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1. Introduction 
 

 In recent years, there is a rapid increase in the use of 

functionally graded (FG) sandwich structures in aerospace, 

marine and civil engineering due to high strength-to-weight 

ratio. Functionally graded materials (FGMs) are new 

inhomogeneous materials which have been widely used in 

many engineering applicants such as nuclear reactors and 

high-speed spacecraft industries (Yamanouchi et al. 

(1990)). The mechanical properties of FGMs vary smoothly 

and continuously from one surface to the other. Typically 

these materials are made from a mixture of ceramic and 

metal or from a combination of different materials. The 

ceramic constituent of the material provides the high 

temperature resistance due to its low thermal conductivity. 

The ductile metal constituent on the other hand, prevents 

fracture caused by stresses due to the high temperature 

gradient in a very short period of time. Furthermore a 

mixture of ceramic and metal with a continuously varying 

volume fraction can be easily manufactured (Fukui 1991, 

Koizumi 1997). The analysis of these materials has been 

considered by many researchers. 

The FGM sandwich can alleviate the large interfacial 

shear stress concentration because of the gradual variation 

of material properties at the facesheet-core interface. The 

effects of the FGM core were studied by Venkataraman and 

Sankar (2001) and Anderson (2003) on the shear stresses at 

the facesheet-core of the FGM sandwich beam. Pan and 

Han (2005) analyzed the static response of the multilayered  
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rectangular plate made of the functionally graded, 

anisotropic, and linear magneto-electro-elastic materials. 

Bennai et al. (2015) used a new higher-order shear and 

normal deformation theory for functionally graded 

sandwich beams. Chaabane et al. (2019) developed an 

analytical study of bending and free vibration responses of 

functionally graded beams resting on elastic foundation. 

Alimirzaei et al. (2019) investigated the nonlinear analysis 

of viscoelastic micro-composite beam with geometrical 

imperfection using FEM: MSGT electro-magneto-elastic 

bending, buckling and vibration solutions. Berghouti et al. 

(2019) analyze the vibration of nonlocal porous nanobeams 

made of functionally graded material. Bourada et al. (2019) 

investigated the dynamic of porous functionally graded 

beam using a sinusoidal shear deformation theory. Batou et 

al. (2019) studied the wave dispersion properties in 

imperfect sigmoid plates using various HSDTs. Tlidji et al. 

(2019) analyze the vibration of different material 

distributions of functionally graded microbeam. Salah et al. 

(2019) investigated the thermal buckling properties of 

ceramic-metal FGM sandwich plates using 2D integral plate 

model. Boussoula et al. (2020) used a simple nth-order 

shear deformation theory for thermomechanical bending 

analysis of different configurations of FG sandwich plates. 

Adda Bedia et al. (2019) used a new Hyperbolic Two-

Unknown Beam Model for bending and buckling analysis 

of a nonlocal strain gradient nanobeams. Karami et al. 

(2019a) studied the wave propagation of functionally 

graded anisotropic nanoplates resting on Winkler-Pasternak 

foundation. Karami et al. (2019b) investigated the 

resonance behavior of functionally graded polymer 

composite nanoplates reinforced with grapheme 

nanoplatelets. Karami et al. (2019c) used the Galerkin’s 

approach for buckling analysis of functionally graded  
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anisotropic nanoplates/different boundary conditions. 

Karami et al. (2019d) analyze the exact wave propagation 

of triclinic material using three dimensional bi-Helmholtz 

gradient plate model. Karami et al. (2019e) studied the pre 

stressed functionally graded anisotropic nanoshell in 

magnetic field. Meksi et al. (2019) developed an analytical 

solution for bending, buckling and vibration responses of 

FGM sandwich plates. Hellal et al. (2019) analyze the 

dynamic and stability of functionally graded material 

sandwich plates in hygro-thermal environment using a 

simple higher shear deformation theory. 

Since the shear deformation effects are more 

pronounced in these structures, the first-order shear 

deformation theory and higher-order shear deformation 

theories should be used. By using these theories, although 

many papers have been devoted to study static, vibration 

and buckling analysis of FG structures such as shells (Viola 

et al. 2014, Fazzolari 2014), beams (Simsek 2009, Thai and 

Vo 2012, Mirza 2018, S.R Mahmoud 2017, Akbaş 2014), 

and plates (Draiche et al. 2019, Medani et al. 2019, 

Abualnour et al. 2019, Draoui et al. 2019, Semmah et al. 

