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1. Introduction 
 

In the seismic design of structures, selection of 

appropriate design earthquakes is one of the most important 

parts of design procedure. For intermediate and low 

importance structures, the design earthquake is typically 

provided by the seismic codes as a design spectrum. 

However, for important structures for which time-history 

analysis should be performed, the use of recorded ground 

motions as input is inevitable. On the other hand, the 

available ground motions show only small part of the reality 

and cannot be completely trusted to predict the future 

events. For the design of important structures, which are 

expected to remain functional after earthquakes, it is highly 

recommended to use a worst-case analysis in order to take 

into account the uncertainties of the ground motions. The 

structural designs, which are based on critical excitation 

methods may greatly reduce this problem. According to 

critical excitation method, each structure has its own 

dynamic characteristics and should be designed for its 

critical input. This critical input is determined in such a 

manner that the desired quantity of the response of the  
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structure is maximized. Critical excitation methods provide 

a useful tool to determine such input. 

Early efforts in the field of critical excitation method 

were carried out by Drenick (1970), and then the method 

was developed to multi degree of freedom systems 

(Srinivasan et al. 1991) and nonlinear systems (Iyengar 

1972). Since then, various researches have been conducted 

in the field of nonlinear systems (Takewaki 2002, Au 2006, 

Moustafa 2009, Kojima et al. 2018). 

Instead of considering displacement as the objective 

function (Lekshmy and Raghukanth 2015), some 

researchers used other objective functions on critical 

excitation problems such as acceleration response (Ahmadi 

1979, Takewaki 2001b), earthquake input energy 

(Fukumoto and Takewaki 2015), and earthquake energy 

input rate (Takewaki 2006). In the recent works on the 

critical excitation for nonlinear systems, various parameters 

of response such as ductility ratio, damage index, and 

reliability index were considered (Abbas and Manohar 

2007, Moustafa 2011). 

Some researchers have developed the existing methods 

by changing the envelope function (Ghasemi and Ashtari 

2014) or the PSD function (Ashtari and Ghasemi 2013). 

Others tried to apply the critical excitation method in order 

to determine critical input for rehabilitation (Kamgar et al. 

2015) and optimal damper design (Khatibinia et al. 2018, 

Nigdeli and Bekdas 2017, Cetin et al. 2019, Akehashi and 

Takewaki 2019). Thanks to the complexity of the problem 

for nonlinear systems, many researches still have focused 
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on the linear response of the structural system (Ashtari and 

Ghasemi 2013, Kamgar and Rahgozar 2015, Lekshmy and 

Raghukanth 2015, Kamgar et al. 2018), while others tried to 

investigate nonlinear response on the simplified SDOF 

systems (Kojima et al. 2018, Tamura et al. 2019). 

Takewaki (2001a) developed a new critical excitation 

method for stationary and non-stationary random input 

using a stochastic index of response as the objective 

function. Based on this method, the critical excitation is 

considered as rectangular spectral density function. In the 

present paper, the proposed Takewaki’s method (2001a) is 

developed to determine the critical excitations for shear 

buildings modeled as MDOF systems. The present method 

does not depend on the quantity that is considered as 

objective function. Therefore any stochastic response index 

(e.g., mean square of displacement, absolute acceleration 

and earthquake energy input rate), which is correctly 

derived based on the original Takewaki’s method, may be 

used as objective function. To the authors' knowledge, 

displacement-based objective functions are the most 

practical choice for this critical excitation method. In this 

paper, the sum of the mean-square interstory drift of the 

system is used as the objective function. The main issue of 

using this method is the selection of appropriate constraints. 

It is shown that the upper bound of earthquake input energy 

per unit mass may be considered as a suitable constraint for 

the present critical excitation problem. This bound can be a 

reasonable benchmark to estimate the allowable range of 

possible input energy in similar earthquakes. Considering 

this bound as the constraint, the method is used to 

determine the critical power spectral density (PSD) 

functions, as well as generation of synthetic accelerograms. 

