irregular structures planar decomposition 

 

 

Fig. 9 Irregular Structures Planar decomposition 

In order to calculate the Jeong-Elnashai damage index 

amount, models are analysed by first pushover analysis with 

a triangular envelope; then, results are depicted as frame 

capacity. Frames are appropriately selected by Figs.8 and 9. 
 

 

6. Analysis results  
 

6.1 Structure period  
 

Four structure periods are tabulated in Table 10. It is 

obvious that irregular structure periods (5stRS W, 5stISW)  

are higher than irregular structures periods (2stRSW, 

2stISW). It should be noted that the modal participation 

factor of the first four modes of two-storey irregular modes 

and the first five modes of the five-storey irregular structure 

is higher than 90%.  

Irregularity in nonparallel system plane, as demonstrated 

in Table 11 could be conducted to high rate eccentricity. 

Another quantified parameter that generally has been 

investigated in the case of irregular structures is the rate of 

maximum relative storey displacement to relative 

displacement average in building ends. This ratio is 

considered for four-mode given in Table 12. 
 

6.2 Inelastic incremental dynamic analysis 
 
In order to evaluate the performance of structures, 

inelastic incremental dynamic time history analysis (IDA) 

has been done, and it involves subjecting a structural model 

to ground motion. The goal is to develop this concept in a 

way that could take accurately figured the demand and 

capacity of the structure in a vast range of elastic behavior 

to collapse. 

Each curve of the IDA diagram shows a specific record 

of damage measure in a different ground motion intensity 

measure settle to structure. In order to do IDA, based on the 

main component record, scale factors of the first period of 

structures are found, and then they are applied to both 

record components. For receiving a desirable number of 

responses, that’s how to scale intervals chosen. Then, PGA 

and SA diagrams, according to considered damage indices, 

are figured. 

The response spectrum of nine records, which has been 

scaled by peak ground acceleration equal to 1.0g, has been 

demonstrated in Fig. 10. Also, the scaled response spectrum 

of 5stISW with 0.4g (five-storey irregular structure with a 

period equal to 0.45sec) is shown in Fig .11. In order to 

investigate the incremental damage analysis results of 

damage measure, selected the stories drift and the three-

dimensional Jeong-Elnashai damage index and stated the 

intensity measure of an earthquake to the peak ground 

acceleration and damping equal to 5% in model`s period. 

In recent investigations on inelastic IDA results, it has 

been found that the maximum storey drifts occurred at the 

roof level. This behaviour could result from the stiffness 

deterioration of shear walls (because of varied sections in 

height) or inelastic behaviour of models. However, in two 

and five-storey structure, maximum section rotation 

happens on the roof and third storey level, respectively. 

An assessment of structure behaviour from the elastic  

571



 

Yan Cao et al. 

 

 

 

Table 9 Classification of the limit states based on Jeong-

Elnashai Damage Index 

Slight (SD) Moderate (MD) Complete (CD) 

0.25 0.4 1.0 

 

Table 10 first four modal period 

Model Model type 
Period (s) 

T1 T2 T3 T4 

2stRSW 
Regular  

(2 storey) 
0.0901 -- -- -- 

2stISW 
Irregular  

(2 storey) 
0.106 0.1034 0.0698 0.0223 

5stRSW 
Regular  

(5 storey) 
0.3943 -- -- -- 

5stISW 
Irregular 

(5 storey) 
0.4498 0.4446 0.3023 0.08649 

 

Table 11 The eccentricity between the locations of the 

centre of mass and the centre of rigidity 

Model type ETABS 2013  )%(  

Irregular (5 storeys) 31 

Irregular (2 storeys) 32.5 

 

Table 12 Horizontal irregularity type 

Model Type Δmax/ Δavg 
ASCE horizontal 

irregularity type 

2stRSW Regular (2 storey) 1.06 -- 

2stISW Irregular (2 storey) 1.5 1b 

5stRSW Regular (5 storey) 1.05 -- 

5stISW Irregular (5 storey) 1.42 1b 

 

 

limit till the collapse could be derived by an accurate 

investigation of IDA diagrams, the whole of diagrams 

initially run with the elastic region in the following since 

change in stiffness and strength of the structure, they enter 

to inelastic region. Through the inelastic region, when the 

seismic intensity increased, damage index variety increases 

and generally turns to a line near the end of diagrams, 

which is a sign of total collapse. In two-storey models, IDA  

 

 

 

Fig. 10 The response spectrum of all records’ main 

component scaled to PGA = 0.1 g 

 