2019, Hussain et al. 2019, Belbachir et al. 2019, Mahmoud 

et al. 2019, Sahla et al. 2019). In addition, in recent years, 

many researchers have dealt the effect of stretching the 

thickness on FGM structures (Addou et al. 2019, Boutaleb 

et al. 2019, Khiloun et al. 2019, Zarga et al. 2019, 

Boulefrakh et al. 2019, Boukhlif et al. 2019, Mahmoudi et 

al. 2019, Zaoui et al. 2019). 

The FGM sandwich construction exists in two types: the 

FGM facesheet-homogeneous core and the homogeneous 

facesheet-FGM core. For the case of the homogeneous core, 

the softcore is commonly employed because of the light 

weight and high bending stiffness in the structural design. 

The homogeneous hardcore is also employed in other fields, 

such as control or thermal environments.  

Nowadays, functionally graded sandwich beams are 

widely used in many industries including nuclear 

engineering. Therefore, accurate structural analysis of FG 

sandwich beams is required to predict their correct bending 

behavior. 

As far as we know, there has been little investigation for 

the bending analysis of softcore and hardcore functionally 

graded sandwich beams using hyperbolic shear deformation 

beam theory. In this paper, a new hyperbolic shear 

deformation theory is developed for the bending analysis of 

softcore and hardcore functionally graded beams. The most 

interesting feature of this theory is that it does not require 

the shear correction factor and satisfies equilibrium 

conditions at the top and bottom faces of the sandwich 

beam. The governing equations are derived from the 

principle of virtual work. Sandwich beams have 

functionally graded skins and two types of homogenous 

core (softcore and hardcore). The material properties of 

functionally graded skins are graded through the thickness 

according to the power-law distribution. The Navier 

solution is used to obtain the closed form solutions for 

simply supported FGM sandwich beams. The non -

dimensional numerical values of displacements and stresses 

are obtained for uniformly distributed loads and various 

values of the power law index and skin-core-skin thickness  

ratios. Effects of softcore and hardcore on the non-

dimensional displacements and stresses are carefully 

discussed. The effects of various variables, such as gradient 

index, span-to-depth ratio and sandwich beam type are all 

discussed. 

 

 

2. New hyperbolic shear deformation theory for FGM 
sandwich beams 

 
2.1 Geometrical configuration 
 

Consider a FG sandwich beam composed of three elastic 

layers. Top and bottom layers of beam (layers 1 and 3) are 

made up of FG material, whereas middle layer (layer 2) is 

made up of isotropic material as shown in Fig. 1. 

The beam is of length L in x-direction, and total 

thickness h in z-direction. Thickness coordinates for the top 

surface is h1, the bottom surface is h4 and for layer 

interfaces are h2 and h3. The beam is subjected to transverse 

load q(x) on the top surface. For brevity, the ratio of the 

thickness of each layer from bottom to top is denoted by the 

combination of three numbers, i.e., “1-0-1”, “2-1-2” and so 

on. Through-the-thickness variation in elastic properties (E, 

v, G) for two types of beams, are expressed by the rule of 

mixture as  

Type A (Hardcore): 

     n

mcm VEEEzE   (1) 

Type B (Softcore):  

     n

cmc VEEEzE   (2) 

where V(n) n(1,2,3) represents function of volume fraction 

for nth layer;
 
Em and Ec are the Young’s moduli of metal 

and ceramic, respectively. Functions of volume fraction for 

three elastic layers are assumed to obey a power law as 

follows:  

Layer 1:  
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Layer 2: 

  12 V  for  32 ,hhz  (3b) 

Layer 3: 
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where k  is the power-law index: 

 

2.2 Basic assumptions 
 

The assumptions of the present theory are as follows: 

• The displacements are small in comparison with the 

plate thickness. Therefore, the strains involved are 
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infinitesimal. 

• The transverse displacement w includes two 

components of bending wb, and shear ws. These 

components are functions of coordinates x and time t 

only. 