 

 

2. Critical excitation problem for MDOF systems 
 

Consider an n-story shear building modeled as an elastic 

linear MDOF system with proportional damping subjected 

to a non-stationary random base acceleration. Input base 

acceleration is defined as the product of an envelope 

function and a stationary Gaussian random process   with 

zero mean, as given by 

( ) ( ) ( )gu t c t w t  (1) 

The sum of the mean-square interstory drift of the shear 

building can be obtained from the following equation 

(Takewaki 2001a) 
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where n denotes the number of stories, and Sw(ω) implies 

the PSD function of w(t), and 
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in which 𝜙𝑘
𝑗

denotes the kth component of the jth 

eigenvector, and Γj indicates the participation factor of the 

jth mode. In addition 
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and gj(t) is the unit impulse response function as given by 
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(6) 

where ωj and ωdj represent the undamped and damped 

natural circular frequencies of the jth mode, hj implies the 

damping ratio of the jth mode, and He(t) is the Heaviside 

step function.  

The critical excitation problem is now defined as 

follows: Given mass, stiffness and the viscous damping 

matrix of a linear elastic MDOF system, as well as the 

envelope function, find the critical PSD function 𝑆̃w(w), so 

that the objective function f is maximized under the 

following constraints 

( )w wS d S 




  sup ( )w wS s   (7) 

If the PSD function is limited, 𝑆̃w(w) can be considered as a 

function that has a constant value in the interval of Ω̃ = 𝑆̅w 

/ 𝑠̅w, which is characterized by its limits, ΩL and ΩU as 

U L   (8) 

This input is referred as the input with rectangular PSD 

function. Using the rectangular PSD function, the objective 

function can be calculated as given by 

( ) ( , )
U

L
i w if t s H t d 




 

 (9) 

Although adoption of a rectangular PSD for the ground 

shaking may seem unrealistic, there are lots of examples of 

recorded ground motions with a very narrow frequency 

content which can be properly represented by a rectangular 

PSD model. However, to resolve this limitation, the method 

can be extended by replacing the rectangular PSD by a 

continuous one. 

To specify the location of the rectangular function (i.e., 

Ω L and ΩU) in a certain time of ti, a horizontal line can be 

moved over the plot of H(ti, ω) function so that the distance 

of the intersection points reaches to Ω̃ as is illustrated in 

Fig. 1. By repeating this procedure at different time steps, 

the critical PSD functions are specified as rectangular 

functions, and the time-history of the objective function is 

determined. The PSD function corresponding to the 

maximum value of the objective function is then considered 

as the critical one (Takewaki 2001a). 

It should be noted that the overall shape of H (ti, ω) 

depends on the objective function. For some objective 

functions (e.g., absolute acceleration and earthquake energy 

input rate), H (ti, ω) function shows a very irregular shape 
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Fig. 1 Finding the critical PSD function as a rectangular 

function 

 

 

Fig. 2 Illustration of upper bounds and actual input energy 

of 1992 Cape Mendocino earthquake 

 

 

with intense variations (see for example, Takewaki 2001b). 

Insuch cases, the critical PSD function may be determined 

as a large number of rectangles with very little widths. This 

situation may impose much more computational efforts to 

the problem. On the other hand, H(ti, ω) function for 

displacement based objective functions has a smooth shape 

with distinct peak at the natural frequencies of the system. 

Therefore, it is more practical to use a displacement-based 

objective function (i.e., the sum of the mean-square 

interstory drift of the shear building) for this critical 

excitation problem. 

In order to solve the problem, the constraints should be 

firstly selected. According to Eq. (9), the objective function 

at the time ti is obtained as the product of 𝑆̅w and the area of 

H(ti, ω) in the specific interval Ω̃. This means that the value 

of the objective function is proportional to 𝑆̅w. Considering 

the concepts of 𝑆̅w and𝑠̅w, there is no straightforward way 

to recommend an appropriate value of these parameters. 

Consequently, it is difficult to estimate what value of 𝑠̅w is 

sufficient to make the final non-stationary input critical. 

Nevertheless, at least a reasonable assumption can be made 

for the ratio of 𝑆̅w /𝑠̅w. Therefore, the method may be used 

to locate the rectangular function. However, for the 

applicability of the method, a new constraint should be 

considered, as proposed in the next section. 

