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1. Introduction 
 

Wind forces cause aerodynamic instability of suspension 

bridge structures resulting in failures that need to be 

considered for bridge design and assessment (Andersen and 

Brandt 2018). Tacoma Narrows in 1940 in Washington, 

Brighton Chain Pier in 1836 in England, and Wheeling in 

1854 in West Virginia are some examples of suspension 

bridges being destroyed because of the aerodynamic 

instabilities and uncontrolled oscillations (Arioli et al. 2015, 

Steinman 2017). Hence, monitoring and controlling of the 

wind-induced structural motions receive very much 

attention nowadays because of periodic hurricanes occur in 

many parts of the world. A wide variety of numerical and 

mathematical approaches have been used for structural 

health monitoring (SHM) of bridge structures 

(Farhangdoust and Mehrabi 2019, Zhou et al. 2018, Soman 

et al. 2018, Xu 2018, Feng et al. 2018, Saha et al. 2018). In 

the literature, vortex shedding, flutter, buffeting, and 

galloping can induce aerodynamic instabilities leading to 

suspension bridge collapses as a consequence of wind-

bridge interaction (Larsen and Larose 2015, Guo et al. 

2019, Vaz et al. 2018, Azzi et al. 2018). The dynamic 

response of Kap Shui Mun Bridge in Hong Kong has been 

modeled by Zhang et al. (2012) in which vortex shedding, 

flutter, and buffeting have been addressed as the load 

excitations. Vortex shedding is recognized as an undesirable  

aeroelastic phenomenon of the wind-bridge interaction 

which potentially causes large dynamic oscillations in the  
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suspension bridges (Gazzola 2015, Simiu 2011, Larsen et 

al. 2000). Vortex shedding results from rolling-up of the 

separating shear layers of a bluff body alternately on each 

side of structure gives rise to fluctuating lift forces. A large 

number of articles have been published on the vortex-

induced oscillation of engineering structures (Wang et al. 

2018, Munir et al. 2018). The structure will resonate and its 

oscillations will become self-sustaining if the frequency of 

vortex shedding matches structure’s fundamental frequency 

(Li et al. 2011, Fujino and Yoshida 2002). Vibration 

analysis of suspension bridge deck subjected to the vortex 

shedding instability has been a concern to engineers 

because of the associated bridge failure experienced (Laima 

et al. 2014, Wang et al. 2018). In order to tackle the 

aerodynamic instability of suspension bridge structures, 

various teams and researchers have put their concentrations 

on figuring vortex-induced vibrations out (Zhang et al. 

2008). A single-side pounding tuned mass damper was 

implemented by Wang et al. (2018) to mitigate vortex-

induced vibrations of a bridge deck. They experimentally 

investigated the proposed TMD performance and concluded 

that the maximum response of their model was reduced by 

94% using the TMD with mass ratio of 2%. Due to different 

given Reynolds numbers, VIV performance has been 

studied for twin-box bridge sections of Great Belt East 

Bridge and the Stonecutters Bridge by Zhang et al (2008). 

Smith (2008) studied dynamic response of Wye Bridge 

which is a cable stayed box girder bridge with length span 

of 235 m. They measured the dominant frequencies of 

wind-induced vibration and studied the effect of vortex 

shedding excitation on fatigue life of the bridge structure. 

Field measurements of a twin steel box girder suspension 

bridge with a center span of 1650 m have been implemented 
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by Li et al. (2011) using the pressure sensors. The vertical 

vortex-induced resonance of the bridge deck has been 

assumed to be perpendicular to the longitudinal bridge axis. 

