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1. Introduction 
 

A central parameter for assessing the earthquake effects 

at a given location is the peak ground acceleration PGA. 

The importance of this parameter is revealed in the 

development of seismic zoning maps and the construction 

of design response spectra used in earthquake-resistant 

construction rules. In order to predict PGA at a site, 

empirical GMPEs (ground motion prediction equations) are 

usually employed. These equations relate PGA to 

earthquake and site parameters through a physical model. 

The development of such equations requires large database 

of recorded responses and associated metadata on 

earthquakes and sites (Stewart et al. 2012, Lussou et al. 

2001, Ambraseys and Douglas 2003, Atkinson 2008, 

Atkinson and Boore 2006, 2011, Zhao et al. 2006).  

In spite of the frequent earthquakes that strike the 

western coast of the American continent (due to subduction 

of Pacific Juan de Fuca, Rivera, Cocos and Nazca plates 

with North, Caribbean and South American plates), the 

number of available accelerograms is rather scarce, being 

the most important records of subduction, for the 

earthquake engineering, those from Chile and Mexico.  

In this paper an empirical neural network NN 

formulation that uses information about magnitude M, site-

source distance D, and focal depth FD from pre-classified 

subduction-zones to predict PGAs at rock-like sites (rock, 

very dense soil or soft rock) is presented. The NN model 

was trained using information compiled in the Mexican 

strong motion database (BMDSF-SMIS 2000) from 1960 to 
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2011. The obtained results indicate that the proposed NN is 

able to capture the overall trend of the recorded PGA´s. 

Actually the neural attenuation curves were tested, to prove 

its applicability to extreme events, with the destructive 

earthquakes that hit Mexican territory the 8th (M8.2) and 

19th (M7.1) September, 2017. 

 

 

2. Neural networks 
 

The artificial neural networks (or simply neural 

networks NNs) together with the fuzzy logic and genetic 

algorithms, conform the symbolic methods of intelligent 

calculations and data processing that are labeled as soft 

computing. A NN is an information processing paradigm 

that is inspired by the way biological nervous systems (the 

human brain) process information (Fig. 1). The fundamental 

element of this paradigm is that is composed of a large 

number of highly interconnected processing elements 

(neurons) congruently working to solve specific tasks. This 

interconnected system has many simple processing 

elements operating in parallel (the neuron functioning is 

determined by network structure) through connection 

strengths. A NN mimics the brain because the knowledge is 

acquired by the network through a learning process 

(examples presentation) and the interneuron connections 

(the called synaptic weights) are used to save this 

knowledge (Haykin 1999).  

The NNs development and application emerge from the 

desire of creating an artificial “intelligent” system for data 

calculation and processing. A NN and a biological neural 

network have similar structure, functions, and methodology 

of calculation and response. This artificial model of 

learning is a simplified mathematical model that can 

simulate the basic characteristics of the biological nerve 

system. The NNs are capable of gathering, memorizing and  
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Fig. 1 A simplified scheme of biological and artificial neural 

networks (modified from Fasel 2003) 

 

 

processing numerous data, they analyze large number of 

data in order to learn from them and to derive solutions to 

complex problems. 

Once a neural network is trained, it serves as an 

analytical tool for efficient forecasts (or responses) for any 

input set of data which were not included in the learning 

process of the network. The neural control is reasonably 

simple and easy and the results can become very correct and 

precise. The remarkable ability of NNs to derive meaning 

from complicated or imprecise data is very attractive to 

implement them to extract patterns and detect trends that 

are almost impossible to be detected by humans or 

conventional computer techniques, however, neural 

networks and conventional algorithmic computers are not in 

competition but complement each other. Other NN 

advantages include: adaptive learning, self-organization, 

real time operation and fault tolerance via redundant 

information coding (Csáji 2001). 

In the following a brief explanation of the NN basics is 

presented in order to make this paper self-contained. For the 

interested reader, detailed explanations and algorithmic 

demonstrations of the tool can be found in the referred 

readings (Cybenco 1989, Hornik 1991, Hassoun 1995, 

Haykin 1999, Csáji 2001).  

