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1. Introduction 
 

Dams are important structures for management of water 

supply for irrigation or drinking, flood control, and 

electricity generation. The safety analysis of concrete 

gravity dams in seismic regions is important due to the high 

potential of life and economic losses if they fail. Many 

existing dams were built using outdated analysis methods 

and limited understanding of seismicity (Bernier et al. 

2016). In the design of many existing dams, dam-water-

foundation interactions are known to affect the earthquake 

response, yet they were not considered due to the lack of 

knowledge or computational resources. The American 

Society of Civil Engineers (ASCE) estimates that out of 

90,580 dams in the US, 15,498 (17.12%) dams have high 

potential risk of causing loss of life, and 11,882 (13.12%) 

dams are in the category of causing significant economic 

losses (ASCE 2017). Therefore, the seismic analysis of 

existing dams in seismically active regions is crucial to 

predict responses of dams to ground motions. Dams are 

usually analyzed using deterministic analysis methods. 

However, several uncertainties affecting the results, such as 

material properties, modeling inaccuracies, the water level 

in the reservoir, and the aleatoric nature of earthquakes,  
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should be considered in the analyses of the dams (Lupoi and 

Callari 2011).  

To consider these uncertainties, the first probabilistic 

seismic analysis of concrete gravity dams was carried out 

by de Araujo and Awruch (1998). Random material 

properties and seismic excitation were considered in the 

analyses. The fragility curves for different limit states are 

obtained using the Monte Carlo Simulation (MCS) method. 

Tekie and Ellingwood (2003) presented a methodology to 

obtain fragility curves of concrete gravity dams by 

considering both material and seismic uncertainties using 

Latin Hypercube sampling (LHS) to handle the effect of 

uncertainties. Another probabilistic method was presented 

by Lupoi and Callari (2011). The water level was also 

considered as a random as well as material and seismic 

uncertainties and the MCS method was used to obtain 

fragility curves. Ghanaat et al. (2012) also studied the 

seismic fragility analysis of concrete gravity dams 

considering the sliding at the lift joint at the neck of the dam 

model as one of the limit states. Fragility curves were fitted 

using the Weibull cumulative distribution functions. Bernier 

et al. (2016) obtained the fragility curves for the base and 

neck sliding response of the concrete gravity dam. The 

spatial variation of the friction coefficient was included in 

the analyses. Also, it was found that the spatial variation of 

the angle of friction at dam-foundation rock interaction is 

not significant when the seismic intensity level is low. 

Despite the three-dimensional nature of concrete gravity 

dams, which produces complex stress states under seismic 

loads, a uniaxial failure envelope for concrete was assumed 

in assessing the cracking probability of failure in all the 
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Tensile cracking including the complex state of stress that occurs in dams was also considered. Normal, Log-Normal and 

Weibull distribution types are considered as possible fits for fragility curves. It was found that the effect of the minimum 

principal stress on tensile strength is insignificant. It is also found that the probability of failure of tensile cracking is higher than 

that for base sliding of the dam. Furthermore, the loss of reservoir control is unlikely for a moderate earthquake. 
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studies that considered concrete cracking. The effect of the 

vertical component of the ground motion on fragility curves 

for concrete dams was investigated by Hariri-Ardebili and 

Saouma (2016a), and the obtained curves were compared 

with well-established ones for framed structures. In another 

paper, Hariri-Ardebili and Saouma (2016b) conducted a 

state-of-the-art review of published research on seismic 

fragility of concrete dams in which they concluded that 

nonlinearities deserve to be considered in future studies 

since linear analyses may only be suitable for serviceability 

investigations. Morales-Torres et al. (2016) presented a 

methodology for developing fragility curves for concrete 

gravity dams sliding failure considering natural and 

epistemic uncertainties. The developed framework 

addressed several issues that are often faced when 

developing fragility curves such as the handling of relevant 

variables and type of probability distribution and revealed 

that understanding the impact of epistemic uncertainty on 

the overall risk is important to improving dam safety. 

In this paper, a methodology for developing the fragility 

curves for concrete gravity dams considering material and 

seismic uncertainties is presented. Four different failure 

modes, namely base sliding, concrete cracking at the base 

and neck of the upstream face, and excessive deformations, 

are taken into account. By considering different three 

threshold levels for base sliding and two for excessive 

deformations, the total number of limit states considered 

was seven. In previous studies, only the maximum principal 

stress is considered to evaluate the crack formation due to 

the tensile stress. However, in this study, in the calculations 

of the tensile strength capacity, the effect of the minimum 

principal stress, which affects concrete tensile strength, is 

considered. The Pine Flat Dam using Latin Hypercube 

Sampling method is chosen to demonstrate the developed 

methodology and discuss the obtained results. In addition, 

the number of analyses increased by matching each random 

model with 3 different ground motions to get more reliable 

results, which will be explained in more detail in Section 

4.2. 
Design and analysis models often idealize structures into 

simpler structures than they actually are. Consequently, 
structures are often subjected to complex states of stress 
than idealized design and analysis models can account for. 
This is done for the sake of simplifying the design process. 
The ignored stresses may contribute to undesirable effects 
that may lead to premature failure if they have a significant 
adverse effect on the structural capacity. Therefore, the 
effects of multiaxial state of stress should be investigated to 
assess their importance in the design process. In this study, 
the critical case of biaxial (tension-compression) state of 
stress is considered in the development of fragility curves 
for concrete gravity dams. It is known that orthogonal 
compressive stresses reduce the tensile capacity of concrete. 
This effect was accounted for by using the minimum 
principal stress corresponding to the critical tensile stress at 
critical locations in concrete gravity dams. 