Based on the experimental data, Wu et al. (2013), 

developed two advanced nonlinear aero-elastic analysis 

frameworks for cable-stayed bridges using the artificial 

neural network and Volterra series-based models. Torsional 

divergence and flutter in two different suspension bridges 

under aeroelastic forces were modeled and analyzed by 

Arena and Lacarbonara (2012) using a fully nonlinear 

model. More recently, Zhou et al. (2018) presented a fully 

integrated finite element (FE) model in time domain, for 

vortex induced vibration analysis of long-span twin-box 

girder bridges with various geometries and wind fairing 

shapes. Because of the low cost, versatility, and simple 

required instrumentation, different researches have been 

carried out within the conventional tuned mass dampers 

(TMDs) for vibration control of long-span suspension 

bridge decks (Zhang et al 2012, Han et al. 2019). The 

feasibility of applying passive control devices to attenuate 

the vortex-induced oscillations along the spans of the steel 

twin-box-girder Rio Niterói Bridge has been numerically 

and experimentally investigated by Battista and Pfeil 

(2000). Rohman and John (2006) investigated the responses 

of cables and deck for a flexible long-span suspension 

bridge in both directions of along-wind and across-wind 

using a single passive and semi-TMD. A modified single-

side pounding TMD has been proposed by Wang et. al 

(2018) to investigate the vibration control of VIV of a 

bridge deck under action of a nonlinear force. They 

employed a numerical optimization based on the verified 

impact force model to obtain simplified design formulas for 

the TMD systems. Some other researchers have also 

utilized various optimization algorithms like algorithm 

genetics to enhance the system’s performance (Hussain et 

al. 2015, Ranjbar et al. 2016). Conventional TMDs have 

been tuned so far only for natural frequency of the 

suspension bridge deck, however, to get a more sensitive 

and better performance, there is a basic question that needs 

to be answered: Which mechanism of TMDs can be tuned 

in a broadband frequency of inputs? Using bistable 

mechanisms can give TMDs the ability of taking the 

advantages of an exceptional sensitivity to broadband 

inputs. Bistable systems have been used to improve power 

generation capability in energy harvesting devices which 

are for effective conversion of a wide variety of vibration 

excitation environments into usable electrical power 

(Pellegrini et al. 2013, Harne and Wang 2013, Leadenham 

and Erturk 2014, Tang and Yang 2012, Nguyen et al. 2013). 

Specifically, bistable energy harvesting applications have 

been utilized in many instruments for harnessing energy 

from vibrations of infrastructures (Farhangdoust et al. 

2019), environment (Wang et al. 2018, Vocca et al. 2012), 

sound waves (Zhou et al. 2017) and ocean waves 

(Younesian and Alam 2017). This paper aims at developing 

a bistable tuned mass damper (BTMD) model vibration 

control of VIV in a suspension bridge deck. The BTMD has 

one unstable and two stable states in which switching 

between two stable states leads to more pronounced and 

high performance of the bridge vibration control system. 

Therefore, employing the BTMD for bridge structures can 

be addressed as one of the most effective and practical 

applications among scholars in the area of vibration control 

applications. Two types of single and broadband frequency 

of vortex shedding load are applied to the bridge structure. 

Accordingly, a performance comparison between the 

nonlinear BTMD and conventional linear TMD is carried 

out. Consequently, an iterative algorithm is employed to 

optimize the design parameters of the nonlinear BTMD for 

Kap Shui Mun Bridge in Hong Kong which is one of the 

longest a cable-stayed bridge in the world. 

 

 

2. Vibration theory for vortex shedding modeling 

 

Vortex shedding is an aero-elastic phenomenon in the 

wind-bridge interaction which potentially causes large 

dynamic oscillations of suspension bridges [14-15]. The 

shedding of vortices on the bridge deck gives rise to 

fluctuating lift forces. The bridge structure will resonate if 

the frequency of vortex shedding ( fv ) and hence the 

frequency of the associated lift force, matches structure’s 

frequency (fn). This is the case at the wind speed of Ucrit 

Eq. (1), vortex shedding frequency aligns itself to the 

structure’s frequency fn [13] 

Ucrit =
1

St
fn (1) 

In which, St is the Strouhal number which is depends on 

the cross section dimension D and the Reynolds number. 

Vortex shedding load per unit length can be then obtained 

by (Simiu and Yeo 2019) 

Fv(x, t) = q(z) d(z)C̃Lsin [2πfv(z)t] (2) 

q(z)=
1

2
pU(z)2 (3) 

where 𝑞(𝑧)  denotes the velocity pressure, 𝑈(𝑧)  is the 

mean wind velocity at height z, 𝑑(𝑧)  represents the 

structural width, and �̃�𝐿 is the root mean square (RMS) lift 

force coefficient for cross sectional geometry. Wind is a 

turbulent flow for which the wind velocity dependence on 

height above the surface. According to this feature of 

atmospheric boundary layer (ABL), the vortex shedding 

load per unit length is calculated by (Simiu and Yeo 2019) 

Fv(x, t) = q(z) d(z)CL(z, t) (4) 

Where 𝐶𝐿(𝑧, 𝑡)  is the nondimensional normalized lift 

force. Experimental tests prove that the resonant 

amplification will be occurred not only at the wind speed 

𝑈𝑐𝑟𝑖𝑡  Eq. (1), but also at any speed within an interval [13]. 

