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1. Introduction 
 

Coal has been in the dominant position of energy 

consumption in China. Even though proportion in the total 

primary energy consumption gradually lowers in recent 

years, it always remains above 60%. The geological 

conditions of coal mining in China are very complicated, 

coal and gas outburst occur very frequently and more 

seriously. According to statistics, about one third of coal 

and gas outburst accidents totaled in the world occurred in 

China. Thus, this kind of accidents has become one of the 

major safety problems faced by Chinese coal mining 

industry (Xu et al. 2006, Skoczylas, 2012). Currently, 

Chinese coal mining is deepening at average of 8-12 m/a, 

even at 10-25 m/a some key state-owned coal mines and the 

mining depth of some coal mine wells has risen to 1000 m. 

With coal mining depth increasing annually, many shallow 

non-outburst coalbeds turn to deep outburst-prone coalbeds. 

In addition, increase in mining depth is accompanied with 

increases in stress, gas pressure and gas content, as well as 

decrease in coal permeability, all of which makes coal and 

gas outburst risk become increasingly complex and serious 

(Chen et al. 2018). 

The conventional method for prediction of coal and gas  
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outburst risk is to measure the gas initial diffusion velocity 

index from boreholes, the weight of drill cuttings, and the 

like by drilling at the working face and based on their 

critical values to forecast the risk of outbursts risk at the 

face. However, the conventional indexes are obtained 

through a large number of engineering practice verification, 

and their critical values are also deduced by a lot of 

experiences on outburst accidents. Obviously, the method is 

often unable to predict outburst with low indexes. Thus, 

researchers have proposed a variety of prediction methods 

for coal and gas outburst. To name a few, the method of gas 

peak-to-valley ratio (Li and Zhou 2012), the method of 

methane concentration and V30 (Toraño et al. 2012), the 

method of coal desorption property V1 (Fernandez-diaz et 

al. 2013), the method of gas expansion energy (Jiang et al. 

2014), came consecutively in view. Meantime, the typical 

geophysical methods, such as microseismic method (Lu et 

al. 2012), fine detection technology (Wang et al. 2019), and 

acoustic emission method (Lu et al. 2014), advanced 

rapidly and achieved on-line monitoring of coal and gas 

outburst. 

However, using a single index for prediction is difficult 

to reflect the effects of various impacting factors on coal 

and gas outburst and makes inaccurate and missing 

predictions frequently appear (Li et al. 2015). It is clear that 

through multi-index prediction and comprehensive 

determination for the outburst risk may compensate for the 

disadvantages of the single index method and improve the 
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Abstract.  With the coal mining depth increasing, both stress and gas pressure rapidly enhance, causing coal and gas outburst 

risk to become more complex and severe. The conventional method for prediction of coal and gas outburst adopts one prediction 

index and corresponding critical value to forecast and cannot reflect all the factors impacting coal and gas outburst, thus it is 

characteristic of false and missing forecasts and poor accuracy. For the reason, based on analyses of both the prediction 

indicators and the factors impacting coal and gas outburst at the test site, this work carefully selected 6 prediction indicators such 

as the index of gas desorption from drill cuttings Δh2, the amount of drill cuttings S, gas content W, the gas initial diffusion 

velocity index ΔP, the intensity of electromagnetic radiation E and its number of pulse N, constructed the Bayes discriminant 

analysis (BDA) index system, studied the BDA-based multi-index comprehensive model for forecast of coal and gas outburst 

risk, and used the established discriminant model to conduct coal and gas outburst prediction. Results showed that the BDA -

based multi-index comprehensive model for prediction of coal and gas outburst has an 100% of prediction accuracy, without 

wrong and omitted predictions, can also accurately forecast the outburst risk even for the low indicators outburst. The prediction 

method set up by this study has a broad application prospect in the prediction of coal and gas outburst risk. 
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prediction accuracy. Thus, researchers conduct their various 

beneficial attempts. Some researchers designed a gas-

measurement-tube to measure gas pressure and its changes 

at outburst-prone regions, calculated the permeability of 

coalbeds nearby the working face, and based on which 

further evaluated the risk of coal and gas outburst (Aguado 

and Nicieza 2007). And underground horizontal boreholes 

were utilized to test the permeability and stress, the strength 

and adsorption properties of sampled coal were measured in 

their laboratory, and based on which adopted Monte Carlo 

technique to assess the risk of outbursts (Wold et al. 2008).  