 
 

2. Fragility analysis 
 

Fragility curves are important to dam owners and 

authorities to make structural risk assessments. In the 

general form, the seismic fragility is defined as the 

conditional probability of failure, or exceedance, of a 

certain limit state at a given intensity measure such as 

earthquake spectral acceleration or peak ground 

acceleration. Several limit states (LS) affecting the system 

performance are assessed in a typical safety analysis of 

concrete gravity dams. In this paper, base sliding, cracking 

of the dam concrete due to tensile stress, and excessive 

deformation of the dam body are assessed as described in 

detail later. Each limit state probability can be expressed by 

(Ghanaat et al. 2012) 

𝑃(𝐿𝑆 < 0) = ∑ 𝑃(𝐿𝑆 < 0|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)

𝑦

 (1) 

where 𝑌 is a random variable describing the intensity of 

demand, 𝑃(𝑌 = 𝑦)  is the (annual) probability of this 

demand, and 𝑃(𝐿𝑆 < 0|𝑌 = 𝑦)  is the conditional 

probability of LS, given that 𝑌 = 𝑦 . This conditional 

probability is defined as the ‘fragility’ (Ellingwood and 

Tekie 2001). The fragility curve is a plot of the probability 

that a structure would fail to perform satisfactorily when 

subjected to a range of intensities of a specific event. All 

uncertainties affecting the performance of the structure 

should be taken into account in the calculation of fragility. 

Uncertainties are usually divided into two groups: aleatory 

and epistemic uncertainties. Aleatory Uncertainties are 

produced by the inherent variability in the nature including 

the variability along time of an event or the variability 

across the space of an event or the variability of its 

magnitude (e.g., the variability in the intensity of ground 

motions). This kind of uncertainties cannot be reduced, but 

it can be estimated. Epistemic Uncertainties are the result 

of lack of knowledge arising from assumptions and 

limitations in the data. It also includes uncertainty due to 

inaccuracy of the model representing reality. An example of 

this kind of uncertainty can be the cohesion of the 

foundation rock. This kind of uncertainties can be reduced 

when the resources of the data are characterized better. 

Conducting fragility analysis for various structural systems 

and hazards have been gaining attention in recent years (Li 

et al. 2018, Moradloo et al. 2018, Nielson and DesRoches 

2007, Salimi and Yazdani 2018). 

 

 

3. Finite element model 
 

In this paper, the Pine Flat Dam is selected as a case 

study in order to demonstrate the adopted methodology for 

developing fragility curves for concrete gravity dams by 

investigating its earthquake response. The dam is located in 

the Central Valley of Fresno County, California, and was 

commissioned in 1954. The highest non-overflow section is 

121.92 m tall and the crest is 560.83 m long. The dam and 

its dimensions can be seen in Fig. 1. Table 1 lists the 

material properties of the dam, reservoir and foundation 

rock. The computer program ANSYS (2018) is used to 

model the dam-foundation-reservoir system. Two-

dimensional PLANE42 are used to model the solid parts of 

the system; i.e., dam and foundation, and FLUID29 
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(a) 

 
(b) 

Fig. 1 View and dimensions (in meters) Pine Flat Dam 

 

Table 1 Material properties of Pine Flat Dam (Fenves and 

Chopra 1984) 

 

Modulus 

of 

Elasticity 

(GPa) 

Poisson’s 

Ratio 

Mass 

Density 

(kg/m3) 

Sonic 

Velocity 

(m/s) 

Wave 

Reflection 

Coefficient 

(α) 

Dam 22.4 0.20 2430 -- -- 

Foundation 22.4 0.33 2643 -- -- 

Reservoir -- -- 1000 1440 0.8 

 

 

elements are used to model the fluid, i.e., reservoir. The 

PLANE42 element has four nodes with two degrees of 

freedom at each node, namely translation in 𝑥 and 𝑦 

directions. The FLUID29 element has four nodes and each 

node has three degrees of freedom which are translations in 

𝑥 and 𝑦 directions and pressure, however, the translation 

degrees of freedom are active only on the interface of fluid 

and structure. In order to decrease the effect of the FE 

model boundaries on the response of the system, the 

reservoir and foundation length, and foundation depth are 

selected 1.5 times longer than dam height. Zero pressure is 

applied at the truncated boundary of the reservoir to 

consider the damping effect arising from the propagation of 

pressure waves. In addition, zero pressure is applied at the 

top of reservoir by neglecting the effects of the surface 

waves, which are known to be small (Fenves and Chopra 

1984). Finally, zero displacement is imposed on horizontal 

translation degrees of freedom at all boundaries of the 

foundation. However, only the translation degrees of 

freedom on the bottom boundary of the foundation was  

 
(a) 

 
(b) 

Fig. 2 FE model of dam-reservoir-foundation rock system 

and contact interface 

 

 

restrained in the vertical direction. The dam and foundation 

are assumed to be homogeneous, elastic and isotropic, and 

the fluid is assumed to be compressible and inviscid. Fig. 

2(a) shows the FE model developed. The model consisted 

of 1140 PLANE42 elements for the dam and foundation 

rock and 400 FLUID29 elements for the reservoir. 

 

3.1 Massless foundation 
 

In the developed model, a massless foundation is 

assumed. Massless foundation modeling ignores the inertial 

effects of the foundation. Therefore, only the flexibility 

effects of the foundation are introduced into the system, 

which assists in preventing the propagation of artificial 

amplification of free-field ground motion. The massless 

foundation has zero damping, and this neglects the energy 

dissipation provided by the foundation. Therefore, the 

mathematical formulations for damping should be used in 

order to get more accurate results (Leger and Boughoufalah 

1989). In this study, the following formulation provided by 
Fenves and Chopra (1987) was considered. It was recently 

found (Løkke and Chopra 2015) that using an individual 

viscous damping ratio for the dam alone and a separate 

viscous damping ratio for the foundation rock alone can 

cause excessive damping for the complete system. 

Therefore, this approach is not recommended for the 
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analysis of dam-water-foundation systems. The damping 

effect of the reservoir due to bottom materials such as 

sediments is also considered. 