3. Upper bound of input energy as the new 
constraint 
 

Generally, all critical excitation problems involve one 
(or more) constraint(s). These constraints are essential to 
make sure that the presented model of excitation is 
physically realistic and acceptable. However, the response 
of the problem significantly depends on the selection of 

these constraints. An inappropriate choice may lead to 
unrealistic or underestimated results. Therefore, it is 
essential to consider a constraint that captures the actual 
situation. 

By setting constraints on the acceleration and velocity 

time-histories of the ground motion, Takewaki (2004) 

determined an upper bound of total input energy per unit 

mass of a record for a damped linear elastic system. This 

bound is well-defined by two curves that perfectly bound 

the actual input energy curve in the range of short and long 

periods (see Fig. 2). In Fig. 2, the first curve, which is 

entitled as “the credible bound for acceleration constraint” 

is obtained by setting a constraint on the time integral of 

squared ground acceleration. This curve provides an 

overview of the possible total energy. This energy is then 

limited by the second curve, which is determined based on 

setting a similar constraint on the velocity of the ground 

motion, in the range of long periods. This shows that the 

factors that cause changes in the velocity structures may 

lead to the generation of long period ground motions. The 

intersection point of these two curves may be considered as 

the possible dominant period. However, the maximum 

actual input energy does not necessarily concentrate at this 

period. 

It is remarkable that in the Takewaki’s work (2004), the 

total input energy has been considered as the objective 

function of the problem to determine its upper bound for 

any given earthquake time-history. On the contrary, it can 

be effectively adopted as the constraint of the problem, to 

find critical excitations with a certain upper bound of total 

input energy. This will introduce a rational base to the 

problem to ensure a realistic model of the excitation. 

The investigations of present paper on the time-histories 

of various ground motions indicate that even for an 

identical level of energy bound for acceleration constraint, 

indicated by black dashed-line in Fig. 2, the maximum 

amount of actual energy is not the same. Moreover, this 

maximum value may occur in different periods. Fig. 3 

represents the total input energy of two different records of 

the 1979 Imperial Valley earthquake at the stations on the 

19 and 27 kilometers far from the epicenter. As may be 

observed from Fig. 3, increase in distance is not led to a 

significant change in energy bound for acceleration 

constraint, but the bound of energy derived from the 

velocity constraint is substantially changed. By moving to 

the right, the energy content of record is increased in the 

range of long periods, while the maximum of actual energy 

is approximately doubled. In other words, despite having 

almost identical upper limit for acceleration constraint, 

maximum amount of actual energy is changed for the both 

value and position parameters, resulting a long period 

ground motion. Such a situation can be observed in other 

earthquakes. Fig. 4 represents the total input energy for two  
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different records of Northridge, Chi-Chi and Loma Prieta 

earthquakes. 

These examples clearly demonstrate that by a certain 

upper bound of the total input energy for acceleration 

constraint, various energy contents at different period 

ranges are feasible. This property let us to use this bound as 

an index to estimate the allowable range of input energy in 

similar ground motions. For example, consider a narrow-

band record of the 1989 Loma Prieta earthquake (M=6.93) 

at Palo Alto station, located on a site with soil type D. Fig. 5 

represents the total input energy of this ground motion 

(black line) as well as its credible bounds. From the upper 

bound of the total input energy of this record, it can be 

concluded that this earthquake may generate a ground 

motion with a maximum total input energy per unit mass up 

to 3 m2/s2 around the period of 1.5 second. This prediction 

can be easily confirmed since a real ground motion with the 

same site condition has been actually recorded during the 

same earthquake (dotted line). However, for other similar 

cases, the issue still remains. By considering an earthquake 

as a non-stationary random process, it may be concluded 

that existing ground motions are just a few realization of the 

corresponding event. Therefore, it is not so much safe to 

just rely on existing data. Let’s consider a situation that the 

second ground motion of Fig. 5 (dotted line) has not been 

recorded. In such a case, it would be desirable to devise a 

method to find the worst realization of the same earthquake 

with a similar upper bound. 