),(),(),,( txwtxwtzxw sb   (4) 

The transverse normal stress σz is negligible in 

comparison with in-plane stresses σx and σy. 

• The axial displacement u in x-direction and v in the y-

direction, consists of extension, bending, and shear 

components. 

sb uuuu  0  (5) 

• The bending component ub
 
is assumed to be similar to 

the displacements given by the classical plate theory. 

Therefore, the expression for ub can be given as 

x

w
zu b

b



  (6) 

•The shear component us give rise, in conjunction with 

ws, to the hyperbolic variation of shear strain γxz and 

hence to shear stress τxz through the thickness of the 

beam in such a way that shear stress τxz is zero at the top 

and bottom faces of the beam. Consequently, the 

expression for us can be given as 

x

w
zfu s
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 )(  (7) 
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Fig. 1 Geometry, coordinate system and material gradation 

of functionally graded sandwich beams 

2.3 Kinematics and constitutive equations 

 

Based on the assumptions made in the preceding 

section, the displacement field can be obtained using Eqs. 

(4) - (8) as 
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)(),(),,( 0

txwtxwtzxw

x

w
zf

x

w
ztxutzxu

sb

sb













 (9) 

The strains associated with the displacements in Eq. (9) 

are 

0

 )(

 )( 0







z

s

yzyz

s

x

b

xxx

zg

kzfkz







 (10) 
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The state of stress in the beam is given by the 

generalized Hooke’s law as follows 

    x

n

x zQ  11  and
    xz

n

xz zQ  55  (12) 

Where 
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12
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2.4 Governing equations 
 

The governing equations of equilibrium can be derived 

by using the principle of virtual displacements. The 

principle of virtual work in the present case yields 

    0
0
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2/ 0
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where q  is the applied transverse load. 

Substituting Eqs. (10) and (12) into Eq. (14) and 

integrating through the thickness of the beam, Eq. (14) can 

be rewritten as 

  0  

    

0

0

2

2

2

2

0
















L

sb

L

s
xz

ss

x
bb

xx

dxwwq

dx
dx

wd
Q

dx

wd
M

dx

wd
M

dx

ud
N





 (15) 

Where Nx, 𝑀𝑥
𝑏, 𝑀𝑥

𝑠and Qxz are the stress resultants defined 
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as 
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The governing equations of equilibrium can be derived 

from eq. (15) by integrating the displacement gradients by 

parts and setting the coefficients where ,0u ,bw ,sw

zero. Thus, one can obtain the equilibrium equations 

associated with the present hyperbolic shear deformation 

beam theory 
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Eq. (17) can be expressed in terms of displacements (U0, 

wb, ws) by using Eqs. (12) and (16) as follows 
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Where A11, D11, etc., are the beam stiffness, defined by 
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2.5 Analytical solution 
 

Closed-form solutions for simply-supported FG 

sandwich beam subjected to uniform transverse load q(x) 

are obtained using Navier’s solution technique. The 

variables u0, wb, ws can be written by assuming the 

following variations: 

 
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Where Um, Wbm, and Wsm are arbitrary parameters to be 

determined, and λ =mπ / L. The transverse load q is also 

expanded in Fourier series as 
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) sin()(
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m xQxq   (21) 

where Qm is the load amplitude calculated from 
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0

m dx)x sin()x(q
L

2
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The coefficients Qm are given below for some typical 

loads 

1m  and 01 qQ   Sinusoidal load (23a) 

m

q
Qm

04
  Uniform load (23b) 

Substituting the expansions of u0, wb, ws and q from Eqs. 

(20) and (21) into the equations of motion Eq. (18), the 

analytical solutions can be obtained from the following 

equations 
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where 
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3. Numerical results and discussions 
 

3.1 Numerical results 
 

The accuracy of the present formulation based on the 

hyperbolic shear deformation beam theory is proved by 

applying it for the static analysis of FG sandwich beams. 

The following non-dimensional forms available in the  
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literature are used for the purpose of presenting the  

numerical results 
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(26) 

The material properties used in the present study are: 

Ceramic (Alumina, Al2O3): Ec=380 GPa; v=0.3. Metal 

(Aluminium, Al): Em=70 GPa;v=0.3. 