𝜉1 =
1

𝑅𝑟

1

(𝑅𝑓)
3 𝜉1 + 𝜉𝑟 + 𝜉𝑓 (2) 

where 𝑅𝑟 is the period lengthening ratio due to dam-water 

interaction; 𝑅𝑓 is the period lengthening ratio due to dam-

foundation interaction; 𝜉1  is damping ratio for dam on 

flexible foundation with impounded water; 𝜉𝑟  is the added 

damping due to dam-water interaction; 𝜉𝑓 is the added 

damping due to dam-foundation interaction; 𝜉1  is the 

damping ratio of dam on rigid foundation with empty 

reservoir. In this study, 5% damping ratio (𝜉1) is assumed 

for the concrete dam. Other parameters in Eq. (2) were 

obtained from the tables in (Løkke and Chopra 2015). 

The Rayleigh damping coefficients 𝛼 and 𝛽, which are 

the mass proportional damping and the stiffness 

proportional damping, respectively, are applied to the 

system. The following formulas are used in the calculation 

of these coefficients (Goldgruber et al. 2015) 

𝛼 = 𝜉
2𝜔𝑖𝜔𝑗

𝜔𝑖 + 𝜔𝑗

 (3a) 

𝛽 = 𝜉
2

𝜔𝑖 + 𝜔𝑗

 (3b) 

where 𝜔𝑖  and 𝜔𝑗  are the 𝑖𝑡ℎ  and 𝑗𝑡ℎ  fundamental 

frequencies of the dam-water-foundation system. In this 

study, the first and the fifth fundamental frequencies, which 

are 2.02 and 5.52 Hz, respectively, are used to calculate 

Rayleigh damping coefficients. 

The self-weight of the dam is considered by adding 

9.81 m/s2 acceleration in the vertical direction while turning 

off the transient effects at the beginning of the time history 

analysis. The self-weight was kept applied during the 

earthquake analysis. In other words, the self-weight of the 

dam was considered as an initial condition to the time 

history analysis. 

 

3.2 Dam-foundation interface modeling 
 

Contour plots of the preliminary linear analysis show 

that the high tensile stresses at the base of the dam are 

around 3.04 MPa for an earthquake with 0.18g peak ground 

acceleration. This value exceeds the dam’s concrete tensile 

strength which is 2.57 MPa for the given compressive 

strength of 22.43 MPa. Therefore, this stress level can cause 

cracking and sliding of the dam base. It also implies that 

adhesion between the dam and the foundation should be 

capable of resisting these high stress levels, which is 

unlikely. In order to model the separation that can happen 

between the dam and its supporting foundation, contact 

elements are modeled along the dam-foundation interface 

based on Coulomb-Mohr friction law using CONTA171 

and TARGE169 elements in ANSYS. In the model, the 
contacting surfaces are capable of bearing shear stress up to 

a certain limit, 𝜏lim , of shear stresses before they start to 

slide relative to each other. The shear stress capacity is 

defined as follows 

𝜏lim (𝑡) = 𝜎𝑛(𝑡) tan(𝜑) + 𝑐 (4) 

where 𝜏lim (𝑡) and 𝜎𝑛(𝑡) are the shear capacity and the 

normal stress at time t, respectively, and 𝜑 is the friction 

angle, and c is the cohesion of the dam-foundation rock 

interface. Once the shear stress exceeds this capacity, the 

sliding of surfaces occurs. 

The behavior of contact surface in the normal direction 

allows the contacting surfaces to transmit normal pressure 

before an opening occurs. In other words, these contact 

elements are able to transmit normal compressive stress, 

however, they will begin to open when the tensile stress is 

higher than the tensile strength. Opening and sliding 

behavior directions and where these contact elements are 

defined are shown in Fig. 2(b). 

 

3.3 Ground motion 
 

The ground motion acceleration was applied using the 

ACEL command in ANSYS, which combines the input 

acceleration with the element mass matrices to form a body 

force load vector, resulting in identical results to those 

obtained by applying acceleration from the bottom nodes of 

the model. When the acceleration is applied from the 

bottom nodes of the model, the relative displacement 

between the dam nodes and the bottom nodes should be 

considered as the nodes where the acceleration is applied 

experience displacements corresponding to the entered 

acceleration record. The absence of the foundation mass 

prevents propagation of artificial amplification of free-field 

ground motion. 

 

3.4 Model validation 
 

The tallest, non-overflow section shown in Fig. 1 was 

used to validate the developed FE model. The Kern County, 

California, earthquake of 21 July 1952 recorded at Taft 

Lincoln School Tunnel is selected to compare the results 

obtained from the developed FE model with Analysis 

results published by Fenves and Chopra (1984) for the Pine 

Flat Dam. The time history response was in excellent 

agreement with the published results. The horizontal and 

vertical displacement-time history graphs for the dam crest 

are presented in the Fig. 3. More information about the 

validation results can be found elsewhere (Sen 2018). 

 

 

4. Reliability analysis 
 

Uncertainties can have a significant effect on the 

evaluation of the performance of structures. This is 

especially true in seismic evaluations of structures due to 

random nature of earthquakes hazards and the uniqueness of 

each event. In the reliability analysis of concrete gravity 

dams, the sources of uncertainties are material properties, 

dimensions of the structure, and ground motion as well as 

water level. In this study, the uncertainties related to 
earthquakes and material properties are taken into account 

while considering the full reservoir case. 
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(a) horizontal 

 
(b) vertical 

Fig. 3 Displacement time histories of the dam crest 

 

Table 2 Random variables 

Random Variable 
Distribution 

Type 
Distribution Parameters 

Cohesion (MPa) Uniform L = 0.3 Uniform 

Friction Angle (°) Uniform L = 35 Uniform 

Drain Efficiency (%) Uniform L = 0 Uniform 

Rock Elasticity Modulus 

(GPa) 
Uniform L = 15.6 Uniform 

Concrete Elasticity 

Modulus (GPa) 
Normal μ = 22.4 Normal 

Concrete Compressive 

Strength (MPa) 
Log-Normal μ = 22.43 Log-Normal 

Damping Coefficient α Uniform L = 1.7133 Uniform 

Damping Coefficient β Uniform L = 0.00325 Uniform 

 

 

4.1 Random variables 
 

Table 2 lists the parameters considered as random 

variables in this study. Because of the scarcity of statistical 

info about some of these variables, a uniform distribution 

was assumed. Table 3 lists the twelve random variates for 

these variables that were considered in this study. 