In addition, a comprehensive evaluation system was 

proposed, using indexes including gas content, gas pressure, 

etc., to predict the risk of coal and gas outburst in coal 

mines based on catastrophe theory (Zhang et al. 2009). An 

artificial neural network and SVM were used to predict coal 

and gas outburst (Chen et al. 2014, Cheng et al. 2015, 

Zhang and Lowndes 2010); a gray target model was 

established with consideration of gas pressure, destructive 

type of coal, coal rigidity, coal rigidity, and initial speed of 

methane diffusion, the four factors influencing coal and gas 

outburst, based on the gray system theory to predict coal 

and gas outburst (Hu et al. 2015). A Fisher discriminant 

analysis index system using the gas adsorption index of 

drilling cutting Δh2, the drilling cutting weight S, the initial 

velocity of gas emission from borehole q, the thickness of 

soft coal h, and the maximum ratio of post-blasting gas 

emission peak to pre-blasting gas emission Bmax was 

constructed, and an FDA-based multiple indicators 

discriminant model was applied to predict coal and gas 

outburst (Chen et al. 2017). 

Although these methods have achieved many good 

results, they are not broadly applied in the prediction of coal 

and gas outburst due to their poor accuracy, slower 

computational speed, or others. Thus, it is necessary finding 

such a method with both prediction accuracy and on-site 

applicability for the forecast of coal and gas outburst. The 

Bayes discriminant analysis (BDA) derived from the linear 

discriminant analysis (LDA) can be used to distinguish new 

samples and classify them into known groups. The BDA has 

been successfully applied to identify the stability of 

complicated goaf (Hu and Li 2012), to predict the risk of 

debris flow in coal mine (Xu et al. 2013), and to classify the 

spontaneous combustion tendency of sulfide minerals in 

metal mines (Luo et al. 2014). This work tried to use the 

BDA to set up the multi-index discriminant model for coal 

and gas outburst prediction and applied the model to 

forecast the outburst risk on the site to apply it.  
 

 

2. Bayes discriminant analysis 
 

Given a total of g m-dimensional groups G1, G2, ···, and 

Gg, they correspond to mutually different, m-dimensional 

probability density functions f1(X), f2(X), ···, and fg(X), 

respectively, each group, Gi, consists of all the values of the 

index X = (X1, X2, …, Xm)T belonging to it. In practical 

applications, it is necessary for discriminant analysis to 

extract the data of every group in the training samples so as 

to construct certain criteria to determine the ownership of 

new samples. The BDA is divided into the BDA with two 

normal populations and the BDA with multiple normal 

populations. The research objects in this work are both 

outburst and non-outburst of the working face, thus only the 

BDA with two normal populations is introduced as follows 

(Zheng et al. 2009):  

 

2.1 Introduction to the method 
 
2.1.1 Mahalanobis distance and discriminant function  
Suppose that G is an m-dimensional population with its 

mathematical expectation value μ and covariance matrix Σ, 

its Mahalanobis distance between the m-dimensional 

sample X and the population G is defined as  

1
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(1) 

Suppose that 2 different m-dimensional populations G1 

and G2 with their corresponding mathematical expectation 

values μ1 and μ2 and corresponding covariance matrices Σ1 

and Σ2. The difference of square of Mahalanobis distances 

from the sample X separately to these two populations is 
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Let W(x) be the discriminant function and equal to 

1
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(3) 

 

2.1.2 Bayes discriminant function 
Let 2 m-dimensional populations G1 and G2, whose 

probability density function is 
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where μi and Σi respectively are the mean vector and the 

covariance matrix corresponding to two populations; |Σi| is 

the determinant of Σi; i =1 and 2.  

Suppose that Σi=Σ2=Σ, from Eq. (2) and Eq. (3), we can 

find 
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with its corresponding Bayes discriminant function 
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In the actual applications, if μ1, μ2 and Σ are unknown, 

they are estimated by training the sample, that is, 

substituting 
(1)

1
ˆ X  , 

(2)

2
ˆ X  and Σ for μ1, μ2 and Σ in Eq. 