For the numerical study, hardcore (Type A) and softcore 

(Type B) FG sandwich beams. 

 a- 1–0-1: This scheme is made of two layers. Take h1=-

h/2, h2=0, h3=0 and h4=h/2. 

b- 2–1-2: This scheme is made of three layers. Take h1=- 

 

 

h/2, h2=-h/10, h3=h/10 and h4=h/2. 

c- 1–1-1: This scheme is made of three layers. Take h1=-

h/2, h2=-h/6, h3=h/6 and h4=h/2. 

d- 1–2-1: This scheme is made of three layers. Take h1=-

h/2, h2=-h/4, h3=h/4 and h4=h/2. 

 

3.2 Discussion on numerical results 
 

In order to prove the validity of the present hyperbolic 

shear deformation theory, the non-dimensional numerical 

results according to the present formulation using different 

shape functions in terms of thickness coordinate are 

presented in Tables 1 through 3 and plotted in Fig. 2 

through 5. Two types of FG sandwich beams (hardcore and 

softcore) are considered in the present study. Non-

dimensional forms for presenting numerical results are 

given in Eq. (26). From a numerical and graphical results,  

Table 1 Dimensionless center deflections �̅� at ((x=L/2, z=0) of the different  functionally graded sandwich bea

ms subjected to uniformly distributed load (L/h=5) 