The upper bound of the input energy for acceleration 

constraint is completely defined by the following two 

parameters 

2
( )A d   

2
max ( )A   (10) 

where A(ω) is the Fourier transform of the ground 

acceleration, üg(t). These two parameters may define a class 

of ground motions that existing record is just one realization 

of them. Therefore, it is reasonable to fix the upper bound 

of input energy, and let the excitation to change in 

amplitude and frequency content in such a way that the 

objective function is maximized. By this mean, and using a 

sample ground motion, a synthetic accelerogram may be 

generated with the same upper bound but different energy 

content. 

 

 

Using Parseval’s theorem the integral of Eq. (10) can be 

written as 

2( )
2

AI a t dt
g


   (11) 

where g denotes the gravity acceleration, and IA indicates 

the well-known Arias Intensity parameter as written below 

2( )
2

AI a t dt
g


   (12) 

Therefore, in order to achieve a certain upper bound of 

the total input energy for acceleration constraint, the 

following constraints need to be satisfied 

A AI I  sup ( )A A   (13) 

where 𝐼𝐴̅  and 𝐴̅  are predefined input parameters which 

can be easily selected based on the corresponding values of 

a target ground motion. Moreover, in the case of Arias 

Intensity, a more robust determination can be adopted using 

probabilistic seismic hazard analysis methods (see for 

example: Travasarou et al. 2003). By this mean, any 

consideration on the earthquake hazard level can be 

incorporated into the method, as indicated by some seismic 

design codes.  

When the first constraint is available, the second one 

can be determined using an empirical relationship that 

relates the maximum Fourier amplitude to the Arias 

Intensity. Fig. 6 illustrates a sample example of such 

relationships, where the data used were obtained from the 

PEER NGA database, including 449 earthquakes with three 

major fault mechanisms and a hypocentral distance ranging 

from 5 to 247 km. In addition, the database mostly covers 

soil types C and D (based on ASCE 7-10 Classifications). 

Since this critical excitation method needs all possible 

realizations of earthquakes, no further classifications are 

applied, and just one linear regression model is used to 

estimate the equation from the whole data. 

If the interval of Ω̃ , at which the rectangular PSD 

function has a constant value, is assumed to remain 

unchanged after multiplying the random process w(t) by the 

envelope function c(t), an approximation of this interval can 

be given as follows 

 

  

 

Fig. 3 Total input energy of two different records of the 1979 Imperial Valley earthquake 
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Fig. 5 Total input energy of the 1989 Loma Prieta 

earthquake at Palo Alto and Gilroy station 

 

 

Fig. 6 A sample empirical relationship that relates the 

maximum Fourier amplitude to the Arias Intensity, based 

on data of the PEER NGA database 

 

  

 

(a) 

 

  

 

(b) 

 

  

 

(c) 

Fig. 4 Examples of total input energy for different records of (a) Northridge, (b) Chi-Chi, (c)  
Loma Prieta earthquakes with same upper bound of energy for acceleration constraint 
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(a) 

 
(b) 

Fig. 7 Comparison of the PSD function of (a) original and 

(b) modified band limited white noises 

 

 

2

4 Ag I

A
   (14) 

be employed here to find the rectangular PSD function. 

To impose the constraints of Eq. (13), it is necessary to 

fix the peak of the Fourier transform, A(ω), of the ground 

acceleration üg(t) as well as its Arias Intensity to pre-

specified values. As illustrated earlier, üg(t) is defined as the 

product of an envelope function and a stationary Gaussian 

random process (see Eq. (1)). Due to the random nature of 

the problem, an iterative process is required to obtain the 

desired excitation with a certain Arias Intensity. To produce 

the non-stationary excitation, a band-limited stationary 

random process is required. However, as may be seen in 

Fig. 7(a), the Fourier Amplitude of such process is 

completely non-uniform with a wide range of variations. As 

the Arias Intensity of üg(t) is directly related to the area of 

its PSD function as indicated by Eq. (11), such variations 

can make it very difficult to satisfy the first condition. To 

resolve this problem, after generating the white noise, the 

corresponding Fourier amplitudes are modified to achieve a 

rectangular shape as depicted in Fig. 7(b). This adjustment 

helps to reach the solution with considerably less iterations 

as it preserves the area of the PSD function. 