(6), respectively. Meanwhile 
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2.2 Bayes discriminant criterion and prediction 
 

Let the prior probability distributions of Gl and G2 

respectively be q1 and q2, their corresponding misjudgment 

losses are c(2|l) and c(l|2). For the specific sample X, the 

values of probability density functions of two populations at  

 

 

 

 

X are calculated with their Bayes criteria 
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Fig. 1 Geographical location of Liangbei Coal Mine 

 

Fig. 2 Comprehensive stratigraphic column of the Shanxi Formation strata (with a scale of 1:200) 

 

Fig. 3 Position of the work face for experiments 
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After determination of the discriminant criteria, the cross-

validation based on training samples is applied to calculate 

the misjudgment rate, the procedure is:  

1) Remove one sample from the training samples of G1 

(capacity n1), then use both the remaining samples with 

capacity being n1-1 and the samples of G2 with capacity 

being n2 to construct the discriminant function. 

2) Use the constructed discriminant function to perform 

discriminant analysis of the removed sample.  

3) Repeat steps 1) and 2) to remove all the training 

samples of G1, let the number of misjudged samples be n12 

*.  

4) Repeat steps 1), 2) and 3) for the training samples of 

G2, let the number of misjudged samples be n21 *, and 

define the following expression of r as the estimation of the 

misjudgment rate 

12 21

1 2

n n
r

n n

 



 

(10) 

 

 

3. Overview of the experimental site 
 

The Liangbei Coal Mine is located at 37 km west of 

Xuchang City, Henan Province, China, as shown in Fig. 1. 

It belongs to Shenhuo Coal Industry Group. Its annual raw 

coal output is 900,000 tons. In its production process, the 

coal mine experienced many coal and gas outburst, 

extrusion, rib spalling, floor heave, and serious deformation 

of roof and both sides of roadway. 

 

3.1 Coal seam 
 

Currently, the main coalbed of Liangbei Coal Mine is 

No. 21 coalbed located at the bottom of the Permian Shanxi 

Formation. Fig. 2 shows comprehensive stratigraphic 

column of the Shanxi Formation at the scale of 1:200. 

The experimental site is No. 11131 driving working 

face, as shown in Fig. 3. No. 11131 driving working face 

lies in the eastern No. 11 mining area. The north is No. 

11111 gob and the south is No. 11151 gob, it results in No. 

11131 as an island face. The No. 21 coalbed is characteristic 

of stable occurrence, relatively simple geological structure, 

and average thickness of 4.53 m, and the average dip of 13° 

in the range of 8~15°. Its immediate roof is a 5.63 m thick 

dark gray sandy mudstone with the well-developed 

horizontal bedding containing small visible Muscovite 

flakes and rich plant fossils debris. Its main roof is 3.33 m 

thick, gray, medium and grained sandstone composed of 

dominant quartz and minor feldspar and black minerals, and 

contains a large amount of carbonaceous and Muscovite 

chips and cemented siliceous mud. Its immediate floor is 

8.64 m thick, dark gray, thin-layered, fine sandstone mixed 

with muddy strips with wavy bedding, and contains a large 

number of plant fossils fragments. Its main floor is 0.3 m 

thick carbonaceous mudstone. 

Both the original gas pressure and the gas content of the 

coalbed are 0.6~3.65 MPa and about 5.73~13.97 m3/t, 

respectively. The attenuation coefficient of gas flow from 

borehole per 100 m into the coalbed is 0.0313~0.2588 d-1, 

the gas permeability is 0.0011~0.0454 m2/MPa2·d, so the 

coalbed is more difficult for gas drainage. The quality of 

coal is softer with the Protodyakonov coefficient of 

0.15~0.25. The gas initial diffusion velocity index ΔP is 

24~34. 

 

3.2 Overview of coal and gas outburst 
 

Several coal and gas outburst events occurred in the 

Liangbei Coal Mine. For example, on June 29, 1999, coal 

and gas outburst occurred during main crosscut excavation, 

discharging 180 tons of coal and 18,000 m3 of gas; on July 

8, 2009, coal and gas outburst happened during opening the 

No.21 coal seam at the return airway crosscut, ejecting 600 

tons of coal and approximately 50,000 m3 of gas. However, 

these two accidents didn’t issue their casualties 

(http://www.chinasafety.gov.cn/gdaq/aqgd82.htm). 