 
2.1 Architecture of neural networks 
 

In general, the artificial neuron receives the input signals 

and generates the output signals; data from the surrounding 

or output from other neurons can be used as input signal. An 

NN is composed of numerous mutually connected 

processing units grouped in layers: the input (first), the 

output (last) layer and as many as necessary hidden layers 

(Fig. 1). The input layer receives data from the 

surroundings and sends the information to the hidden layers 

where is processed. This intermediate layer is connected to 

the output layer. The NN results are the outputs of the last 

network layer and that is considered the solution or 

prediction for the considered set of inputs.  

The different networks are because of the number of 

layers (one layered and multi layered networks), the 

connection type between neurons (layered, fully connected 

and cellular), the learning process (feed forward and 

feedback), the data type (binary and continuous networks), 

the course of information spreading (supervised, partly 

supervised and unsupervised networks), etc. (Bose 1996). 

But the characteristic common to any of the different types 

of networks is their ability of discovering patterns inside 

complex data and that they generate outputs even though 

the input data are not completed or contaminated.  

In this investigation the training process of the neural 

models consists of data conduction through the network and 

comparison of the received input values with the expected 

ones (supervised training). In order to minimize the 

difference between expected and evaluated values, weights 

adjustment (modification of the neuron connections) has to 

be made. By adjusting the weights, the desired output of a 

NN, for specific inputs, can be obtained in a process that is 

known as learning. For NNs with hundreds or thousands of 

neurons, it would be quite complicated to find the required 

weights so it is necessary to use algorithms which can, 

massively, adjust the NN weights based on desired outputs. 

In the following, a scheme to discover weights, the training 

backpropagation algorithm (Rumelhart and McClelland 

1986), will be explained. It is one of the most common and 

applied method used in successful NN applications (Shahin 

et al. 2008, 2009, Moreshwar 2013) and also it is the one 

adopted in this investigation. 

 
2.2 The backpropagation algorithm 

 
Despite its publication in the 70´s, the backpropagation 

algorithm BP was respected until the 1986 presentation of 

Rumelhart and McClelland (1986) where was shown how a 

NN trained with BP works far faster than earlier 

approaches, making it possible to solve problems that had 

been considered impenetrable. The BP algorithm is used in 

layered feedforward NNs and supervised learning, which 

means that the modeler specifies the task with examples of 

the inputs and their corresponding outputs. 

Backpropagation as an optimization technique, uses 

gradient descent to minimize error in the predictions 

calculating the gradient of the error function of any given 

error function. 

The procedure begins with random weights that are 

adjusted so that the error will be minimal. The activation 

function of the neurons in NN implementing the 

backpropagation algorithm is a weighted sum (the sum of 

the inputs X𝑖 multiplied by their respective weights W𝑗𝑖) 

( ) 
=

=
n

i

jiij WXWXA
0

,  (1) 

The neuron activation depends only on the inputs and 

the weights. If the output function would be the identity 

(activation = output) then the neuron would be called linear. 

In this investigation is used the most common output 

function, the sigmoidal 
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The aim of the training process is to obtain a desired 

output when certain inputs are given. Since the error is the 

difference between the actual and the desired output, the  
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Fig. 2 Illustration of various measures of distance to fault 

rupture plane for dipping and vertical faults (modified from 

Gupta 2006) 

 

 

error depends on the weights. The error function for the 

output of each neuron is defined as 

( ) ( )( )2,,, jjj dWXOdWXE −=  (3) 

In the BP algorithm once the output, inputs, and weights 

are known the weights adjustment is done using the method 

of gradient descendent 

ji

ji
W

E
W




−=  (4) 

A complete explanation of the backpropagation 

algorithm can be checked in the suggested reading (Werbos 

1994, Jeremias et al. 2014). 

 

 

3. Data set 
 

The database used in this study is an updated version of 

those used by other researchers (Ordaz et al. 1989, Arroyo 

et al. 2010, Rodríguez-Pérez 2014) to develop attenuation 

models for México. The selected events were recorded at 

rock-like sites in accordance with the availability of records 

from predefined seismic environments for subduction 

region. Episodes dates range from 1960 to 2011 and the 

recordings poorly defined (in magnitude, focal mechanism, 

or site-source distances) were removed from the set. To 

assess the predicting capabilities of the neuronal model, 

20% of all records was excluded from the data set, of this 

percentage 10% was used to test and the remaining 10% to 

validate the model. While training, the evolution of the 

testing errors is used to calibrate the learning process 

whereas the validation cases are applied to qualify the NN 

performance as a completed model.  