 Type A: Hardcore Type B: Softcore 

k  Theory 1-0-1 2-1-2 1-1-1 1-2-1 1-0-1 2-1-2 1-1-1 1-2-1 

Ceramic 

Present 3.1652 3.1652 3.1652 3.1652 17.182 17.182 17.182 17.182 

PSDBT* 3.1654 3.1654 3.1654 3.1654 17.183 17.183 17.183 17.183 

TSDBT* 3.1649 3.1649 3.1649 3.1649 17.180 17.180 17.180 17.180 

HSDBT* 3.1633 3.1633 3.1633 3.1633 17.172 17.172 17.172 17.172 

FSDBT* 3.1657 3.1657 3.1657 3.1657 17.185 17.185 17.185 17.185 

CBT* 2.8783 2.8783 2.8783 2.8783 15.625 15.625 15.625 15.625 

1 

Present 7.8375 6.9340 6.2697 5.4114 4.229 4.6438 5.0464 5.7692 

PSDBT* 7.8352 6.9328 6.2693 5.4122 4.2415 4.6654 5.0726 5.7924 

TSDBT* 7.8317 6.9304 6.2682 5.4125 4.2552 4.6907 5.1025 5.8163 

HSDBT* 7.8355 6.9330 6.2694 5.4122 4.3113 4.6631 5.0697 5.7900 

FSDBT* 7.8197 6.9159 6.2470 5.3807 4.0202 4.3301 4.6495 5.2774 

CBT* 7.4152 6.5604 5.9181 5.0798 3.6157 3.8610 4.1245 4.6605 

2 

Present 11.347 9.6815 8.3908 6.7572 3.6101 3.9302 4.2684 4.9127 

PSDBT* 11.341 9.6779 8.3893 6.7579 3.6193 3.9504 4.2967 4.9438 

TSDBT* 11.333 9.6730 8.3869 6.7582 3.6297 3.9748 4.3307 4.9787 

HSDBT* 11.342 9.6784 8.3895 6.7578 3.7194 3.9482 4.2936 4.9405 

FSDBT* 11.354 9.6842 8.3831 6.7345 3.4629 3.6822 3.9278 4.4418 

CBT* 10.829 9.2602 8.0074 6.4056 3.1340 3.2955 3.4899 3.9167 

5 

Present 15.193 13.212 11.231 8.5138 3.2904 3.5123 3.7801 4.3409 

PSDBT* 15.179 13.203 11.227 8.5136 3.2953 3.5279 3.8058 4.3764 

TSDBT* 15.161 13.192 11.221 8.5131 3.3005 3.5469 3.8379 4.4188 

HSDBT* 15.181 13.204 11.228 8.5137 3.4121 3.5262 3.8030 4.3725 

FSDBT* 15.227 13.251 11.249 8.5036 3.1980 3.3333 3.5111 3.9220 

CBT* 14.480 12.726 10.811 8.1409 2.9208 3.0043 3.1354 3.4651 

10 

Present 16.308 14.636 12.572 9.4060 3.2154 3.3928 3.6259 4.1442 

PSDBT* 16.290 14.623 12.566 9.4050 3.2182 3.4053 3.6488 4.1799 

TSDBT* 16.267 14.608 12.557 9.4034 3.2207 3.4205 3.6776 4.2233 

HSDBT* 16.293 14.625 12.566 9.4051 3.3370 3.4039 3.6464 4.1759 

FSDBT* 16.313 14.693 12.605 9.4038 3.1452 3.2446 3.3924 3.7581 

CBT* 15.386 14.104 12.132 9.0232 2.8865 2.9366 3.0395 3.3266 

Metal 

Present 17.182 17.182 17.182 17.182 3.1652 3.1652 3.1652 3.1652 

PSDBT* 17.183 17.183 17.183 17.183 3.1654 3.1654 3.1654 3.1654 

TSDBT* 17.180 17.180 17.180 17.180 3.1649 3.1649 3.1649 3.1649 

HSDBT* 17.172 17.172 17.172 17.172 3.1633 3.1633 3.1633 3.1633 

FSDBT* 17.185 17.185 17.185 17.185 3.1657 3.1657 3.1657 3.1657 

CBT* 15.625 15.625 15.625 15.625 2.8783 2.8783 2.8783 2.8783 

*Results from Ref. (Sayyad and Ghugal 2019) 

PSDBT: parabolic shear deformation beam theory; TSDBT: trigonometric shear deformation beam theory; HSDBT: hyperbol

ic shear deformation beam theory; FSDBT: first-order shear deformation beam theory; CBT: classical beam theory. 

485



 

Lazreg Hadji and Abdelkader Safa 

 

 

 

the following observations are made.  

1- Table 1 show the comparison of non-dimensional 

transverse deflections for FG sandwich beams subjected to 

uniform load. It is clear that that the non-dimensional 

transverse deflections increases with an increase in power 

law index k
 
for homogenous hardcore (Type A), whereas 

the opposite nature of variation in the non-dimensional 

transverse deflections is observed for homogenous softcore 

(Type B). This leads to the important observation that if 

core is made of soft material, non-dimensional transverse 

deflection is less for FG sandwich structures. It is also 

pointed out that the increase in power law index increases 

flexibility of the type A sandwich structures, whereas it 

increases the stiffness of type B sandwich structures. 

(Type A: at k=0, beam is fully ceramic, whereas at k=∞, 

beam is fully metallic. This means, increase in power law  

 

 

index increases the flexibility of type A sandwich beams. 

Type B: at k=0, beams is fully metallic, whereas at k=∞, 

beam is fully ceramic. This means an increase in power law 

index increases the stiffness of type B sandwich beams). 

2- It can be observed that the values of the transverse 

deflections obtained using various shear deformation beam 

theories (i.e., PSDBT, TSDBT, HSDBT, FSDBT) are in 

good agreement with the those given by the present theory 

for all power law index k and for the both models (Type A 

and B). Due to ignoring the shear deformation effect, 

FSDBT and CBT underestimates deflection of moderately 

deep beams(L/h=5). It is also pointed out that for a hardcore 

FG sandwich beams, transverse deflection is minimum for 

1–2–1 and maximum for 1–0–1, whereas for softcore FG 

sandwich beams, transverse deflection is minimum for 1–0  

Table 2 Dimensionless axial stresses x  at (x=L/2 z=-h/2) of the different  functionally graded sandwich beams 

subjected to uniformly distributed load (L/h=5) 