The cohesion and friction angle of the interface were 

chosen based on the Geologic Strength Index (GSI) of 

foundation rock considering elasticity modulus in order to 

use consistent parameters in the analyses. Therefore, GSI 

index derived from Eq. (5) for Ef=22.4 GPa was determined 

to be equal to 64. The recommended cohesion and friction 

angle values for GSI 55 - 75 values are presented are 

GSI=55 - 75, Cohesion=0.3 - 0.4 MPa, and Friction 

Angle=35 - 45° (Hoek and Brown 1997). 

𝐸𝑓 = 10(𝐺𝑆𝐼−10)/40  (in GPa) (5) 

Damping was also considered as a random variable. A 

damping ratio equal to 9.8% was calculated for overall 

dam-reservoir-foundation rock system based on Eq. (2). 

The corresponding Rayleigh damping coefficients α and β 

are calculated as 1.9037 and 0.00361, respectively, using 

Eq. (3). The distribution type and the range of the 

coefficient values are shown in Table 2. 

Since it cannot be assumed that the concrete’s elasticity 

modulus and compressive strength are independent random 

variables, the correlation between them was considered. In 

order to use consistent compressive strength with the 

elasticity modulus, Eq. (6) provided by ACI Committee 

(ACI 2014) is used. Therefore, for a nominal compressive 

strength equal to 22.43 MPa, the nominal elasticity modulus 

was taken equal to 22.4 GPa. The coefficient of variation 

value used in this study is 10% obtained from the literature 

(Nowak and Szerszen 2003). The correlation coefficient is 

assumed to be 0.8 between the concrete’s elasticity modulus 

and compressive strength. The distribution type for the 

elasticity modulus and the compressive strength of concrete 

was assumed to be normal and lognormal, respectively, and 

the statistical parameters are shown in Table 2. 

𝐸𝑐 = 4730√𝑓𝑐
′ , for 𝑓𝑐

′ ≤ 41.4 MPa and 

              1440 ≤  𝛾𝑐 ≤ 2480 kg/m3 (in GPa) 
(6) 

The uplift pressure at the base of the dam due to the 

pore water is also randomized assuming a triangular 

distribution. The maximum uncertainty is considered by 
assuming uniform distribution between 0 - 100% drain 

efficiency due to the lack of knowledge about the drain 

system of the Pine Flat Dam, and drain line positions for 

0% and 100% efficiency of drains are presented in Fig. 4. 

As stated in the US Army Corps of Engineers’ report 

(USACE 1995), the pressure distribution due to pore water 

is considered unchanged during an earthquake. 

 

4.2 Sampling method 
 

Some researchers state that the minimum number of 

simulations for providing reliable results to obtain fragility 

curves is 10 (Ghanaat et al. 2012). In this study, twelve 

concrete gravity dam models were created in order to get 

more reliable results. The structural model’s attributes were 

developed using Latin Hypercube Sampling (LHS) 

technique. In this method, the probability distribution of 

each variable is divided into equal areas (a total of 12 areas 

for each random variable), and the numbers are randomly 

selected from each interval based on their distribution type. 

The lower and upper bounds of normal distribution were 

truncated at 𝜇 − 5𝜎 and 𝜇 + 5𝜎 to avoid the inclusion of 

physically unrealistic input data that could produce 

erroneous results. Conversely, the numbers are randomly 

generated from the whole area under the probability density 

function in the Monte Carlo Simulation (MCS) method. 

Consequently, MCS may not produce realistic results when 

the number of generated variates is low because it is 

possible that the majority or all numbers might be randomly 

selected from a certain range, which is addressed by 

increasing the number of models to obtain reliable results. 

To improve the accuracy of MCS, thousands or tens of 

thousands of simulations is needed (Nowak and Collins  
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Fig. 4 Uplift pressure for 0 and 100% drain efficiency 

 

 

2000). Therefore, MCS was deemed cost prohibitive for 

nonlinear seismic simulations of the scale used in this study. 

Hence, the Latin Hypercube Sampling method has an 

advantage over Monte Carlo Simulation method because it 

requires less computational effort, which is extremely 

important for complex problems such as the seismic 

response of concrete gravity dams. After obtaining random 

values for each random variable, they were randomly paired 

and the 12 models were created on ANSYS. 

 

4.3 Limit States (LS) 
 

In this study, the following failure mechanisms are 

considered: 

• Base Sliding (LS1) 

• Cracking at the upstream face of the dam (LS2) 

• Cracking at the neck of the dam (LS3) 

• Excessive deformation (relative deformation) (LS4) 

They are labeled (between parentheses) by the limit 

state function designation that will be used in this paper and 

are described in detail next. 

 

4.3.1 LS1: Base sliding 
The sliding failure is the first failure mode considered in 

this study. Sliding stability has to be evaluated in safety 

analysis of concrete gravity dams. The contact surface of 

the dam-foundation rock is assumed to be horizontal, and is  

Table 4 Expected damage level for different sliding 

thresholds 

Sliding (cm) Damage Level References 

2.5 Moderate (Bernier et al. 2016) 

5.0 Extensive (Chavez and Fenves 1995) 

15.0 Major (Tekie and Ellingwood 2003) 

 

 

modeled based on Mohr-Coulomb friction law. The friction 

angle and the cohesion of the contact are assumed to be  

equal to those of foundation rock.  

The sliding limit state is checked in terms of maximum 

sliding displacement. In order to assess the sliding limit 

states, the three different limit states presented in Table 4 

are considered based on published studies (Bernier et al. 