One of the most exceptional testing cases (separated 

from the records used to build the network) was the 19th 

September 1985 (M8.1) Mexican earthquake, allowing 

assess the potential of the model to predict responses to 

extreme events. 

The moment magnitude Mw was selected as the 

magnitude scale to describe the earthquakes size, resulting 

in a uniform scale for all intensity ranges. If the user has  

 

Fig. 3 Predefined seismic environments for Mexican 

subduction (modified from Ordaz and Reyes 1999) 

 

 

Fig. 4 Dynamic range of M, D and FD related to the PGA 

values 

 

 

another magnitude scale, the empirical relations proposed 

by Scordilis (2006) can be used. In this document it will be 

used merely M to refer to this parameter. The site-source 

distance, D (in km) is the smallest value between i) the 

hypocenter distance Rhypo, ii) the epicenter distance Repic and 

iii) the closest distance to fault rupture plane Rrup (Cambell 

1981) (Fig. 2). This selection criteria has the best effect on 

predictions for extreme earthquakes (Gupta 2006). The 

parameters that complete the set of independent inputs of 

the model are the FD (in km) and the membership of one of 

the five-subduction regions predefined in (Ordaz and Reyes 

1999) (see Fig. 3).  

The dynamic range of these variables is depicted in Fig. 

4. The interval of M goes from 3 to 8.1 and the events were 

recorded at near (a few km) and far field stations (about 900 

km). The depth of the zone of energy release ranged from 

very shallow to about 150 km. 

 

 
4. Development of the attenuation model 
 

The NN proposed here is a feed-forward back-

propagation (FFBP) with total connection. The inputs are 

the source-site parameters, previously defined, and the 

output is PGA (Fig. 5). The starting hidden structure of the 

neural network follows the recommendations given by  
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Fig. 5 NN structure: 3 inputs (two of them are a double-

node), 1 hidden layer and 1 output 

 

 

Fig. 6 Measured and Calculated PGA’s, training and testing 

cases (triangle symbol points to the devastating earthquake 

of 1985, which is a test case) 

 

 

Seung and Sang (2002). The minimum number of epochs is 

set to 5000 and the updating of weights is done by batch (all 

the inputs in the training set are applied to the network 

before the weights are updated). The activation function for 

neurons in the input and hidden layers is sigmoid while 

linear function is used for the output layer. As criterion of 

completion of the training stage the best MSE (the mean 

squared error) between the PGAs calculated and those 

registered is set to 0.1 cm/s2. 

Many topologies (changing the number of nodes and 

hidden layers) were ran to determine which structure better 

described the data. The neural attenuation model is 

qualified by validation analyses comparing neural 

predictions with those PGAs excluded from the original 

database. In Fig. 6 the residuals of the neural model of PGA 

are shown, any noticeable bias with distance, magnitude, or 

depth is observed. These graphs indicate that the topology 

selected as optimal (three inputs, 120 nodes in 1 hidden 

layer, one output) behaves consistently within the full range 

of inputs, even in extrapolation. Note that the extreme 

earthquake of 19th September 1985 is a well-predicted 

testing case. 

The inclusion of D as a crisp value and the membership 

of one of the five subduction regions (a seismogenic class) 

substantially improved the fit, mainly at close distances. 

Another parameter included as a pair of nodes is the focal 

depth. It was found that for inslab events large errors were 

obtained for deep and intermediate FD, which forced the 

introduction of support node. Then FD is a double input, the 

crisp value (depth in km) and a category (shallow for 

FD<50 km and deep-focus for FD>50 km). 

Fig. 7 shows neural-attenuation curves constructed for 

M 5, 6, 7, 8 and 9. Each graph represents 10, 15, 30 and 50  

 

Fig. 7 Neural-attenuation curves for subduction Zone II 

(left) and Zone III (right). 

 

 

km focal depths and zones II and III, respectively. The paths 

expose that the estimated horizontal PGA is mainly 

dependent on the M. Although deep-focus instances 

represent a minimum percentage of cases in the training set, 

the addition of the two nodes allowed them to be 

sufficiently representative to generate useful curves; the 

differences between classes are evident. As illustrated in 

Fig. 7, deeper events has a response behavior that is closely 

linked to the seismogenic class while for more superficial 

events the term that seems to have the greatest effect on 

PGAs is the distance site-source. 