 

Fig. 11 Response spectrum of all records’ main component 

scaled to Sa (T1 = 0.45s, Damping = 5%) = 0.6 g 

 

diagrams have 0.2g elasticity, and for maximum ground 

motion, it is about 0.1g elasticity. On the contrary, in five-

storey models, IDA diagrams quickly turn to the inelastic 

pattern, also in order to achieve the high stiffness of 

concrete structures in some cases, shear walls remain steady 

even in high seismic intensity measures. From the 

examination of digrams, low results ranges, especially in 

irregular structures, were observable in two, and five-storey 

PGA based IDA models due to the effect of higher modes 

in irregular structure results. The three-dimensional Jeong-

Elnashai damage index diagram according to spectral 

acceleration and PGA from nine unique central seismic 

records are shown in Figs. 16 and 17. Incremental dynamic  

Table 7 List of earthquake records with two components 

Record ID Earthquake Country Date Mw Station 

JMS1 Tohoku 2011 Japan 11th March 2011 9.0 FKS016 

JMS2 Tohoku 2011 Japan 11th March 2011 9.0 IBR007 

NMS1 Christchurch 2010 Newzealand 3rd Sep. 2010 7.1 KPOC 

NMS2 Christchurch 2010 Newzealand 3rd Sep. 2010 7.1 LINC 

NMS3 Christchurch 2010 Newzealand 3th Sep. 2010 7.1 SWNC 

PMS1 Chi-Chi 1999 Taiwan 20th Sep. 1999 7.62 TCU065 

PMS2 Chi-Chi 1999 Taiwan 20th Sep. 1999 7.62 CHY101 

PMS3 Northridge 1994 United States 17th Jan. 1994 6.69 USC 90021 

PMS4 Northridge 1994 United States 17th Jan. 1994 6.69 CDMG 24303 

Table 8 Damage states threshold based on inter-story drift 

Model 
Hazus structure 

type label 

Interstory Drift at Threshold of Damage State 

Slight (SD) Moderate (MD) Extensive (ED) Complete (CD) 

2stRSW, 2stISW C2L 0.004 0.0100 0.0300 0.0800 

5stRSW, 5stISW C2M 0.0027 0.0067 0.0200 0.0533 
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Fig. 12 IDA curves of the two-storey irregular model 

 

 

Fig. 13 IDA curves of the two-storey irregular model 

 

 

Fig. 14 IDA curves of the five-storey irregular model 

 

Fig. 15 IDA curves of the five-storey irregular model 

 

 

Fig. 16 Jeong-Elnashai damage index curves 

 

 

Fig. 17 Jeong-Elnashai damage index curves 
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analysis curves can be used to evaluate the behaviour of 

structures using percentiles of 16, 50, and 84, as suggested 

by (Cossegal et al. 2008), which are good indicators of the 

results of IDA curves. These percentiles are shown in Fig 

.18. As can be seen, for example, at a maximu The three-

dimensional Jeong-Elnashai damage index diagram 

according to spectral acceleration and PGA from nine 

unique central seismic records are shown in Figs. 16 and 17. 

The acceleration of 0.5 g, the Jeong-Nensha Damage Index 

at all three percentiles shows higher values of damage index 

in the irregular structure than the regular structure, resulting 

in higher damage rates. By drawing the 50th percentile 

graph of incremental dynamic analysis based on the 

maximum escape of Figs. 19 and 20, similar results were 

obtained, and it was observed that as the earthquake 

intensity increased, the rate of irregular and disconnected 

class escalation increased. 

 

 

 

Fig. 18 Jeong-Elnashai damage index fractile curves 

 

 

Fig. 19 IDA’s 50% fractile curves for the two-storey model 

 

 

Fig. 20 IDA’s 50% fractile curves for the five-storey model 

7. Probabilistic evaluation and dawing of fagility 
curves 

 

The damage criterion parameter in this study is 

considered a maximum ceiling escape as well as Jeong-

Nensha three-dimensional damage index. The limits of 

damage used in this study, as noted in the previous sections, 

are for the class of evasive damage index, the values 

provided by HAZUS, and for the Jeong-Elshan Damage 

Index proposed by Jeong and Elshan. In order to obtain the 

fragility curves for a given earthquake intensity, the spectral 

response acceleration, as well as the maximum acceleration 

of the earth without mapping of different steps of the 

earthquake intensity scale, was entered into the structure, 

and responses were harvested. Each step counted the 

number of responses that exceeded the limit of damage. 