In order to calculate objective function, the maximum of 

the rectangular PSD function (i.e., 𝑠̅w), should be known 

(see Eq. (9)). In the conventional method, 𝑠̅w is an input 

parameter of the problem. Conversely, by using new 

constraint, there is no way to determine 𝑠̅ w from the 

specified input parameter 𝐴̅, since it is the maximum of the 

Fourier Amplitude of the final nonstationary random 

process üg(t), rather than the initial stationary random 

process w(t). Nevertheless, an initial estimation of the 

objective function can be obtained from Eq. (9), using an 

assumption for 𝑠̅w, while the final excitation can be simply 

scaled so that the maximum value of its Fourier Amplitude 

is equal to the specified 𝐴̅. As a consequence, the objective 

function is changed by this modification. However, it can 

be easily corrected by multiplying the corresponding scale 

factor to the initial estimation. 

 

 

4. Numerical examples 
 

4.1 Critical excitation procedure 
 

In this section, the proposed method is used to 

determine critical excitation of three typical shear buildings 

of 10, 16 and 22 stories. These structures are selected as 

representative structures to cover the typical range of low-

rise to high-rise buildings. These buildings are designed as 

steel moment frames, and the mass and stiffness of stories 

are then determined to establish the corresponding MDOF 

models. In other words, these models are well characterized 

by mass and stiffness of the stories, as illustrated in Table A 

of the Appendix. The natural vibration periods of the 

models are calculated as 0.96, 1.66 and 2.26 seconds, for 

shear buildings of 10, 16 and 22 stories, respectively. To 

find the critical excitation for the three models, a target 

ground motion can be used to define the constraints. This 

ground motion can be the largest event recorded near the 

site of the structure. As an example, the 1990 Manjil 

earthquake is selected as the target record, with constraint 

parameters of 𝐼𝐴̅ =1.86 (m/s) and 𝐴̅=6.61 (m/s). Fig. 8 

shows the upper bounds and the total input energy of the 

target ground motion. It can be seen that this record does 

not have remarkable energy content at the natural frequency 

of three models. Therefore, it is more reasonable to use 

corresponding critical excitations, which maximize the 

objective function with the same upper bound of energy. 

The interval of   is determined using Eq. (14) as fallows 

2 2

4 4 9.81 1.86
1.67 ( / )

(6.61)

Ag I
Rad s

A

 
   

 
(15) 

The envelope function used herein is an exponential 

function which is defined as 

t tc e e     (16) 

in which parameters α=0.10 and β=0.35 are chosen so that 

a peak around 8 seconds and a duration of 50 seconds is 

achieved for the final critical excitations.  

Fig. 9(a) shows the initial estimation of the objective 

functions for the three models obtained using Eq. (9) with 

the following assumption 

2

ws A  (17) 

These estimations should be corrected using 

corresponding scale factors after generation of the final 

excitations (see Fig. 9(b)). Unlike the original method, the 

values of the objective functions are not of interest here, 

and only the critical rectangular PSD functions 

corresponding to the peak of these curves are important. 

Therefore, such modification to the objective function 

doesn’t affect the solution of the problem. 

Critical PSD functions of three models are shown in Fig. 

10, from which it is observed that in 22-storey model, the 

rectangular function is determined as separate functions due  
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Fig. 8 Total input energy of the target record 

 

 

(a) 

 
(b) 

Fig. 9 (a) The initial and (b) corrected time-histories of the 

objective functions for the three models 

 

 

to the significant effects of higher modes. It should be noted 

that the height of the rectangular PSD functions in these 

figures are represented schematically. Three sample time-

histories of critical excitations generated based on these 

PSD functions are depicted in Fig. 11. The total input 

energy of these accelerograms as well as the target record is 

drawn in Fig. 12. As illustrated in this figure, the energy 

content of critical excitation for each model has been 

concentrated around its fundamental period. This ensures 

that these excitations will impose a more intense response 

to the structures compared with the target record. Moreover, 

preserving the upper bound of input energy to those of the 

target record provides a rational basis to avoid unrealistic 

and/or too-critical responses. 