In Fig. 8 the NN predictions for a set of Mexican sites, 

not included as training cases, are presented. For the full 

range of site-source distances, the neural forecasts are 

accurate enough. It is recalled that none of these stations is 

contained in the database with which the neural network 

was built. The curves closely follow the behaviors recorded 

at stations on the coast and at other points in the area of 

rock deposits in the capital.  

To demonstrate the advantage of this tool, the results of 

the neuronal model and curves obtained with the Ground 

Motion Prediction Equations published by other authors 

(normally used in seismic hazard assessment in Mexico), 

are compared. As can be seen in Fig. 9 the results obtained 

(Ordaz et al. (1989), Arroyo et al. (2010), Rodríguez-Pérez 

(2014)) are considerably lower than the PGAs registered 

while the neural predictions are very close to the trend of 

the measurements. 

In Fig. 11 the horizontal PGA values for Chilean 

earthquakes of the indicated magnitude are placed on their 

respective neural curves. The NN curves are graphed and 

compared with those obtained using conventional 

attenuation models. It is considered that the Chilean events 

belong the seismogenic class IV. While Youngs et al. (1997) 

formula does not reproduce Chile earthquake data properly 

(estimated values remain very low with respect to Chile 

expected PGA), Saragoni and Concha (2004) curves are 

nearer to the recordings. However this attenuation model 

has problems with closer distances and M<6 (it 

overestimates the data). Observe how the neural network 

behaves very well to all the events indicated by showing 

great flexibility to adapt to the combination of input 

parameters. 
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Fig. 9 Comparison of the attenuation curves from this study 

and some other for interplate earthquakes in central Mexico 

 

 

Fig. 10 Some values of PGAs registered in the world, Asia-

Pacific Zone, on neuronal curves 

 
 
5. Extreme Mexican events of 2017 

 

Using some previously published attenuation curves 

(García et al. 2017), constructed with the model presented 

here, the neural performance before the extreme 

earthquakes that recently struck the Mexican territory, is 

shown.  

On 8th September, 2017, the Servicio Sismológico 

Nacional (National Seismological Service of Mexico) 

reported an earthquake M8.2 (Mw) with epicenter located 

in the vicinity of Pijijiapan, state of Chiapas and focal depth 

 

 

 

Fig. 11 Comparison between Chilean GMPE and the NN 

attenuation curves 

 

 

of 58 km (Fig. 12). The mechanism was a normal fault, 

characteristic of the Mexican intraplate earthquakes where 

the Cocos plate is subducting below the North America 

plate. This event was also the second strongest recorded in 

the country's history, behind the magnitude 8.6 earthquake 

in 1787 (Núñez-Cornú et al. (2008)) and the most intense 

recorded globally in 2017 (USGS 2018). 

Twelve days later, on 19th September, central Mexico 

was struck by an earthquake M7.1 (Mw) with epicenter 

between the states of Puebla and Morelos (at 12 km 

southeast of Axochiapan, Morelos and 120 km from Mexico 

City). The focal depth was 57 km in a hypocentral section 

perpendicular to the Mesoamerican trench. The hypocenter 

of the earthquake occurred just below the continental plate, 

in the Cocos plate (Fig. 13). It is not uncommon the 

occurrence of earthquakes between the states of Puebla and  
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Fig. 8 Neural attenuation curves and a set of rock-like sites, validation cases 
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Fig. 12 Seismicity in Mexico (modified from Vladimir and 

Pacheco 1999) 

 

 

Fig. 13 Plate tectonics subduction (SSN-UNAM 2017) 

 

 

Morelos, see the Fig. 12 where the epicenter of the 

earthquake of 19th September 2017 and other events of 

magnitude greater than M7 are shown. The most recent of 

considerable magnitude (occurred on 24th October 1980, 

M7.1) was located 19 km west of Acatlán de Osorio, 

Puebla. 

For exploring the generalization capabilities of this 

neural model, in 2016 the attenuation curves for two 

magnitude intervals (M7.8- M8.2 and M5.8 - M6.2) were 

constructed (García et al. 2017). In that publication, it was 

proved that the proposed attenuation law was sufficiently 

useful for practical purposes, the predictions agree well 

with the general trend. The PGA recorded in Ciudad 

Universitaria CU-station (rock-like site) during the 8th 

September event is placed in that graph (Fig. 14). As can be 

seen the NN approach own great flexibility as it is 

demonstrated by the good agreement between estimations 

and data recording. The results shown that the neural 

network can extrapolate beyond the range of available data, 

even before extreme values of magnitude and distance 

source-site. 