Additionally, in the adjacent mine named Pingyu Coal Mine 

occurred two coal and gas outburst accidents on August 1, 

2008 and October 16, 2010, respectively, 37 and 23 workers 

were killed 

(http://news.workercn.cn/c/2011/07/05/1107050211100465

59794.html). All these accidents show that Liangbei Coal 

Mine faces the great challenge against coal and gas 

outburst. 

Meanwhile, the Liangbei Coal Mine also underwent 

many coal and gas outburst accidents with low indexes or 

dynamic phenomenon events, such as at 5:35 of September 

11, 2012 the outburst occurred, discharging about 140 t of 

coal and approximately 15500 m3 of gas. And for a long 

time before the accident, all the conventional indicators 

were detected normal. Fortunately, workers timely 

evacuated prior to its outburst due to the abnormal emission 

of gas. Thus, it is very difficult to forecast coal and gas 

outburst only relying on the traditional drilling method. 

According to the outburst factors analysis of Liangbei 

Coal Mine, its gas initial diffusion velocity index ΔP is 

higher, thus, it is prone to outbursts with gas as the 

dominant outburst factor (Chao et al. 2015). Many dynamic 

events in coal mine are caused by the instability of coal–

rock body (Liu et al. 2015). The Protodyakonov coefficient 

f as the representative of coal structure property is smaller, 

the capability of coal to resist external pressure is lower; the 

gas permeability is poor, and the resistance to gas flow is 

big, all of which also are other reasons causing coal and gas 

outburst (Liu et al. 2019). Therefore, in addition to relying 

on the traditional way of drilling, to accurately forecast coal 

and gas outburst at the Liangbei Coal Mine, it is still 

necessary to consider the gas content W, the gas initial 

diffusion velocity index ΔP, as well as other indicators 

which are more sensitive to the changes in stress, coal 

structure, and the like. 
 

 

4. Prediction index system 
 

According to BDA, first it is needed to determine the 

indicators for coal and gas outburst prediction. The outburst 

risk prediction indicators commonly used at working faces 

of coal mines in China mainly include the conventional 

borehole indicators and auxiliary indicators. Conventional  
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Fig. 4 Schematic of layout of boreholes for indexes testing 

 

 

borehole indicators mainly include the gas initial diffusion 

velocity index from boreholes q, the drill cuttings S, the 

drill cuttings desorption Indexes K1 and Δh2, and the like; 

while auxiliary indicators involve the dynamic change in 

gas emission amount, gas content, electromagnetic radiation 

from coal rock, and others at the working face, as well as 

the geological conditions in the front of face obtained by 

drilling and other means. 

No.11131 working face of Liangbei Coal Mine mainly 

uses the drill cuttings gas desorption index Δh2 and the drill 

cuttings weight S to predict coal and gas outburst. Through 

above analysis of coal and gas outburst accidents occurring 

at the Liangbei Coal Mine, it is known that conventional 

indicators cannot meet the needs for accurately forecasting 

coal and gas outburst, while the gas content W and the gas 

initial diffusion velocity index ΔP can be used as predictors. 

In addition, the EMR-based technique for coal and gas 

outburst prediction was applied in the Jiaozuo Mining Area 

that belongs to the same coalbed with Liangbei Coal Mine, 

and proved that it has a good application prospect (Wang et 

al. 2011). And the EMR-based prediction technique was 

also proven to be more sensitive to the changes in stress and 

coal structure (Kong et al. 2019), thus, the EMR intensity E 

and number of pulse N were selected as the predictors for 

coal and gas outburst at the Liangbei Coal Mine. Physical 

meanings of various predictors in the prediction index 

system are described as follows.  

 

4.1 Gas initial diffusion velocity index ΔP 
 

The gas initial diffusion velocity index in China is one 

of the main indicators used to identify the outburst-prone 

coal seam. It is defined as the difference between the 

accumulated gas emitted into the space of fixed volume at 

60 s and 10 s from coal samples of definite size and quality 

under the pressure of 0.1 MPa. The larger the ΔP value is, 

the greater the gas initial diffusion velocity index, the more 

serious the degree of damage to coal, the higher the 

possibility of the coal and gas outburst. The critical ΔP 

value is 10. 