Additionally, it can be observed that the critical 

excitation of the 22-storey model, has another peak around 

the period of second mode of the model (1 second). This  

 
(a) 

 
(b) 

 
(c) 

Fig. 10 Critical PSD functions (PSDFs) corresponding to 

the peak of objective functions of (a) 10-story, (b)16-story, 

and (c) 22-story shear buildings 

 

 

represents another advantage of this critical excitation 

method. Since the formulation of problem is based on the 

modal representation of structures, it is possible to exclude 

some modes from the calculation to accelerate the 

procedure (or, just to emphasis on the response of a certain 

mode). 
 

4.2 Dynamic analyses 
 

In order to investigate the reliability of overall dynamic 

response of a structure, when is subjected to the critical 

excitation, compared with a real ground motion, numerical 

dynamic analyses are carried out using three models of the 

previous section. For each model, an energy compatible 

target ground motion has been selected so that its maximum 

input energy is concentrated around the fundamental period 

of that model. To determine these target records, a database 

containing a large number of records has been considered, 

for which the maximum of input energy and corresponding 

period have been calculated. By plotting these parameters 

together, desired records can be readily determined. 

Therefore, these target ground motions can be considered as  
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Fig. 11 Time-histories of generated critical excitations for 

the three models 

 

 

Fig. 12 Total input energies of critical excitations of three 

models 

 

 

“real critical excitation” of each model. These ground 

motions will be used as benchmarks for verification of the 

generated critical excitations. Using these ground motions 

as well as the generated critical excitations, linear dynamic 

analyses are conducted, and the key parameters of response 

(i.e., maximum displacement, drift and acceleration of 

stories) are then compared.  

Based on the target ground motions, the critical PSD 

functions of each model is determined using the method of 

the previous section, and three synthetic accelerograms are 

then generated for the three models. The total input energy 

of target ground motions of each model as well as those of 

the critical excitations are depicted in Fig. 13. This figure 

shows that there is a good conformity in overall shape of 

input energy between target records and the generated 

critical excitations. Figs. 14 to 16 represent the maximum 

story displacement, drift and acceleration of target records 

and corresponding critical excitations. Obviously, the 

pattern of maximum response of stories are similar in all 

cases. However, the responses due to the critical excitations 

are slightly larger as their maximum total input energy at 

the first mode of structures are larger.  

 
(a) 

 
(b) 

 
(c) 

Fig. 13 The total input energy of target ground motions and 

critical excitations of (a) 10-story, (b), 16-story, and (c) 22-

story models 

 
 

4.3 Envelop function 
 

The envelop function parameters (α and β) are important 

inputs of the problem and should be suitably defined in the 

present method. In order to investigate the effect of these 

parameters on the results of the problem, critical PSDF of -

story model is determined using various parameters for the 

envelop function. To consider a wide range of inputs, two 

sets of envelope functions are considered: (1) for a constant 

α=0.1, while β decreases from 0.6 to 0.15, and then (2) for a 

constant β=0.6, while α increases up to 0.55. Since the 

variations are not so remarkable, only four cases of each set 

are represented here. Properties of these envelop functions 

for both sets are listed in Table 1. Given the selected 

duration for the envelop function (50 seconds), the lower 

limit for α is about 0.1, since for the values below 0.1, the 

envelop function does not reach zero at the end (see Fig. 

17). The maximum value for α is equal to the β value, for  
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which the envelope function will be equal to zero. 

Similarly, the minimum value for β would be equal to α. 

The upper limit for β is chosen only to summarize the 

results. The time histories of considered envelop functions 

 

 

 

 

are illustrated in Fig. 18. 