2016, Tekie and Ellingwood 2003). Drain system damage is 

considered one of the consequences of sliding because the 

damage of the drain system can cause an increase in the 

effective uplift pressure level. Firstly, 2.5 cm is used to 

evaluate slight or minor drain system damage (Bernier et al. 

2016). Secondly, 5 cm sliding displacement is used to 

evaluate maximum allowable sliding displacement of dams. 

This level of sliding can completely cause severe damage 

(Chavez and Fenves 1995). Thirdly, 15 cm (6 in.) is 

considered as unacceptable damage level for differential 

movements, which can cause loss of reservoir (Tekie and 

Ellingwood 2003). Based on these assumed sliding 

thresholds, the following three limit state functions are 

established. Three fragility curves are obtained based on 

these limit states. 

𝐿𝑆1 − 𝑎 ∶ 𝑔( ) = 𝛿𝑥 −  2.5 (cm) (7a) 

𝐿𝑆1 − 𝑏 ∶ 𝑔( ) = 𝛿𝑥 −  5.0 (cm) (7b) 

𝐿𝑆1 − 𝑐 ∶ 𝑔( ) = 𝛿𝑥 − 15.0 (cm) (7c) 

 

4.3.2 LS2: Tensile cracking at the upstream face of 
the dam 

Cracking can have dire consequences in fluid retaining 

structures, especially plain concrete structures. In previous 

studies, crack formation due to tensile stresses at the 

upstream face of the dam was investigated in terms of 

maximum principal stress, σ1, (see Fig. 5(a)) at any time 

during a seismic event. In this study, we introduce the effect 

of minimum principal stress σ2. Kupfer et al. (1969) 

developed one of the first failure envelopes for concrete 

under a biaxial state of stress. It is known that in a 

multiaxial stress state, a state of biaxial or triaxial 

compression can lead to higher concrete strength than is 

observed under a uniaxial state of stress. This has led to a 

lot of research on the effects of confinement on concrete 

structures (Cho and Hall 2014, Liang and Sritharan 2018, 

Vu et al. 2009). It is also known that compressive stresses 

can reduce the tensile strength of concrete. Therefore, the 

tensile strength of concrete was taken as a function of the 

compressive strength of concrete and the corresponding 

compressive stress at any location. The resistance model for 

the principal tensile strength is determined as a function of 

the concrete capacity under uniaxial tension, using Eq. (8a).  

Table 3 Random variates considered in this study 

Model # 
Ec fc' Ef c µ D 

α β 
(GPa) (MPa) (GPa) (MPa) (°) (%) 

1 21.06 19.91 28.06 0.396 36.32 75 1.857 0.00352 

2 21.93 22.48 14.47 0.363 37.67 09 1.587 0.00352 

3 21.72 21.59 27.66 0.38 39.90 85 2.021 0.00393 

4 17.47 18.36 16.18 0.333 43.59 32 1.831 0.00358 

5 23.04 22.99 23.04 0.368 37.05 18 1.767 0.00365 

6 26.96 27.65 20.47 0.336 41.51 93 1.905 0.00386 

7 24.12 23.38 19.99 0.300 43.32 74 1.873 0.00340 

8 20.43 20.27 22.12 0.389 44.27 54 2.064 0.00326 

9 23.73 21.33 25.91 0.312 38.69 40 1.783 0.00371 

10 19.55 22.14 25.08 0.321 35.02 47 1.977 0.00387 

11 24.74 23.93 24.18 0.356 40.56 66 1.960 0.00378 

12 22.60 25.22 18.60 0.345 41.67 05 2.044 0.00337 
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(a) biaxial state of stresses 

 
(b) failure envelope in compression-tension 

Fig. 5 State of stresses and failure envelope. 

 

 

For the biaxial compression-tension state of stress, Eq. (8b) 

(Okeil 2006) is used, which is based on calibration of 

experimental data published in the literature for the 

compression-tension stress state as can be seen in Fig. 5(b). 

𝑓𝑡𝑢 = 0.30(𝑓𝑐
′)0.69 (MPa) (8a) 

𝜎𝑡𝑢 = 0.30(𝑓𝑐
′)0.69 × (1 + 0.85

𝜎𝑐𝑢

𝑓𝑐
′ ) (MPa) (8b) 

where 𝑓𝑐
′ is the compressive strength of concrete, 𝑓𝑡𝑢 is 

the tensile strength of uniaxially loaded concrete, 𝜎𝑡𝑢 is the 

modified tensile strength of concrete accounting for the 

corresponding compressive stress, and 𝜎𝑐𝑢  refers to the 

corresponding minimum principal stress. According to this 

failure model, concrete cracking occurs when the max 

principal stress exceeds the tensile strength, 𝜎𝑡𝑢, which can 

be significantly lower than the uniaxial tensile strength, 

𝑓𝑡𝑢. The fragility curve is obtained based on limit state 

function in Equation 9 which includes the effect of the 

biaxial state of stress considering the minimum principal 

stress. 

𝐿𝑆2 ∶ 𝑔( ) = 𝜎1
𝑚𝑎𝑥 − 𝜎𝑡𝑢 

   = 𝜎1
𝑚𝑎𝑥 − 0.30(𝑓𝑐

′)0.69 × (1 + 0.85
𝜎𝑐𝑢

𝑓𝑐
′ )) (MPa) 

(9) 

 

4.3.3 LS3: Tensile cracking at the neck of the dam 
Preliminary analyses results showed that the tensile 

stress around the neck can be significant. Therefore, the 

material failure around the neck of the dam was also 

checked in terms of maximum principal stresses using Eq. 

(8b). The fragility curve is obtained based on limit state 

function in Eq. (10). 