 Type A: Hardcore Type B: Softcore 

k  Theory 1-0-1 2-1-2 1-1-1 1-2-1 1-0-1 2-1-2 1-1-1 1-2-1 

Ceramic 

Present 3.7990 3.7990 3.7990 3.7990 3.7990 3.7990 3.7990 3.7990 

PSDBT* 3.8028 3.8028 3.8028 3.8028 3.8028 3.8028 3.8028 3.8028 

TSDBT* 3.8061 3.8061 3.8061 3.8061 3.8061 3.8061 3.8061 3.8061 

HSDBT* 3.8010 3.8010 3.8010 3.8010 3.8010 3.8010 3.8010 3.8010 

FSDBT* 3.7501 3.7501 3.7501 3.7501 3.7501 3.7501 3.7501 3.7501 

CBT* 3.7501 3.7501 3.7501 3.7501 3.7501 3.7501 3.7501 3.7501 

1 

Present 1.7956 1.5889 1.4339 1.2320 4.8047 5.1455 5.5036 6.2169 

PSDBT* 1.7969 1.5901 1.4352 1.2332 4.8130 5.1563 5.5156 6.2288 

TSDBT* 1.7980 1.5911 1.4361 1.2342 4.8215 5.1677 5.5282 6.2406 

HSDBT* 1.7968 1.5900 1.4351 1.2331 4.7748 5.1552 5.5144 6.2277 

FSDBT* 1.7797 1.5745 1.4204 1.2192 4.7109 5.0305 5.3738 6.0721 

CBT* 1.7797 1.5745 1.4204 1.2192 4.7109 5.0305 5.3738 6.0721 

2 

Present 2.6183 2.2389 1.9372 1.5517 4.1600 4.3923 4.6625 5.2388 

PSDBT* 2.6198 2.2403 1.9385 1.5531 4.1669 4.4021 4.6743 5.2513 

TSDBT* 2.6209 2.2413 1.9396 1.5542 4.1739 4.4128 4.6871 5.2644 

HSDBT* 2.6197 2.2402 1.9384 1.5530 4.1514 4.4012 4.6731 5.2501 

FSDBT* 2.5991 2.2225 1.9218 1.5374 4.0832 4.2937 4.5469 5.1031 

CBT* 2.5991 2.2225 1.9218 1.5374 4.0832 4.2937 4.5469 5.1031 

5 

Present 3.4991 3.0721 2.6113 1.9694 3.8678 3.9977 4.1868 4.6412 

PSDBT* 3.5007 3.0734 2.6127 1.9709 3.8732 4.0062 4.1978 4.6543 

TSDBT* 3.5017 3.0743 2.6138 1.9721 3.8785 4.0153 4.2101 4.6686 

HSDBT* 3.5006 3.0733 2.6126 1.9708 3.8781 4.0054 4.1967 4.6530 

FSDBT* 3.4753 3.0545 2.5949 1.9539 3.8055 3.9143 4.0851 4.5147 

CBT* 3.4753 3.0545 2.5949 1.9539 3.8055 3.9143 4.0851 4.5147 

10 

Present 3.7222 3.4035 2.9284 2.1815 3.8168 3.9024 4.0549 4.4558 

PSDBT* 3.7241 3.4047 2.9298 2.1830 3.8215 3.9100 4.0652 4.4689 

TSDBT* 3.7253 3.4055 2.9307 2.1842 3.8258 3.9181 4.0768 4.4835 

HSDBT* 3.7240 3.4047 2.9297 2.1829 3.8337 3.9093 4.0642 4.4676 

FSDBT* 3.6929 3.3853 2.9118 2.1656 3.7608 3.8261 3.9601 4.3343 

CBT* 3.6929 3.3853 2.9118 2.1656 3.7608 3.8261 3.9601 4.3343 

Metal 

Present 3.7990 3.7990 3.7990 3.7990 3.7990 3.7990 3.7990 3.7990 

PSDBT* 3.8028 3.8028 3.8028 3.8028 3.8028 3.8028 3.8028 3.8028 

TSDBT* 3.8061 3.8061 3.8061 3.8061 3.8061 3.8061 3.8061 3.8061 

HSDBT* 3.8010 3.8010 3.8010 3.8010 3.8010 3.8010 3.8010 3.8010 

FSDBT* 3.7501 3.7501 3.7501 3.7501 3.7501 3.7501 3.7501 3.7501 

CBT* 3.7501 3.7501 3.7501 3.7501 3.7501 3.7501 3.7501 3.7501 
*Results from Ref. (Sayyad and Ghugal 2019) 
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1 and maximum for 1–2–1. 

3- Table 2 shows the non-dimensional inplane normal 

stresses when FG sandwich beams is subjected to uniformly 

distributed load. It is important to note that in Table 2, the 

non-dimensional inplane normal stresses at the top surface 

of the beams is mentioned, those are not maximum in-plane 

stresses. Examination of the results presented in these table 

reveals that all the models predict more or less the same 

values of stresses. It is pointed out that non-dimensional 

normal stresses are same for fully ceramic and metal beams. 