1

St
fnD − ∆U < Ucrit <

1

St
fnD + ∆U (5) 

In which, ∆𝑈 𝑈𝑐𝑟𝑖𝑡⁄  is of the order of a few percent and 

depends on cross section dimension D and the mechanical 

damping. 𝑈𝑇 as the part of turbulence with periods much 

longer than natural vibration period of the structure has an  
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essential role on shaping the broadband frequency of vortex 

shedding. Hence, the maximum turbulent wind speed 

variation from the mean speed 𝑈𝑇  needs to be added to the 

mean velocity 𝑈𝑐𝑟𝑖𝑡  as a contribution to a moderately 

varying mean velocity of vortex shedding (Simiu and Yeo 

2019). Therefore, the wind velocity of vortex shedding 

yield 

fv + fv
′ = St

Ucrit + UT

d
 (6) 

According to the ABL, to assume turbulence 𝑈𝑇 has 

normal distribution is a proper approximation. The 

autospectrum 𝑆𝐶𝐿(𝑧,𝑡) of the normalized lift force is given 

by (Simiu and Yeo 2019) 

fSCL(z,t)

C̃L
2(z)

=
f

√πB(z)fv(z)
exp [− [

1 − f/fv(z)

B(z)
]

2

] (7) 

Where �̃�𝐿
2(𝑧)  denotes the standard deviation of the 𝐶𝐿 

and 𝐵(𝑧) is spectral bandwidth which is the broadband 

frequency of vortex shedding. The lower and upper band of 

the effective frequency are respectively defined by 

fj
L = fj − fj

T =
St U

d
−

St UT

d
= fj [1 −

UT

U
] (8) 

fj
U = fj + fj

T =
St U

d
+

St UT

d
= fj [1 +

UT

U
] (9) 

If the structure’s natural frequency for 𝑗𝑡ℎ mode of 

vibration lies on a broadband frequency between 𝑓𝑗
𝐿 and 

𝑓𝑗
𝑈, mode of vibration 𝑗 will be excited by the vortex 

shedding. According to the friction velocity and the 

standard deviation for the turbulent horizontal wind  

 

 

 

component, the maximum value of turbulent wind velocity  

variation is given by 

δ(UT) =
A Uz K

ln (z/z0)
 (10) 

Where 𝑧0 is the surface roughness length which depends 

on terrain exposure, 𝐴 is an empirical constant for the  

surface roughness length, 𝐾 is von Karman constant, and 

𝑧  is the height of bridge deck above the ground. 

Consequently, substituting Eq. (10) into Eqs. (8) and (9), 

the effective frequency band of the vortex shedding can be 

calculated as 

𝑓𝑣
𝐿 = 𝑓𝑣 [1 −

𝛿(𝑈𝑇)

𝑈
] < 𝑓𝑣𝑜𝑟𝑡𝑒𝑥−𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔 < 𝑓𝑣

𝑈 = 𝑓𝑣 [1 +
𝛿(𝑈𝑇)

𝑈
] (11) 

 
 
3. Mathematical modelling 

 

The Kap Shui Mun Bridge is selected as the case 

suspension bridge for numerical simulations and 

mathematical modelling of BTMD. This bridge is located in 

Hong Kong and is known as one of the longest cable-stayed 

bridges in the world (Fig. 1). Interior span of the bridge 

with length of 430 (m) is taken as a framework along with 

other geometric parameters of the bridge from the records 

(Zhang et al. 2001). As it is shown in Fig. 2, the bridge is 

modeled by a free-free constrained Euler-Bernoulli beam 

with two types of BTMD and TMD.  

The governing equation of motion for the bridge having 

a linear conventional TMD can be presented as follows 

EI
∂4w

∂x4
+ ρAc

∂2w

∂t2
+ KF ∗ w = −Ql(x, t) (12) 

 

 

(a) Cross-section view (b) Side view 

Fig. 1 Two different views of the Kap Shui Mun Bridge (Ko et al. 2002), Copyright 2020, Elsevier 

  
(a) BTMD (b) TMD 

Fig. 2 Two schematic configuration of bridge with BTMD and TMD 
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Ql(x, t) = [Fv(x, t) + C ∗ ẇ + 2 ∗ Kr ∗
∂w

∂x
+ CLT

∗ (ẇ − Ẏ) + KLT  ∗ (w − Y)] 
(13) 

mŸ + CLT ∗ (Ẏ − ẇ) + kLT ∗ (Y − w) = 0 (14) 

In which, 𝐹𝑣(𝑥, 𝑡)  is the wind force, 𝐶𝐿𝑇  and 

𝐾𝐿𝑇  denote damping coefficient and stiffness of the TMD, 

respectively. 𝑚  and 𝐶  are the mass of TMD and the 

damping coefficient of the bridge. Parameters 𝐾𝐹 and 𝐾𝑟  

represent respectively cables and rotational stiffness (Due to 

the adjacent spans). Using eigenfunction expansion 

(Galerkin method), one can assume 

𝑤(𝑥, 𝑡) = ∑ 𝑞𝑛(𝑡)𝑋𝑛(𝑥)

𝑛

          𝑛 = 1,2, … (15) 