𝐿𝑆3 ∶ 𝑔( ) = 𝜎1
𝑚𝑎𝑥 − 𝜎𝑡𝑢 (10) 

 

4.3.4 LS4: Excessive deformation 
Finally, excessive deformation of the dam body was 

checked in terms of relative deformation between the crest  

 

Fig. 6 Combination of ground motion and model 

uncertainties 

 

 

and base. Excessive deformation of the dam body can 

impair the internal drainage system or cause service 

limitation for equipment. In the study, the difference 

between the horizontal displacements of crest and dam 

bottom is considered. The fragility curves are obtained 

based on the 1.71 cm and 3.42 cm relative displacements, 

which correspond to 0.014% and 0.028% of the dam height, 

respectively (Tekie and Ellingwood 2003). Based on these 

assumed relative deformation thresholds, the following two 

limit state functions are established. Two fragility curves are 

obtained based on these limit states. 

𝐿𝑆4 − 𝑎 ∶ 𝑔( ) = (𝛿𝑥
top

− 𝛿𝑥
bottom) − 1.71 (cm) (11a) 

𝐿𝑆4 − 𝑏 ∶ 𝑔( ) = (𝛿𝑥
top

− 𝛿𝑥
bottom) − 3.42 (cm) (11b) 

 

 

5. Dynamic analyses 
 

The fragility curves can be developed for different 

intensity measures such as the peak ground acceleration 

(PGA) or the spectral acceleration (Sa) of the earthquakes 

(De Biasio et al. 2015). In this study, fragility curves are 

calculated as a function of Sa (T1), where T1 is the 

fundamental period of the dam system. Each one of the 12 

prepared dam-water-foundation models was randomly 

paired with the three different ground motions from the 12 

selected ground motions (see Fig. 6). Dynamic analyses 

were performed for each combination of the earthquake 

ground motion and the model at each intensity level from 

0.1 g to 1.2 g in 0.1 g increments. Thus, a total of 432 non-

linear dynamic analyses were conducted in this study. 

 

5.1 Ground motion selection 
 

In order to present the uncertainty in ground motion, the 

target spectrum was obtained based on the probabilistic 

seismic hazard analysis of the structure’s site. The uniform 

hazard response spectrum in Fig. 7 is obtained for Pine Flat 

Dam site by using an online tool provided by (USGS 2018). 

Also, the distance from the epicenter of earthquake R and 

the magnitude of earthquake (M) were selected based on  
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(a) horizontal component 

 
(b) vertical component 

Fig. 7 Response spectra of the selected ground motions 

 

 

deaggregation of the seismic hazard at the site 

𝑅 = 0 − 50 𝑘𝑚 (12a) 

𝑀 = 5.0 − 7.5 (12b) 

Based on these criteria, ground motions in Table 5 were 

selected from PEER Strong Ground Motion Data Base 

(PEER 2018). The response spectra of horizontal and 

vertical components of the selected ground motions are 

plotted in Fig. 7, respectively. All ground motions are scaled 

to 1.0 g at the fundamental period of the dam-reservoir-

foundation rock system. 

 

 

6. Results 
 

6.1 Tornado diagrams 
 

It was deemed necessary to first conduct a deterministic 

sensitivity analysis to evaluate the effect of the selected 

random variables on the sliding response, maximum 

principal stress at the upstream and the neck and excessive 

deformation. For each random variable, dynamic analyses 

were performed at the lower and upper bound of each 

random variable by considering the other random variables 

at their mean values. In tornado diagrams, the difference 

between the results of lower and upper boundaries is called 

a swing. The swing length shows the effect of variable. The 

swing having the largest length is located at the top, and 

other swings follow it in a descending order. The median 

results are obtained by considering all random variables at 

their mean values. The results are normalized to 1.0 by 

dividing by the median results. Therefore, tornado diagrams 

show the ratio of variation. The horizontal and vertical 

components of Parkfield earthquake were selected for this 

study. The horizontal component of the earthquake is scaled 

to 0.4g peak PGA, which is a typical value for moderate to 

strong earthquakes (Chavez and Fenves 1995). 

The sliding response results from the deterministic 

sensitivity analyses are presented in Fig. 8(a). It was found 

that the variability of the friction coefficient of the dam-

foundation rock interface, drain efficiency and the elasticity 

modulus of the foundation rock have a significant impact on 

the sliding response of the dam. Also, the sliding response 

of the dam is less sensitive to damping and the elasticity 

modulus of the concrete. Chavez and Fenves (1995) showed 

that the sliding response of the dam increases when the ratio 

of the elasticity modulus of foundation rock to that of the 

concrete dam (Ef ⁄ Ec) and the friction coefficient of 

interface increase. Therefore, the results presented in this 

study are consistent with the reported findings. Fig. 8(b) 

and Fig. 8(c) show the effects of the uncertainty parameters 

on the maximum principal stress of the upstream face and 

the neck of the dam, respectively. It is found that the 

elasticity modulus of the concrete, the damping, the friction 

coefficient of the dam-foundation rock interface and drain 

efficiency have a significant effect. However, the elasticity 

modulus of the foundation rock and cohesion parameters 

are less significant to maximum principal stress at the 

upstream face and the neck of the dam. Lastly, Fig. 8(d) 

shows the effects of the uncertainty parameters on the 

excessive deformation of the dam. 

Consequently, all random variables except the cohesion 

of dam-foundation interface have an important effect on the 

limit state functions. However, the cohesion of the dam-

foundation rock interface is less sensitive for all limit state 

functions. Nonetheless, all random variables were included 

in the reliability analyses reported herein. 

 

6.2 Fragility curves 
 

The results of the nonlinear analyses are used to 

estimate the fragility curves for the aforementioned limit 

states. Normal, Log-Normal and Weibull cumulative 

distribution types are compared.to find the best fitting curve 

for the computed Pf result, which is defined as the number 

of failed simulations, Nf, divided by the total number of 

simulations, N. 