Next, for each damage level, log-normal distribution 

assumptions that exceeded the limit values were calculated 

and plotted for each mapping at each earthquake intensity 

using the statistical method of estimating the maximum 

likelihood curve for different levels of damage (Baker 

2011). In this method, by maximising the rightmost 

function, the mean values and standard deviation of the log-

normal distribution are obtained, and finally, by plotting the 

cumulative distribution function, the resulting probability 

diagrams of the structure are obtained from any specified 

boundary condition, namely the fragility curves. 

According to the obtained fracture curves and Figs. 21 

to 25, Irregular predicted structures using both indices of 

damage show a higher probability of failure. However, the 

three-dimensional damage index shows a higher probability 

of failure. This also was observed in regular studied 

structures because of regular structures caused by the two-

way earthquake and the torsional responses in the plan of 

structures and, of course, in irregular structures, in addition 

to the factors mentioned. Irregularity and torsion also have a 

higher effect on the plan. The main reason that the results 

based on the three-dimensional damage index are higher 

than the class escape index is to reduce the resistance in the 

formulation used in this method, which is itself due to the 

irregular effects of the two-way seismic load. 

 

 

 

Fig. 21 Comparison of regular and plan-irregular models’ 

fragility curves based on ISD damage index 

574



 

Computational earthquake performance of plan-irregular shear wall structures subjected to different earthquake shock situations 

 

8. Conclusions 
 

In this study, the seismic performance of four structural 

models, including irregular shear wall reinforced concrete 

structures in the irregular plan of naming systems under 

earthquake, was evaluated. The studied structures included 

regular and irregular models in the plan, in the short-order 

(two-class) and intermediate (five-class) types. Incremental 

dynamic analyses were performed on the four models. 

Considering the two types of class evasion indices and 

Jeong-Elnashai damage indices, the capacity of structures at 

different levels of damage was investigated. Finally, based 

on the results of incremental dynamic analysis and 

according to the set limits of damage, probabilistic 

evaluation of structural models and preparation of fracture 

curves was performed. From the 50th percentile diagram for 

models with shear and parallel reinforced concrete shear 

walls, it is found that in short-storey (two-story) structures,  

 

 

 

Fig. 22 Comparison of regular and plan-irregular models’ 

fragility curves based on 3D damage index 

 

 

Fig. 23 Comparison of regular and plan-irregular models’ 

fragility curves based on 3D damage index 

the maximum floor slope of irregular structures in the plan 

increases sharply with increasing acceleration intensity.For 

example, a five-storey roof slope with a wall hanging at a  

maximum acceleration of 0.5 g is about 1.5 times the roof 

slope in a regular structure. Also, the seismic evaluation of 

irregular structures in the plan does not provide reliable 

answers due to the higher frequency modes involved in 

structural response by scaling incremental dynamic analysis 

steps based on the response spectrum on the first periodic 

interval of the structure. 

From the examination of the fracture curves, the 

probability of passing through different levels of damage is 

significantly higher in structures with non-parallel walls 

than in parallel shear-wall structures. The fragility curves 

obtained by both the class of maximum escape indices and 

the Jeong-Nansha three-dimensional damage index confirm 

these results. Due to the different percentiles of incremental 

dynamic analysis curves, it was observed that Jeong-Elnai 

Damage Index achieves a higher degree of damage than the 

Maximum Class Escape Damage Index, which is due to the 

curvature of the floors and off-frame responses. The results 

also show that, in the structures with the Namibian 

 

 

 

Fig. 24 Comparison of plan-irregular fragility curves based 

on ISD and 3D damage indices 

 

 

Fig. 25 Comparison of fragility curves based on ISD and 

3D damage indices 
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shear wall, the values calculated for the Jeong-Nensha 3D 

Damage Index shows qualitatively behavior of the irregular 

structures, but the probability values of the transgression 

calculated based on the index, due to the fragility curves are 

overestimated. It is noteworthy that the calculation of the 

Jeong-Nansha 3D Damage Index is highly sensitive to the 

choice of 2D frames as well as the capacity curve and 

hysteresis calculation. 

According to the studies, it was observed that the Jeong-

Nansha 3D Damage Index is not suitable for examining the 

levels of damage in irregular structures in the plan caused 

by the shear walls, but compared to the maximum damage 

index of the floors, it twists in the plan of the structure. It 

does not mean that (and therefore offers downstream 

answers) the results of the 3D Damage Index are more 

conservative. 
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