Substituting Eq. (15) into Eqs. (14) and (16) and then 

implementing the orthogonality condition of the mode 

shapes would give 

In a same derivation procedure, the following set of 

nonlinear differential equations are derived in general form 

for the bridge deck with a BTMD system. Partial 

differential equations of the bridge can be obtained as 

follows 

In which, Fv(x, t) is the vortex shedding force, KNBT 
and KLBT are respectively nonlinear and linear BTMD 
stiffness, CBT is damping coefficient of the BTMD. 
Accordingly, substituting Eq. (15) into Eqs. (18) and (19) 
and then implementing the orthogonality condition of the 
mode shapes would provide 

q̈n(t) + 2ξωnq̇n(t) + ωn
2qn(t) = −

1

Mn
∫ Qb(x, t)Xn(x)dx

L

0

 

       n = 1,2, … 

(21) 

Ÿ + 2ξBTMDωBTMD (Ẏ − ∑ q̇j(t)Xj(xBTMD)

j

) 

−ωBTMD
2 (Y − ∑ qj(t)Xj(xBTMD)

j

) 

+
KNBT

m
(Y − ∑ qj(t)Xj(xBTMD)

j

)

3

= 0 

      j = 1,2, … 

(22) 

Consequently, implementing the boundary conditions of 

free-free for the beam, one can find the mode shapes 

solution 

Xn(x) = sinβnx + sinhβnx 

+ [
cosβnL − coshβnL

sinβnL + sinhβnL
] (cosβnx + coshβnx) 

(23) 

βn
4 =

ρAωn
2 − Kf

EI
 (24) 

 

 

 

Fig. 3 Optimization map for the BTMD 

 

 

Fig. 4 Bridge deflection without TMD, with the BTMD, 

and with conventional linear TMD 

q̈n(t) + 2ξωnq̇n(t) + ωn
2qn(t) = −

1

Mn
∫ Ql(x, t)Xn(x)dx

L

0

 

n = 1,2, … 

(16) 

Ÿ + 2ξLTMDωLTMD (Ẏ − ∑ q̇j(t)Xj(xLTMD)

j

) 

+ωLTMD
2 (Y − ∑ qj(t)Xj(xLTMD)

j

) = 0 

j = 1,2, … 

(17) 

EI
∂4w

∂x4
+ ρAc

∂2w

∂t2
+ KF ∗ w = −Qb(x, t) (18) 

Qb(x, t) = [Fv(x, t) + C ∗ ẇ + 2 ∗ Kr ∗ w′ − KLBT ∗ (w

− y) + CBT ∗ (ẇ − Ẏ) + KNBT

∗ (w − Y)3] 
(19) 

mŸ − KLBT ∗ (Y − w) + CBT ∗ (Ẏ − ẇ) + KNBT

∗ (Y − w)3 = 0 (20) 
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4. Numerical results and discussion 
 

In order to verify the proposed BTMD design, a 

numerical study is carried out in this section. Two scenarios 

are developed to evaluate the performance of TMD and 

BTMD systems and to examine the influence of the wind 

force on the vibration performance of the suspension bridge 

systems modeled by Fig. 2. 

In the first case study, the applied force is assumed to be 

harmonic (sinusoidal) using Eq. (2). The mass ratio of 

BTMD to the bridge is taken to be 0.05. Two parameters of 

stiffness and damping coefficient are the design parameters 

that need to be optimized for getting the best performance 

for passive vibration controls. As it is depicted in Fig. 3, 

𝐾𝑁𝑀𝑇  and 𝐶𝑀𝑇  as the design parameters of BTMD are 

optimized.  

The optimization map is designed in order to enhancing 

the BTMD performance by minimizing the VIV of the 

suspension bridge. Apart from that, For the conventional 

linear TMD, the parameters of 𝐾𝐿𝑇  and 𝐶𝐿𝑇  are also 

optimized and used here for making a comparison 

performance between the TMD and the proposed BTMD. 

Deflection of the different configurations of the bridge 

system is evaluated by Fig. 4. As a result, one can find that 

the deflection for the bridge system used BTMD has 

decreased 37% more than the system used the conventional 

linear TMD. 

For the first scenario, the displacement of the BTMD 

and conventional linear TMD are also investigated in Fig. 5. 

The performance comparison between their displacements 

proves that the BMTD has a better efficiency as a passive 

vibration control for suppressing the VIV of suspension 

bridge structures. 

The phase-plane diagrams are obtained for the BTMD 

and conventional linear TMD systems in Fig. 6. For the 

phase-plane of TMD, we have a trajectory in the phase-

plane around the stable point which is zero (Fig. 6(a)).  

For the BTMD system, we see a chaotic-like behavior 

for the phase-plane diagram in which the trajectory 

surrounds the two stable equilibrium points and results an 

improved performance in suppressing the VIV of 

suspension bridges compared with the conventional linear 

TMD (Fig. 6(b)). 