𝑃𝑓 =
𝑁𝑓

𝑁
 (13) 

The coefficient of determination R2 and root mean 

square error (RMSE) are considered as goodness-of-fit 

measures. The best fitting curve should have a higher value 

of the R2 and a lower RMSE value. The functions for 

Normal, Log-Normal and Weibull cumulative distribution 

are given by Eqs. (14), (15) and (16), respectively 

𝐹𝑥(𝑆𝑎) = Ф [
𝑆𝑎 − 𝜇

𝜎
] (14) 
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where Ф is standard normal cumulative distribution 

function, μ is the mean value and σ is the standard deviation 

of the normal distribution, respectively. 

𝐹𝑥(𝑆𝑎) = Ф [
ln (

𝑆𝑎
𝜇⁄ )

σ
] (15) 

where μ is the mean value of the Log-Normal distribution, 

and σ is the logarithmic standard deviation. 

𝐹𝑥(𝑆𝑎) = 1 − 𝑒−(
𝑆𝑎
𝛼

)𝛾
 (16) 

where α and γ are the shape and scale parameters of a 

Weibull distribution. 

The results showed that the Log-Normal distribution has 

higher R2 and lower RMSE values compared to Normal 

and Weibull distribution for base sliding (LS1) and 

excessive deformation (LS4) limit states. Therefore, the 

Log-Normal distribution was considered to be the best fit 

for the sliding and excessive deformation limit state 

functions for the Pine Flat Dam. However, Weibull  

 

 

 

distribution has the best fit for the tensile cracking at the 

upstream face (LS2) and neck of the dam (LS3) limit states. 

Table 6 lists the parameters of Normal, Log-Normal, and 

Weibull distributions. The fragility curves for the best fit are 

presented in Fig. 9 through Fig. 11. 

 

6.3 Kolmogorov-Smirnov (K-S) Test 
 

The Chi-Square and the Kolmogorov-Smirnov tests are 

the most commonly used methods to decide whether the 

assumed distribution type is acceptable or not (Haldar and 

Mahadevan 2000). The Chi-Square test is based on the error 

between the observed and assumed probability density 

function (PDF), while the Kolmogorov-Smirnov test is 

based on the cumulative distribution function (CDF). Since 

fragility curves are CDFs, the Kolmogorov-Smirnov test is 

used in this study. 

Kolmogorov-Smirnov test compares the observed 

cumulative frequency and the CDF of an assumed 

theoretical distribution. After arranging the observed data in  

  
(a) base sliding (b) max. principal stress (upstream face) 

  
(c) max principal stress (neck) (d) relative deformation 

Fig. 8 Tornado diagrams 

Table 5 Selected ground motions 

# Year Event Station Mw R (km) 

1 1966 Parkfield Cholame Shandon Array-8 6.19 12.9 

2 1971 San Fernando LA - Hollywood Stor FF 6.61 22.77 

3 1978 Tabas, Iran Boshrooyeh 7.35 24.07 

4 1979 Coyote Lake Gilroy Array #4 5.74 4.79 

5 1980 Irpinia, Italy  Auletta 6.9 9.5 

6 1980 Victoria, Mexico Chichuachua 6.33 18.53 

7 1980 Mammoth Lakes-01 Convict Creek 6.06 1.1 

8 1983 Coalinga-05 Burnett Construction 5.77 8.3 

9 1984 Morgan Hill Gilroy Array #2  6.19 13.7 

10 1986 N. Palm Springs Sunnymead  6.06 37.9 

11 1989 Loma Prieta Capitola 6.93 8.65 

12 1994 Northridge  Burbank - Howard Rd  6.69 16.9 
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Table 6 Distribution parameters for LS1, LS2 LS3 and LS4 

Distribution LS1-a LS1-b LS1-c LS2 LS3 LS4-a LS4-b 

Normal 
μ 0.620 0.914 1.529 0.521 0.339 0.164 0.369 

σ 0.221 0.269 0.270 0.190 0.152 0.072 0.074 

Log-

Normal 

μ 0.604 0.898 1.626 0.507 0.326 0.153 0.365 

σ 0.356 0.314 0.249 0.357 0.424 0.456 0.204 

Weibull 
γ 3.088 3.774 8.351 3.046 2.560 2.518 5.849 

α 0.697 1.011 1.549 0.586 0.387 0.187 0.396 

 

 

increasing order and corresponding theoretical data, the 

maximum difference between the observed cumulative 

frequency and the CDF of assumed theoretical distribution 

is estimated as 

𝐷𝑛 = 𝑚𝑎𝑥|𝐹𝑋(𝑥𝑖) − 𝑆𝑛(𝑥𝑖)| (17) 

where 𝐹𝑋(𝑥𝑖)  is the theoretical CDF of assumed 

distribution and 𝑆𝑛(𝑥𝑖) is the corresponding stepwise CDF 

of the observed ordered samples, and 𝑛 is the sample size, 

which is 12 in this study. If the maximum difference, 𝐷𝑛 is 

less than or equal to the 𝐷𝑛
𝛼 , which is a tabulated value for 

a target significance level, 𝛼, the assumed distribution be 

accepted at the significance level 𝛼 

𝑃(𝐷𝑛 ≤ 𝐷𝑛
𝛼) = 1 − 𝛼 (18) 

In this study, 𝛼 = 5% is significance level is used and 

the corresponding 𝐷12
0.05 = 0.3754 . The test results are 

given in Table 7 for each distribution type. The 𝐷𝑛 values 

were found to be lower than 0.3754 with the maximum 

value being 0.10. Hence, the Normal, Log-Normal, and 

Weibull distributions are all acceptable with the significance 

level 5% for the K-S test (Sen 2018). 

 

 

7. Discussions 
 

The summary of results for each limit state is given in 

Table 8. The 𝑆𝑎  at 5% probability of failure and the 

probability of failure of limit state at 1.0 g spectral 

acceleration are presented. The base sliding displacement 

(LS1) and excessive deformation (LS4) results are given 

based on Log-Normal distribution results. However, the 

tensile cracking (LS2 and LS3) results are presented based 

on Weibull distribution results. The 5% probability of 

failure is common in civil engineering to check the safety of 

structures. 