This leads to the important conclusion that for single-layer 

FG beams, non-dimensional normal stresses are 

independent of Young’s modulus of the material. It is also 

pointed out that the FSDBT and CBT predict same values 

of non-dimensional in-plane normal stresses for all power 

law indices. 

4- Examination of Fig. 2 reveals that when the top 

surface is ceramic (rigid) and core material is metal 

(softcore), variations of the in-plane stresses within each 

face sheet obey a distinct trend, i.e. the in-plane stresses are 

reduced from the top surface to towards the mid-plane. 

Whereas examination of Fig. 3 reveals that when top  

 

 

 

surface is made up of metal (soft material) and core is of 

ceramic (hardcore), the stresses have encountered both 

reduction and growth trends within each individual skin, for 

the higher values of the volume fraction indices. The in-

plane normal stresses are tensile in nature at the top surface 

and compressive in nature at the bottom surface of the 

beams. 

5- Note that the in-plane normal stresses in beams 

corresponding to k=0 and k=∞ yield the maximum in-plane 

normal stresses at the top surfaces, i.e., z=-h/2. This is 

because, at these values of power law index, materials of 

beam become fully homogenous and isotropic (either 

ceramic or metal). According to Table 2, considering in-

plane stresses at the top or bottom surfaces of the beams, it 

is also observed that among four lamination schemes for 

hardcore FG sandwich beams, maximum inplane normal 

stresses at the top surface are observed for 1–0–1 and 

minimum for 1–2–1, whereas for softcore beams, in-plane 

normal stresses at the top surface are minimum for 1–0–1 

and maximum for 1–2–1. However, the maximum values of 

in-plane stresses through-the-thickness of FG sandwich  

Table 3 Dimensionless transverse shear stresses xz  at (x=0 z=0) of the different  functionally graded sandwich 

beams  subjected to uniformly distributed load (L/h=5) 

 Type A: Hardcore Type B: Softcore 

k  Theory 1-0-1 2-1-2 1-1-1 1-2-1 1-0-1 2-1-2 1-1-1 1-2-1 

 

Ceramic 

Present 0.7146 0.7146 0.7146 0.7146 0.7146 0.7146 0.7146 0.7146 

PSDBT* 0.7305 0.7305 0.7305 0.7305 0.7305 0.7305 0.7305 0.7305 

TSDBT* 0.7524 0.7524 0.7524 0.7524 0.7524 0.7524 0.7524 0.7524 

HSDBT* 0.7246 0.7246 0.7246 0.7246 0.7246 0.7246 0.7246 0.7246 

FSDBT* 0.4922 0.4922 0.4922 0.4922 0.4922 0.4922 0.4922 0.4922 

 

1 

Present 1.0164 0.8963 0.8415 0.7933 0.2858 0.3665 0.4342 0.5279 

PSDBT* 1.0279 0.9075 0.8540 0.8081 0.2984 0.3859 0.4578 0.5531 

TSDBT* 1.0472 0.9261 0.8740 0.8306 0.3152 0.4116 0.4888 0.5853 

HSDBT* 1.0259 0.9060 0.8521 0.8061 0.3413 0.3835 0.4549 0.5501 

FSDBT* 0.8313 0.7306 0.6760 0.6183 0.1531 0.1776 0.1988 0.2336 

 

2 

Present 1.2521 1.0073 0.9102 0.8311 0.2201 0.2946 0.3638 0.4714 

PSDBT* 1.2584 1.0140 0.9197 0.8446 0.2294 0.3112 0.3862 0.4987 

TSDBT* 1.2726 1.0278 0.9367 0.8663 0.2420 0.3335 0.4162 0.5341 

HSDBT* 1.2570 1.0128 0.9180 0.8425 0.2823 0.3093 0.3835 0.4954 

FSDBT* 1.0791 0.8713 0.7722 0.6760 0.1245 0.1464 0.1658 0.1988 

 