 

 

 

Fig. 5 Displacements of the BTMD and linear TMD 

 

 

Fig. 7 Random loading generated by the Monte Carlo 

simulation 

 

 
For the second case study, a broadband input is 

considered using Eq. (4) for the applied force. Toward this 
goal, by use of the spectral density of the wind force and 
Monte Carlo simulation, a typical load pattern has been 
generated over the bridge deck. Time history of the wind 
leading is presented in Fig. 7. Similar to the first case study, 
an optimization map is developed for designing 𝐾𝑁𝑀𝑇  and 
𝐶𝑀𝑇 as the design parameters of the BTMD (Fig. 8). 

The numerical results in Fig. 9 show that the 
conventional linear TMD has a better performance in 
suppressing the VIV of the suspension bridge in comparison 
with the BTMD if and only if a narrow band of wind speed  

 

(a) BTMD 

 
(b) TMD 

Fig. 6 Phase-plane trajectories for the conventional linear 

TMD and BTMD 
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Fig. 9 Optimization map for the BTMD 

 

 

Fig. 10 Comparison performance between BTMD and TMD 

in different bands of input 

 

 

(16 to 23 m/s) is considered for the vortex shedding 

velocity  𝑈𝑐𝑟𝑖𝑡  Eq. (1). However, as experimental tests 

demonstrate the resonant amplification is occurred at any 

speed within a broadband input of vortex shedding velocity 

(Eq. (5)) [13], the numerical results for this condition 

illustrate the BTMD system has the most optimal 

performance compared with the conventional linear TMD. 

 

 

Fig. 11 The performance map of using BTMD for the 

interior bridge deck 

 

η  defined as an improvement indicator for the bridge 

vibration control system by: 

η =
RMS(xBWBT) − RMS(xBWLT)

RMS(xBWLT)
 (25) 

In which, xBWBT and xBWLT denote the deflection of 

bridge system with the BTMD and with the conventional 

linear TMD, respectively. Fig. 9 shows where BTMD 

improves the efficiency of the bridge control vibration 

system (η > 0) and where the conventional linear TMD has 

a better performance (η < 0). 

Fig. 10(a) shows that there is a trajectory around the  

stable point of zero for the phase-plane diagram of the 

conventional linear TMD. As phase-plane diagram is shown 

in Fig. 10(b), there is a chaotic-like behavior for the BTMD 

system in which the trajectory surrounds the two stable 

equilibrium points and results the most optimal 

performance for the condition that the resonant 

amplification is assumed to be at any speed within a 

broadband input of vortex shedding velocity. 

Finding the best location of installation for the BTMD is 

an important item that needs to be addressed for improving 

the effectiveness of the vibration control system. Fig. 11 

illustrates a performance map in which the BTMD system is 

localized for the interior deck of the bridge. The main 

  
(a) BTMD (b) TMD 

Fig. 8 Phase-plane trajectories for the conventional linear TMD and BTMD 
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challenges for developing an accurate BTMD for 

infrastructure systems are a detailed initial field vibration 

measurement and accurate design and manufacturing for the 

device. 
 

 

5. Conclusions 
 

In order to suppress vortex-induced vibration of 

suspension bridge deck, a bistable tuned mass damper 

(BTMD) mechanism was proposed in this paper. Design 

parameters of the nonlinear BTMD were optimized, and 

then the BTMD system got localized for the interior deck of 

the suspension bridge. Under two different wind load 

excitations of harmonic (sinusoidal) and broadband input of 

vortex shedding, optimization maps were obtained to pick a 

pair of optimal damping and nonlinear stiffness. For the 

case study, i.e., Kap Shui Mun Bridge, it was shown that we 

need extra damping and less nonlinear stiffness for the case 

of broad-band excitation against monochromatic load 

pattern. For the monochromatic loading pattern, a 

remarkable reduction factor of 37% was recorded for the 

BTMD against conventional TMD. The reason for that 

superior performance was found to be chaotic reciprocation 

of the dissipating mechanism between the two equilibrium 

positions. For the case of spectral loading, the optimal 

performance basins for the TMD and BTMD were obtained 

in the wind speed domain. It was shown that each control 

system has superior performance at specific range of the 

wind speeds. It was also found that the performance of the 

BTMD is very much dependent on the bending rigidity of 

the supports as well as the location of its installation and in 

our case found to be about 30% percent of the main span 

length from towers. 

 

 

References 
 

Abdel-Rohman, M. and John, M.J. (2006), “Control of wind-

induced nonlinear oscillations in suspension bridges using 

multiple semi-active tuned mass dampers”, J. Vib. Control, 12(9), 

1011-1046. https://doi.org/10.1177/1077546306069035.  

Arena, A. and Lacarbonara, W. (2012), “Nonlinear parametric 

modeling of suspension bridges under aeroelastic forces: 

torsional divergence and flutter”, Nonlin. Dyn., 70(4), 2487-

2510. https://doi.org/10.1007/s11071-012-0636-3.  
Arioli, G. and Gazzola, F. (2017), “Torsional instability in 

suspension bridges: the Tacoma Narrows Bridge case”, 

Commun. Nonlin. Sci. Numer. Simul., 42, 342-357. 

https://doi.org/10.1016/j.cnsns.2016.05.028.  