 

4.2 Borehole indexes 
 

As using the borehole indicator method to predict 

outburst risk at the face, at least 3 boreholes of 42 mm in  

 

Fig. 5 KBD 5 coal and gas outburst electromagnetic 

radiation monitor 

 

 

diameter and 8~10 m in depth should be bored from face to 

proper position deep into the coalbed. They should be 

arranged as far as possible in the soft stratum: one in the 

middle of the face and parallel to the driving direction, the 

orifices of the remaining two at the positions 0.5 m far from 

the two ribs of the roadway with bottom points at the 

positions 2~4 m outside the outlines on both sides of the 

roadway, as shown in Fig. 4. In order to determine the drill 

cuttings weight S and the gas desorption index Δh2, each 

time drilling 1 m deep into the coalbed, collecting the drill 

cuttings of 1~3 mm in size discharged at the orifice, and 

measuring the drill cuttings weight S. Gas desorption index 

Δh2 should be measured at least once for every 2 m drilling 

into the coalbed. 

 

4.2.1 Drill cuttings weight S 
The indicator jointly considers the main factors 

determining outburst risk as the stress, gas pressure, and 

coal’s physical and mechanical properties. The larger the 

index value, the greater the risk of coal and gas outburst. 

The critical value outburst occurs is 6 kg/m. 

 

4.2.2 Index of gas desorption from drill cuttings Δh2 
The indicator jointly reflects two outburst-risk related 

factors, coal’s degree of damage and gas pressure. The 

larger the indicator value is the higher the coal’s damage 

degree, the greater the gas pressure and the stronger the coal 

and gas outburst risk. The critical value outburst occurs is 

200 Pa. 

 

4.3 Gas content W 
 

The determination of gas content W depends upon the 

measurements of all its related physical quantities, namely, 

the volume of gas desorption from underground coal 

samples, volume of lost gas, volumes of pre- and post-

failure natural desorption gas, and volume of in-desorbed 

gas. Gas pressure has a significant effect on the 

development process of gassy coal extrusion (Sa et al. 

2019). According to the national regulation, the region 

where the gas pressure is less than 0.74 MPa or the gas 

content is less than 8 m3/t can be regarded as areas without 

risk of coal and gas outburst. In Henan province where 

Liangbei Coal Mine is located, the regulation is stricter as  
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Fig. 6 Arrangement schematic of EMR measuring points 

 

 

the regions with gas pressure less than 0.6 MPa or gas 

content less than 6 m3/t is considered to be no coal and gas 

outburst risk. Thus, the critical value of gas content W is 6 

m3/t. 
 

4.4 EMR intensity E and the number of pulse N 
 

Coal rock EMR is released from coal rock as it deforms 

and fails under a certain stress. Its change reflects the state 

of coal rock and the process of its damage under a certain 

external pressure. The instrument for in-situ testing is KBD 

5 coal and gas outburst electromagnetic radiation monitor 

developed by China University of Mining and Technology, 

as shown in Fig. 5. 

This device includes a high sensitivity broadband 

directional antenna, monitoring host, charger and data 

processing software. The main technical parameters and 

characteristics of KBD 5 monitor are (1) directional 

receiving electromagnetic radiation signals, (2) 

automatically data acquisition and storage, (3) effective 

monitoring direction: 60°, (4) effective monitoring depth: 

7~22 m, (5) frequency bandwidth: 1~500 kHz, (6) 

communication method: computer serial communication, 

and (7) intrinsically safe for coal mine. The data tested by 

electromagnetic radiation monitor are EMR intensity and 

EMR pulse.  

The testing procedure of KBD 5 EMR monitor is: Coal 

and gas outburst occurring→Coal and rock’s violent 

deformation and fracture→Generating EMR signals→ 

Directional antenna→EMR monitor→RS 232 

port→Computer→Data processing software→display and 

forecasting (He et al. 2012).  

The EMR-testing process includes 1) place the EMR 

receiving antenna facing the front, and 2) set three testing 

points at the left, middle, right of the heading face, among 

them, the middle one is 0.5 m away from the front face, 

while the left and right ones are 0.8 m from the bilateral 

roadways, as shown in Fig. 6 (Li et al. 2015). 