5 

Present 1.7644 1.1806 1.0031 0.8763 0.1697 0.2338 0.2984 0.4109 

PSDBT* 1.7628 1.1784 1.0067 0.8873 0.1757 0.2464 0.3176 0.4383 

TSDBT* 1.7686 1.1822 1.0172 0.9066 0.1838 0.2635 0.3437 0.4747 

HSDBT* 1.7615 1.1780 1.0057 0.8855 0.2324 0.2449 0.3153 0.4352 

FSDBT* 1.5373 1.0791 0.9002 0.7457 0.1049 0.1245 0.1422 0.1730 

 

10 

Present 2.2973 1.3068 1.0608 0.9007 0.1509 0.2093 0.2703 0.3819 

PSDBT* 2.3005 1.2991 1.0604 0.9099 0.1554 0.2198 0.2874 0.4084 

TSDBT* 2.3128 1.2967 1.0663 0.9270 0.1615 0.2341 0.3106 0.4439 

HSDBT* 2.2994 1.2989 1.0600 0.9083 0.2116 0.2186 0.2854 0.4053 

FSDBT* 1.9050 1.2103 0.9736 0.7823 0.0979 0.1166 0.1336 0.1634 

 

Metal 

Present 0.7146 0.7146 0.7146 0.7146 0.7146 0.7146 0.7146 0.7146 

PSDBT* 0.7305 0.7305 0.7305 0.7305 0.7305 0.7305 0.7305 0.7305 

TSDBT* 0.7524 0.7524 0.7524 0.7524 0.7524 0.7524 0.7524 0.7524 

HSDBT* 0.7246 0.7246 0.7246 0.7246 0.7246 0.7246 0.7246 0.7246 

FSDBT* 0.4922 0.4922 0.4922 0.4922 0.4922 0.4922 0.4922 0.4922 
*Results from Ref. (Sayyad and Ghugal 2019) 
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Fig. 2 The variation of the axial stress x  in different 

types of functionally graded sandwich beams (Type A: 

hardcore). 
 

 

 

 

 

Fig. 3 The variation of the axial stress x  in different 

types of functionally graded sandwich beams (Type B: 

softcore) 
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Fig. 4 The variation of the transverse shear stress xz  in 

different types of functionally graded sandwich beams 

(Type A: hardcore) 

 

 

 

 

 

Fig. 5 The variation of the transverse shear stress xz  in 

different types of functionally graded sandwich beams 

(Type B: softcore) 
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beams are observed in the middle layer, i.e. core. Figure 2 

show that in-plane normal stresses are maximum at top or 

bottom surfaces (z=±h/2) for 1-0-1 and maximum at layer 

interface for other lamination schemes such as 2–1–2 at 

±h/2, 1–1–1 at ±h/6 and 1–2–1 at ±h/4. This trend is 

observed for both hardcore and softcore beams. 

5- Table 3 show the comparison of non-dimensional 

transverse shear stresses obtained using the present theory. 

Values are presented at mid-plane, i.e., z=0. It is observed 

that transverse shear stresses predicted by TSDBT are on 

higher side compared to other higher order models. FSDBT 

does not satisfy traction free conditions at top and bottom 

surfaces. Through-the-thickness distributions of transverse 

shear stresses for FG sandwich beams are shown in Figures 

4 through 5. 

6- Through the thickness distributions of transverse 

shear stresses reveal that for softcore FG sandwich beams, 

transverse shear stresses are maximum in skins and 

minimum in core, whereas for hardcore FG sandwich 

beams and plates, transverse shear stresses are minimum in 

skins and maximum in core. 

 

 

4. Conclusions 
 

A New hyperbolic shear deformation theory is 

developed for the bending analysis of FG sandwich beams. 

The theory takes account of transverse shear effects and 

hyperbolic distribution of the transverse shear strains 

through the thickness of the FG sandwich beam. Hence it is 

unnecessary to use shear correction factors. The power-law 

FGM sandwich beams with the FGM facesheet and the 

Hardcore and the sandwich beams with the FGM facesheet 

and softcore are considered. Obtained results were 

presented in figures and tables and compared with 

references and these demonstrate the accuracy of present 

theory. It can be said that the present hyperbolic beam 

theory is much simpler, straightforward and can be easily 

applied for wide range of problems for static and analyses 

of FGM sandwich beams and the same is recommended for 

analyses of FGM sandwich plates. 
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