Andersen, M.S. and Brandt, A. (2018), “Aerodynamic instability 

investigations of a novel, flexible and lightweight triple-box 

girder design for long-span bridges”, J. Bridge Eng., 23(12), 

04018095. https://doi.org/10.1061/(ASCE)BE.1943-

5592.0001317.  

Azzi, Z., Matus, M., Elawady, A., Zisis, I. and Irwin, P. (2018), 

“Large-scale aeroelastic testing to investigate the performance 

of span-wire traffic signals”, In Proc. 5th AAWE Workshop, 

Miami, U.S.A. August.  

Battista, R. C. and Pfeil, M.S. (2000), “Reduction of vortex-

induced oscillations of Rio–Niterói bridge by dynamic control 

devices”, J. Wind Eng. Ind. Aerod., 84(3), 273-288. 

https://doi.org/10.1016/S0167-6105(99)00108-7.  

Farhangdoust, S., Mehrabi, A. and Younesian, D. (2019), “Bistable 

wind-induced vibration energy harvester for self-powered 

wireless sensors in smart bridge monitoring systems”, In 

Nondestructive Characterization and Monitoring of Advanced 

Materials, Aerospace, Civil Infrastructure, and Transportation 

XIII 10971, 109710C. https://doi.org/10.1117/12.2517424.  

Farhangdoust, S. and Mehrabi, A. (2019), “Health monitoring of 

closure joints in accelerated bridge construction: A review of 

non-destructive testing application”, J. Advan. Concrete 

Technol., 17(7), 381-404. https://doi.org/10.3151/jact.17.381.  

Fujino, Y. and Yoshida, Y. (2002), “Wind-induced vibration and 

control of Trans-Tokyo Bay crossing bridge”, J. Struct. Eng., 

128(8), 1012-1025. https://doi.org/10.1061/(ASCE)0733-

9445(2002)128:8(1012) 

Gazzola, F. (2015), Mathematical models for suspension bridges. 

MS&A Springer. 

Guo, P., Li, S. and Wang, D. (2019), “Effects of aerodynamic 

interference on the iced straddling hangers of suspension 

bridges by wind tunnel tests”, J. Wind Eng. Ind. Aerod., 184, 

162-173. https://doi.org/10.1016/j.jweia.2018.11.017.  

Han, B., Yan, W.T., Cu, V.H., Zhu, L. and Xie, H.B. (2019), “H-

TMD with hybrid control method for vibration control of long 

span cable-stayed bridge”, Earthq. Struct., 16(3), 349-358. 

https://doi.org/10.12989/eas.2019.16.3.349.  

Harne, R.L. and Wang, K.W. (2013), “A review of the recent 

research on vibration energy harvesting via bistable systems”, 

Smart Mat. Struct., 22(2), 023001. https://doi:10.1088/0964-

1726/22/2/023001.  

Ghulam H., Mostafa R. and Shahin H. (2015), “Trade-off among 

mechanical properties and energy consumption in multi-pass 

friction stir processing of Al 7075-T651 alloy employing hybrid 

approach of artificial neural network and genetic algorithm”, 

Proc I Mech E Part B: J Eng. Manuf., 231(1), 129-139. 

Ko, J.M., Sun, Z.G. and Ni, Y.Q. (2002), “Multi-stage 

identification scheme for detecting damage in cable-stayed Kap 

Shui Mun Bridge”, Eng. Struct., 24(7), 857-868. 

https://doi.org/10.1016/S0141-0296(02)00024-X.  

Larsen, A. and Larose, G.L. (2015), “Dynamic wind effects on 

suspension and cable-stayed bridges”, J. Sound Vib., 334, 2-28. 

https://doi.org/10.1016/j.jsv.2014.06.009.  

Larsen, A., Esdahl, S., Andersen, J.E. and Vejrum, T. (2000), 

Storebælt suspension bridge–vortex shedding excitation and 

mitigation by guide vanes”, J. Wind Eng. Ind. Aerod., 88(2-3), 

283-296. https://doi.org/10.1016/S0167-6105(00)00054-4.  

Li, H., Laima, S., Zhang, Q., Li, N. and Liu, Z. (2014), “Field 

monitoring and validation of vortex-induced vibrations of a 

long-span suspension bridge”, J. Wind Eng. Ind. Aerod., 124, 

54-67. https://doi.org/10.1016/j.jweia.2013.11.006.  

Li, H., Laima, S., Ou, J., Zhao, X., Zhou, W., Yu, Y., and Liu, Z. 

(2011), “Investigation of vortex-induced vibration of a 

suspension bridge with two separated steel box girders based on 

field measurements”, Eng. Struct., 33(6), 1894-1907. 

https://doi.org/10.1016/j.engstruct.2011.02.017.  