This device includes a high sensitivity broadband 

directional antenna, monitoring host, charger and data 

processing software. The main technical parameters and 

characteristics of KBD 5 monitor are (1) directional 

receiving electromagnetic radiation signals, (2) 

automatically data acquisition and storage, (3) effective 

monitoring direction: 60°, (4) effective monitoring depth: 

7~22 m, (5) frequency bandwidth: 1~500 kHz, (6) 

communication method: computer serial communication, 

and (7) intrinsically safe for coal mine. The data tested by 

electromagnetic radiation monitor are EMR intensity and 

EMR pulse.  

The testing procedure of KBD 5 EMR monitor is: Coal 

and gas outburst occurring→Coal and rock’s violent 

deformation and fracture→Generating EMR signals→ 

Directional antenna→EMR monitor→RS 232 

port→Computer→Data processing software→display and 

forecasting (He et al. 2012).  

The EMR-testing process includes 1) place the EMR 

receiving antenna facing the front, and 2) set three testing 

points at the left, middle, right of the heading face, among 

them, the middle one is 0.5 m away from the front face, 

while the left and right ones are 0.8 m from the bilateral 

roadways, as shown in Fig. 6 (Li et al. 2015). 

According to preliminary testing and critical value 

setting methods (Wang et al. 2011), the critical values of 

EMR intensity E and its number of pulse N are 75 mV and 

195 Hz, respectively. 

 

 

5. BDA-based model and its application 
 

A BDA model is established based on multiple sets of 

actually measured data and Bayes basic discriminant 

principles for prediction of coal and gas outburst and 

applied on the field. 

 

5.1 BDA model for coal and gas outburst 
 

The risk of coal and gas outburst at the face is 

determined following the criterion that whether the 

predictors exceed their critical values or occurrence of 

dynamic phenomena as gas spurt from drilling, etc. 

Presence and absence of outburst risk are marked by ‘Y’ 

and ‘N’, respectively. These two classes are used as BDA’s 

two normal populations G1 and G2 to establish the 

discriminant model for prediction of face coal and gas 

outburst risk at the face. 

Table 1 shows a total of 50 sets of data measured from 

the No.11131 driving working face of Liangbei Coal Mine 

in accordance with the above-mentioned prediction index 

system consisting of the drill cuttings amount S, drill 

cuttings gas desorption index Δh2, gas content W, the gas 

initial diffusion velocity index ΔP, EMR intensity E and its 

number of pulse N. Based on the index system and actually 

measured data, the established BDA discriminant models 

are described as follows 

1 2

2 2

13.971 +0.296 +0.775 +7.369 0.077 -0.021 105.307

9.579 +0.193 +1.848 +4.342 0.042 -0.021 45.497

W S h W P E N

W S h W P E N

        

          
(11) 

where W1 and W2 denote the discriminant function values in 

the presence and absence of outburst risk, respectively. 

The misjudgment rate is calculated using the cross-

validation estimation method based on training samples. 

Table 1 lists the calculated or predicted results. From the 

table, it is clear that all the prediction results are correct. 

Thus, the established discriminant model has stable and 

accurate discriminating capability.   
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Table 1 Outburst risk prediction indexes and backward substitution check-up of discriminant results 

Group 

Drilling cutting 

weight 

S/kg.m-1 

Gas adsorption 

index of 

drilling cutting 

Δh2/Pa 

Gas 

content 

W 

/ m3.t-1 

Initial speed 

of gas 

emission 

△P 

EMR 

intensity 

E/mv 

EMR 

pulse 

N/Hz 

Actual 

risk 

Outburst risk 

discriminant 

function value 

W1 

Outburst risk 

discriminant 

function value 

W2 

Forecas

t risk 

(Y/N) 