Tornado diagrams show that the contact surface friction 

angle of and drain efficiency have an important effect on all 

limit states. The damping of the system has a significant 

effect only principal stresses at the neck and the upstream 

face of the dam. However, the cohesion of the dam-

foundation interface is found to be insignificant. 

Base sliding fragility curves show that the probability of 

5 cm sliding displacement, which is assumed to be the 

maximum allowable sliding displacement for dams, was 

found to be critical for an earthquake with 𝑆𝑎(𝑇1) = 1.0 𝑔. 

The loss of reservoir control (LS1-c) is unlikely for a 

moderate to strong earthquakes. 

The results from dynamic analyses showed the 

maximum principal stresses at the upstream face of the dam  

 

Fig. 9 Base sliding fragility curves (LS1) 

 

 

Fig. 10 Tensile cracking fragility curves (LS2 and LS3) 

 

 

Fig. 11 Excessive deformation fragility curves (LS4) 

 

 

occurred in the vicinity of the neck of the dam. It was also 

found that the maximum principal stresses at the neck of the 

dam occurred at the downstream face of the dam. The 

minimum principal stresses corresponding to the maximum 

principal stress are about 0 - 0.5 MPa. Due to this low level 

of minimum stresses, the effect of minimum principal stress 

on the tensile cracking capacity is insignificant. The tensile 

cracking around the neck was found to be more critical than 

the tensile cracking at other locations the upstream face.  

Finally, the probability of excessive deformation of the 

dam was found to be significant compared to other limit 

states. This serviceability limit state is important because 

excessive deformations could impair the internal drainage  
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Table 7 Goodness-of-fit measure values for LS1, LS2, LS3 

and LS4 

Limit 

States 

Normal Log-Normal Weibull 

R2 RSME R2 RSME R2 RSME 

LS1-a 0.995 0.031 0.996 0.026 0.994 0.031 

LS1-b 0.983 0.043 0.992 0.029 0.981 0.044 

LS1-c 0.989 0.004 0.992 0.003 0.987 0.004 

LS2 0.997 0.026 0.996 0.029 0.997 0.025 

LS3 0.995 0.029 0.986 0.049 0.996 0.022 

LS4-a 1.000 0.004 0.998 0.017 1.000 0.003 

LS4-b 1.000 0.008 1.000 0.003 0.999 0.014 

 

Table 8 Summary of results 

Limit State (LS) 
𝑆𝑎 at 5% 

probability (g) 

Probability at 1.0g 𝑆𝑎 

(%) 

LS1-a   2.5 cm 0.34 92.19 

LS1-b   5.0 cm 0.54 63.68 

LS1-c  15.0 cm 1.08 2.55 

LS2 0.22 99.38 

LS3 0.12 100.00 

LS4-a  1.71 cm 0.07 100.00 

LS4-b  3.42 cm 0.26 100.00 

 

 

system or cause service limitation for equipment. 

 

 

8. Conclusions 
 

Fragility curves are an important tool for evaluating the 

hazard levels and making structural risk assessments of 

infrastructure assets. They provide information about the 

vulnerability of structures corresponding to given demand 

levels. In this study, the fragility curves are calculated for a 

specific dam as a case study to demonstrate the 

methodology adopted in this research. Hence, the presented 

information is exclusively about the vulnerability of the 

dam chosen for the case study. The Latin Hypercube 

Sampling method is used as a practical and efficient way to 

evaluate structural uncertainties in lieu of the more 

demanding Monte Carlo Simulation method whose 

computational cost is prohibitive given the complexity of 

the problem and available resources. The earthquake ground 

motion data used in this study are obtained based on the 

target spectrum of Pine Flat Dam site. Non-linear dynamic 

analyses are performed by considering the effects of dam-

reservoir-foundation rock interactions considering flexible 

foundation effects, compressible water, and absorptive 

reservoir bottom materials. 

The following conclusions can be drawn from this study: 

• The effect of minimum principal stresses on the tensile 

cracking capacity of the dam is low, at about 1-2%, due 

to the low principal stresses, which is about 0 – 0.5 MPa, 

when the maximum principal stress is maximum. Hence, 

this effect can be neglected in future studies. 

• The Log-Normal distribution type is the most suitable 

distribution for the base sliding and excessive 

deformation fragility curves. The Weibull distribution 

type is the most suitable distribution for tensile cracking 

fragility curves. 

• The maximum principal stresses at the neck of the dam 

occurred at the downstream face of the dam in the 

vicinity of the neck. The minimum principal stresses 

corresponding to the maximum principal stress are low 

and their effect on the tensile cracking capacity is 

insignificant. 

• The tensile cracking probability of failure is more 

probable than the sliding of the dam. The 5% probability 

of failure of tensile cracking (LS3) is at 0.12 g spectral 

acceleration whereas that of 2.5 cm base sliding is at 

0.34 g spectral acceleration.  

• The probability of failure for base sliding (LS1-b) and 

tensile cracking (LS3) at 1.0g spectral acceleration are 

calculated 63.68% and 100.00%, respectively. 

• While a base sliding of 5 cm, which is assumed to be 

the maximum allowable sliding displacement for dams, 

was found to be critical for an earthquake with 

𝑆𝑎(𝑇1) = 1.0 𝑔, the loss of reservoir control, which is 

estimated to happen at 15 cm base sliding, is unlikely 

for a moderate to strong earthquakes. 

• The tensile cracking at the neck of the dam is found to 

be the most critical limit state with 100.00% probability 

of failure at 1.0 g spectral acceleration. 

• The probability of excessive deformation of the dam, 

which can impair the internal drainage system or cause 

service limitation for equipment, is found be significant 

compared to other limit states. 

It should be noted that while the aforementioned 

conclusions are specific to the Pine Flat Dam, the 

methodology is applicable to other concrete gravity dams. 
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