Li, Z., Feng, M.Q., Luo, L., Feng, D. and Xu, X. (2018), 

“Statistical analysis of modal parameters of a suspension bridge 

based on Bayesian spectral density approach and SHM data”, 

Mech. Syst. Signal Pr., 98, 352-367. 

https://doi.org/10.1016/j.ymssp.2017.05.005.  

Leadenham, S. and Erturk, A. (2014), “M-shaped asymmetric 

nonlinear oscillator for broadband vibration energy harvesting: 

Harmonic balance analysis and experimental validation”, J. 

Sound Vib., 333(23), 6209-6223. 

https://doi.org/10.1016/j.jsv.2014.06.046.  

Munir, A., Zhao, M., Wu, H., Ning, D. and Lu, L. (2018), 

“Numerical investigation of the effect of plane boundary on 

two-degree-of-freedom of vortex-induced vibration of a circular 

cylinder in oscillatory flow”, Ocean Eng., 148, 17-32. 

319

https://doi.org/10.1016/S0167-6105(99)00108-7
https://doi.org/10.1117/12.2517424
https://doi.org/10.3151/jact.17.381
https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1012)
https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1012)
https://doi.org/10.1016/j.jweia.2018.11.017
https://doi.org/10.12989/eas.2019.16.3.349
https://doi.org/10.1016/S0167-6105(00)00054-4
https://doi.org/10.1016/j.jweia.2013.11.006
https://doi.org/10.1016/j.engstruct.2011.02.017
https://doi.org/10.1016/j.ymssp.2017.05.005
https://doi.org/10.1016/j.jsv.2014.06.046


 

Saman Farhangdoust, Pejman Eghbali and Davood Younesian 

 

https://doi.org/10.1016/j.oceaneng.2017.11.022.  

Nguyen, S.D., Halvorsen, E., and Jensen, G.U. (2013), “Wideband 

MEMS energy harvester driven by colored noise”, J. 

Microelectromech. Sys., 22(4), 892-900. 

https://doi.org/10.1109/JMEMS.2013.2248343.  

Pellegrini, S.P., Tolou, N., Schenk, M. and Herder, J.L. (2013), 

“Bistable vibration energy harvesters: a review”, J. Intel. Mat. 

Syst. Struct., 24(11), 1303-1312. 

https://doi.org/10.1177/1045389X12444940.  

Ranjbar, M., Boldrin, L., Scarpa, F., Neild, S. and Patsias, S. 

(2016), “Vibroacoustic optimization of anti-tetrachiral and 

auxetic hexagonal sandwich panels with gradient geometry”, 

Smart Mat. Struct., 25(5), 054012. https://doi:10.1088/0964-

1726/25/5/054012.  

Saha, A., Saha, P. and Patro, S.K. (2018), “Seismic protection of 

the benchmark highway bridge with passive hybrid control 

system”, Earthq. Struct. 15(3), 227-241. 

https://doi:10.12989/eas.2018.15.3.227.  

Simiu, E. and Yeo, D. (2019), Wind Effects on Structures: Modern 

Structural Design for wind, Wiley-Blackwell. 

Simiu, E. (2011), Design of Buildings for Wind: A Guide for 

ASCE 7-10 Standard Users and Designers of Special Structures, 

John Wiley & Sons. 

Smith, I.J. (1980), “Wind induced dynamic response of the Wye 

bridge”, Eng. Struct., 2(4), 202-208. 

https://doi.org/10.1016/0141-0296(80)90001-2.  

Soman, R., Kyriakides, M., Onoufriou, T. and Ostachowicz, W. 

(2018), “Numerical evaluation of multi-metric data fusion based 

structural health monitoring of long span bridge structures”, 

Struct. Infrastruct. Eng., 14(6), 673-684. 

https://doi.org/10.1080/15732479.2017.1350984.  

Steinman, D.B. (1954), “Suspension bridges: The aerodynamic 

problem and its solution”, Am. Scientist, 42(3), 396-460. 

Tang, L. and Yang, Y. (2012), “A nonlinear piezoelectric energy 

harvester with magnetic oscillator”, Appl. Phys. Lett, 101(9), 

094102. https://doi.org/10.1063/1.4748794.  

Vaz, D.C., Almeida, R. A. and Borges, A.R.J. (2018), “Wind action 

phenomena associated with large-span bridges”, In Bridge 

Engineering. IntechOpen. 

Vocca, H., Neri, I., Travasso, F. and Gammaitoni, L. (2012), 

“Kinetic energy harvesting with bistable oscillators”, Appl. 

Energy, 97, 771-776. 

https://doi.org/10.1016/j.apenergy.2011.12.087.  

Wang, W., Cao, J., Bowen, C.R., Zhang, Y. and Lin, J. (2018), 

“Nonlinear dynamics and performance enhancement of 

asymmetric potential bistable energy harvesters”, Nonlinear 

Dyn., 94(2), 1183-1194. 