1 4.2 140 3.60 14 74 220 Y 101.85 87.68 Y 

2 3.4 120 4.40 7 34 141 N 32.37 47.23 N 

3 3.1 100 2.67 7 48 80 N 23.27 39.17 N 

4 3.4 80 2.49 4 44 140 N -2.27 23.39 N 

5 4.1 120 2.58 5 28 78 N 26.85 42.95 N 

6 4.2 120 3.20 4 34 42 N 22.58 41.72 N 

7 4.4 100 4.50 6 55 80 N 36.02 50.95 N 

8 4.1 120 4.10 7 42 72 N 43.98 55.16 N 

9 3.2 100 2.67 6 23 49 N 16.03 35.39 N 

10 3.3 160 2.59 6 11 36 N 34.47 47.54 N 

11 2.8 80 2.73 5 17 78 N -3.87 22.60 N 

12 5.2 180 3.07 11 125 188 Y 109.72 93.78 Y 

13 5.7 140 3.73 6 62 152 N 64.45 68.47 N 

14 4.0 140 6.60 7 121 550 Y 46.48 55.96 Y 

15 2.6 120 3.80 6 45 80 N 15.48 35.85 N 

16 3.2 160 3.50 6 67 157 N 35.58 48.09 N 

17 4.1 90 2.34 5 48 110 N 18.66 36.89 N 

18 4.0 240 6.20 14 93 1031 Y 115.06 93.62 Y 

19 3.2 140 3.61 7 52 160 N 35.86 48.07 N 

20 2.7 140 2.44 5 37 28 N 14.85 34.57 N 

21 3.3 160 5.20 8 55 24 N 54.87 63.15 N 

22 3.8 100 2.57 6 60 165 N 24.78 40.08 N 

23 6.8 140 6.10 8 73 440 Y 91.20 86.50 Y 

24 3.0 120 4.34 8 43 95 N 35.76 48.97 N 

25 4.1 80 2.99 6 46 34 N 25.02 42.02 N 

26 2.6 60 3.44 8 62 51 N 14.10 33.62 N 

27 3.0 120 4.20 7 58 160 N 28.07 43.63 N 

28 3.6 120 3.80 5 48 223 N 19.31 38.21 N 

29 3.8 120 3.90 7 39 45 N 39.97 52.36 N 

30 3.4 100 3.00 7 26 66 N 26.32 42.02 N 

31 4.7 220 5.50 11 53 213 Y 110.36 97.64 Y 

32 4.4 130 4.60 5 34 141 N 34.70 50.41 N 

33 3.2 120 4.10 7 32 112 N 29.79 45.28 N 

34 4.0 100 2.72 6 56 60 N 29.56 44.29 N 

35 3.2 150 2.26 7 41 75 N 35.03 46.65 N 

36 4.1 130 2.62 7 55 97 N 42.58 52.20 N 

37 3.1 190 2.53 6 52 77 N 42.82 52.17 N 

38 3.7 170 5.10 7 42 72 N 53.96 62.83 N 

39 6.6 170 2.75 9 193 289 Y 114.43 96.72 Y 

40 4.0 150 2.34 7 25 66 N 48.91 56.15 N 

41 4.2 110 5.00 14 58 47 Y 96.45 87.44 Y 

42 5.0 110 3.20 16 71 54 Y 121.83 100.86 Y 

43 3.9 110 3.01 6 49 34 N 31.35 46.06 N 

44 4.8 220 2.54 10 52 110 Y 104.23 90.93 Y 

45 3.0 110 2.50 8 21 18 N 31.26 44.31 N 

46 2.9 120 2.45 6 48 14 N 20.22 37.73 N 

47 3.0 100 2.87 6 63 133 N 14.72 33.76 N 

48 2.8 110 3.80 7 76 232 N 21.84 38.27 N 

49 3.9 230 3.14 8 61 55 Y 78.50 76.02 Y 
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5.2 Application of BDA model 
 

The discriminant model, namely Eq. (11) is applied to 

predict of the outburst risk of 20 sets of newly tested data 

according to the above Bayes criterion. Table 2 shows the 

results. In accordance with the principle that higher than the 

borehole index critical value or dynamic phenomena such 

as gas spurt from borehole, etc. are regarded as the presence 

of outburst risk, it is obvious that among the 20 sets of data, 

10 sets are predicted to have outburst risk, in consistence 

with the facts. Although the prediction indexes of the 5-th 

and 8-th sets were lower than their critical values, both gas 

spurt and drill suction dynamic phenomena occurred. In 

other words, the dynamic phenomenon with low index 

outburst appeared. However, the BDA model accurately 

predicated these two low index outburst risks. Thus, the 

BDA prediction model can accurately forecast coal and gas 

outburst risk. Meanwhile, it is clear from Table 2 that the 

BDA model can also exactly predict no outburst risk cases. 