Fig. 19 shows the critical PSD functions for different 

envelop functions. It can be observed from this figure, 

although for each envelop function H(t,w), and consequently  

   
(a) (b) (c) 

Fig. 14 (a) Maximum displacement, (b) maximum interstory drift, and (c) maximum absolute acceleration of 10-story model 

   
(a) (b) (c) 

Fig. 15 (a) Maximum displacement, (b) maximum interstory drift, and (c) maximum absolute acceleration of 16-story model 

   
(a) (b) (c) 

Fig. 16 (a) Maximum displacement, (b) maximum interstory drift, and (c) maximum absolute acceleration of 22-story model 
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Fig. 17 The time history of considered envelop function 

(α=0.05 and β=0.6) 

 

Table 1 Properties of envelop functions of both sets (1) and 

(2) 

Function α β Function α β 

env 1 0.10 0.60 env 1 0.10 0.60 

env 2 0.10 0.45 env 2 0.25 0.60 

env 3 0.10 0.30 env 3 0.40 0.60 

env 4 0.10 0.15 env 4 0.55 0.60 

 

 

the initial estimation of the objective functions are different, 

the critical PSD functions are identical for all cases. 

Therefore, it may be concluded that the critical PSD 

functions are not sensitive to the parameters of this envelop 

function. As a result, these parameters can be arbitrarily 

selected to achieve a certain excitation with desired duration 

and peak position, which corresponds to those of the target 

record. 

 

 

5. Conclusions 
 

In this paper, a new critical excitation method for 

MDOF systems was developed. For the simplicity, a 

displacement-based objective function (The sum of the 

mean-square interstory drift of the shear building) has been 

used in this paper. Results of the present study may be 

summarized as follows: 

The main issue of using the critical excitation methods 

is the selection of appropriate constraints. It has been 

shown that the upper bound of earthquake input energy 

per unit mass called as “the credible bound for 

acceleration constraint” can be considered as a suitable 

constraint for the present critical excitation problem. 

This constraint provides a rational basis to prevent 

unrealistic and/or too-critical responses. 

The simple rectangular PSD function used in this paper 

can be effectively adopted to reproduce ground motions 

with narrow frequency content. The comparison of 

results of linear dynamic analysis of three MDOF 

models of shear buildings under critical excitations and 

target ground motions shows that the generated 

excitations can reasonably estimate the behavior of 

structures, including the maximum displacement, drift 

and absolute acceleration of stories. 

The critical PSD function of this problem is not 

sensitive to the parameters of the envelope function. In 

other words, changing the envelope function only 

changes the initial estimation of the objective function, 

 

 

Fig. 18 The time histories of considered envelop functions 

of (a) set 1, and (b) set 2 

 

 

 

Fig. 19 Critical PSD functions for different envelop 

functions of (a) set 1, and (b) set 2 

 

 

which is corrected in the proposed procedure. As a 

result, parameters of the envelope function can be 

arbitrarily selected to achieve a certain excitation with 

desired duration and peak position, which corresponds 

to those of the target record. 

As the rectangular PSD function does not provide any 

control over the peak frequency of the excitation, the 

method is more efficient for narrow-band target records. 

However, the present method may be extended using a non-

rectangular or continues PSD function in order to resolve 

this issue, which is currently being followed by the authors. 
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Appendix 
 

In the current critical excitation method, the structural 

models are considered as shear buildings. So the model is 

completely characterized by its mass and stiffness. The 

mass and stiffness of all stories for the three models are 

shown in Table A. 

 

Table A Mass and stiffness of stories for the three models 

used in section 4 

Story 

No. 

22 Story 16 Story 10 Story 

Mass* Stiffness** Mass Stiffness Mass Stiffness 

1 414860 1701350 412830 1471800 430410 1277980 

2 414860 984909 412830 988388 430410 928388 

3 414860 826031 412830 864713 430410 844713 

4 414860 727993 412830 857139 430410 757486 

5 413290 683171 406830 709315 408320 712393 

6 413290 645994 406830 600467 408320 678391 

7 412040 620681 406830 588987 397870 481029 

8 412040 606758 406830 565453 397870 406600 

9 412040 588528 401170 407792 387820 335683 

10 412040 571246 401170 362881 387820 255646 

11 410470 569132 388910 335355 

 

12 410470 564321 388910 319770 

13 405690 502010 388910 308930 

14 405690 451029 388910 296260 

15 405690 424393 383260 285646 

16 405690 405066 383260 246260 

17 405690 385741 

 

18 405690 365055 

19 405690 319683 

20 405690 274456 

21 391560 225790 

22 391560 175709 

* Mass unit: kg 

** Stiffness unit: kN/m 
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