Wang, W., Wang, X., Hua, X., Song, G. and Chen, Z. (2018), 

“Vibration control of vortex-induced vibrations of a bridge deck 

by a single-side pounding tuned mass damper”, Eng. Struct., 

173, 61-75. https://doi.org/10.1016/j.engstruct.2018.06.099 

Wang, L., Jiang, T.L., Dai, H.L. and Ni, Q. (2018), “Three-

dimensional vortex-induced vibrations of supported pipes 

conveying fluid based on wake oscillator models”, J. Sound and 

Vib., 422, 590-612. https://doi.org/10.1016/j.jsv.2018.02.032.  

Wu, T., Kareem, A. and Ge, Y. (2013), “Linear and nonlinear 

aeroelastic analysis frameworks for cable-supported bridges”, 

Nonlinear Dyn., 74(3), 487-516. 

Xu, Y.L. (2018), “Making good use of structural health monitoring 

systems of long-span cable-supported bridges”, J. Civil Struct. 

Health Monit., 8, 477-497. 

Younesian, D. and Alam, M.R. (2017), “Multi-stable mechanisms 

for high-efficiency and broadband ocean wave energy 

harvesting”, Appl. Energy, 197, 292-302. 

https://doi.org/10.1016/j.apenergy.2017.04.019.  

Zhang, Q.W., Chang, T.Y.P. and Chang, C.C. (2001), “Finite-

element model updating for the Kap Shui Mun cable-stayed 

bridge”, J. Bridge Eng., 6(4), 285-293. 

https://doi.org/10.1061/(ASCE)1084-0702(2001)6:4(285).  

Zhang X., Connor J. and Nepf H. (2012), “Wind Effect on Long 

Span Bridge”. http://hdl.handle.net/1721.1/74418.  

Zhang, W., Wei, Z., Yang, Y. and Ge, Y. (2008), “Comparison and 

analysis of vortex induced vibration for twin-box bridge 

sections based on experiments in different reynolds numbers”, 

J. Tongjil Uni, 36(1), 6. 

Zhou, G., Li, A., Li, J. and Duan, M. (2018), “Structural health 

monitoring and time-dependent effects analysis of self-anchored 

suspension bridge with extra-wide concrete girder”, Appl. Sci., 

8(1), 115. https://doi.org/10.3390/app8010115.  

Zhou, R., Ge, Y., Yang, Y., Du, Y. and Zhang, L. (2018), “Wind-

induced nonlinear behaviors of twin-box girder bridges with 

various aerodynamic shapes”, Nonlin. Dyn., 94(2), 1095-1115. 

https://doi.org/10.1007/s11071-018-4411-y. 

 

 
CC 

320

https://doi.org/10.1016/j.oceaneng.2017.11.022
https://doi.org/10.1177/1045389X12444940
https://doi.org/10.1016/0141-0296(80)90001-2
https://doi.org/10.1080/15732479.2017.1350984
https://doi.org/10.1063/1.4748794
https://doi.org/10.1016/j.apenergy.2011.12.087
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.engstruct.2018.06.099?_sg%5B0%5D=110uvVY15KFc6U3xtMEc5STblact-1fVlDEjIp2yIPBrHuI9cW4NjlGyLICnCDwyiE3qlt2r2Yywa5q6mrzOUlLpVw.gyxfKCjp_vaIxCS-cLTRHFIJk41IBXAmxwx2cFvQg_VuBUGQZ9XMG7bKIFvQdWDiCR11IH2YcK7Tt25fY-1lgA
https://doi.org/10.1016/j.jsv.2018.02.032
https://doi.org/10.1016/j.apenergy.2017.04.019
https://doi.org/10.1061/(ASCE)1084-0702(2001)6:4(285)
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.3390%2Fapp8010115?_sg%5B0%5D=SXyhnFbqSqQ2vJwFll6YkVm9AKRFunaipx94uF2ar7B6OXHcSKxRSh0cg7EETZHkaX3mDViWEYRxu5B9AYmxQSOBeQ.ngD3iG8XkCd8-aDD4EHezlnrxcXlmAf6v10Zs6uK4xaym4dG9hUK_OeQqkw-ngv1FkrrM1DfdC0CfNGD4VsNow
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs11071-018-4411-y?_sg%5B0%5D=cRH0bzZLG8rz3eKgQABH7Vm7Qdg3guKE0oRCBNT5xSb4z42C9PnwcOrWEGzEx7o_iCDyGZiTVL-wLuzFWfTHk99oAA.HLFfuCbkT6BrGPimUlQgfcjsS1ozKHMIVkkKyn00hz5mwmDn6WjFkPmDUQNrzS6Mu6Yya8MIl-9EL8SIINLr2Q