Thus, the BDA prediction model shows no misprediction. 

From above, our BDA model for coal and gas outburst 

prediction can accurately predict outburst risk with 

accuracy rate of 100%. Thus it is a good method for coal 

and gas outburst prediction. The model utilizes a 

comprehensive relationship between different indexes and 

outburst risk to forecast coal and gas outburst and doesn’t 

need to determine the critical values of predictors. The 

method is highly accurate, fast, and simple, and has broad 

application prospect in coal and gas outburst prediction. 

 

 

6. Conclusions 
 

Coal and gas outburst are greatly threatening the safety 

of underground workers and mining production, thus 

accurately predicting coal and gas outburst is crucial. With 

the mining depth extending, coal and gas outburst become 

increasingly complex, making the use of single index 

critical value prediction method for outburst risk more and 

more difficult. In order to cope with the challenge, in this 

paper,  

• We analyzed the indexes for coal and gas outburst 

prediction and the factors affecting coal and gas 

outburst, and constructed the Bayes discriminant 

prediction index system consisting of the drill cuttings 

weight S, the drill cuttings gas desorption index Δh2, gas 

content W, the gas initial diffusion velocity index ΔP, 

the EMR intensity E and number of pulse N.  

• We introduced the Bayes discriminant analysis (BDA) 

as the prediction method, established the BDA model 

for coal and gas outburst prediction, and applied the 

model. The results indicated that the model has zero 

misjudgment and is very stable and accurate.  

• We further applied the model in 20 sets of on-site data 

from Liangbei Coal Mine working face. The results 

showed that the BDA prediction model has 100% 

accuracy and zero mis/missed prediction and is able to 

accurately predicate outburst with low index dynamic 

phenomenon.  

• Overall, the BDA model established in the paper can 

Table 2 Forecast results 

Group 

Drilling 

cutting 

weight 

S/kg.m-1 

Gas adsorption 

index of 

drilling cutting 

Δh2/Pa 

Gas content 

W 

/m3.t-1 

Initial speed 

of gas 

emission 

△P 

EMR 

intensity 

E/mv 

EMR 

pulse 

N/Hz 

Actual 

risk 

Outburst risk 

discriminant 

function 

value W1 

No outburst risk 

discriminant 

function value 

W2 

Forecast 

risk 

1 3.6 120 2.67 8 37 143 N 37.69 48.21 N 

2 2.6 150 2.44 6 39 123 N 21.94 37.97 N 

3 2.6 130 2.34 7 38 29 N 25.18 40.18 N 

4 3.0 110 2.30 8 42 155 N 29.88 41.96 N 

5 4.2 160 3.23 9 47 68 Y 71.75 71.21 Y 

6 3.8 110 4.23 12 103 93 Y 78.00 74.41 Y 

7 4.8 110 3.10 13 55 121 Y 94.21 83.66 Y 

8 4.4 180 2.73 8 43 131 Y 71.07 70.22 Y 

9 4.6 220 4.80 8 47 53 Y 89.26 85.49 Y 

10 3.0 150 2.93 9 31 92 N 50.05 56.05 N 

11 2.4 150 2.26 7 51 77 N 24.58 39.37 N 

12 4.2 130 2.65 13 65 62 Y 93.40 82.60 Y 

13 5.1 110 3.10 12 55 232 Y 88.70 79.86 Y 

14 4.8 110 2.30 11 62 19 Y 81.53 75.92 Y 

15 3.6 110 2.20 8 44 86 N 39.79 49.06 N 

16 3.1 110 3.01 7 38 91 N 25.50 41.08 N 

17 3.5 130 2.34 7 43 58 N 37.56 48.42 N 

18 3.2 130 2.50 7 52 116 N 29.29 42.84 N 

19 4.1 230 6.20 8 50 156 Y 84.39 83.18 Y 

20 5.0 180 5.00 8 33 208 Y 78.83 78.13 Y 
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accurately forecast coal and gas outburst and the method 

can be applied to other coal mine with geological 

conditions similar to Liangbei Coal Mine.  
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