Two weeks after the M8.2 earthquake a new extreme 

event struck the country. The 19th September 2017 

earthquake caused damage in the Mexican states of Puebla 

and Morelos and in the Greater Mexico City area, including 

the collapse of more than 44 buildings. 370 people were 

killed by the related building collapses, including 228 in 

Mexico City, and more than 6,000 were injured. The event 

occurred at an intermediate depth of 57 km within the 

Cocos plate with an intraplate-normal-faulting mechanism. 

The epicenter was located at 12 km southeast of 

Axochiapan, Morelos, and about 120 km from Mexico City. 

The closest distance from Mexico City to the rupture zone 

is approximately 105 km (SSN-UNAM 2017, Cruz et al. 

2017). 

 

Fig. 14 Some registered PGAs during the September 8th 

2017 event, the highest curve is for M8.5, the middle one is 

for M8 and the lowest is for M7.5 

 

 

Fig. 15 Recordings during the September 19th 2017 event, 

comparison between the neural curves (dotted lines) and a 

GMPE (García et al. 2005) (continuous lines) 

 

 

The greatest acceleration recorded in Mexico City was 

in the Culhuacán station (Lake Zone, very-soft clays 

deposit) with a PGA =226 gals and a maximum spectral 

acceleration of 1548 cm/s2 for a period of 1.42 sec. During 

the devastating event of 1985, in CU station the PGA 

registered was 30 gals (1 gal =1 cm/s2), while in 2017 the 

maximum acceleration was 57 gals. That is to say that the 

deposits in the area near CU experienced a shock twice as 

much as in 1985. If this registered information is collocated 

in the space where neural-curves for M7.0 and M7.5 

(seismogenic class V) were constructed the notable NN-

abilities are revealed (Fig. 15). As can be verified, the 

estimated curves are very close to the trend of the measured 

PGA (the registered acceleration is closer to the M7.5 than 

to the M7 curve). These results prove that the model is 

capturing the physical attenuation mechanisms of the 

Mexican subduction zone.  

Despite the good results shown and the exceptional 

capabilities of the neuronal attenuation model, it should be 

noted that the validity of any kind of GMPE (even one 

constructed with artificial intelligence, particularly with 

NNs) derived from the data of tectonic setup used for 

developing the equation; it is therefore recommended that 

the results shown here as well as the neural instrument itself 

be used with caution. For employing a GMPE in any region 

of the world, the designer or analyst should first test it 

against the data that are present in that region which and 

then decide about the applicability of the GMPE. 
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6. Conclusions 
 

This paper presents the application of neural networks to 

estimate PGA at rock sites for Mexican subduction 

earthquakes. The results show that the NN is capable of 

predicting the acceleration values with useful accuracy. 

Even though the records from deep-focus, large magnitudes 

and distant events are scarce, paths about PGA evolution 

with increasing focal depth and with those magnitudes and 

distances that are critical for estimating seismic hazard, are 

well followed by the neural model.  

Unlike the regression models that has an obvious 

dependence on completeness and quality of data, the neural 

approximation interpolates and extrapolates adequately 

despite lack large magnitude and far-field data. Exactness in 

the location of an epicenter has a through influence in the 

calculation of the distance and depth inputs for any 

attenuation equation. In this study, the election of the 

closest distance plus the election of a predefined subduction 

region, and the accompaniment of focal depth with a class, 

was enough to make the precise earthquake location should 

be not so important. The appropriate performance of the 

network is tested before extreme events, being remarkable 

the results for 19th September 1985 (M8.1), and those for 8th 

(M8.2) and 19th September, 2017 (M7.1).  

The NN is straightforward to use and to implement in 

practice and can be adjusted almost in real time with direct 

feed from the accelerographic stations. This aspect is very 

important since it is evident that the NN needs as many 

training cases as possible. For phenomena such as seismic 

in which the absence of data is a constant, overfitting is a 

prohibitive danger and this should be avoided (as in any 

other model or GMPE) by systematically facing test cases 

and making the necessary modifications.  

As in other stages of history, in terms of science and 

technology, communities are faced with the use and 

exploitation of tools (as the NNs) that challenge traditional 

approaches. Derived from its black box nature, the 

interpretation of the internal behavior of the network is very 

difficult and this is a limitation to achieve acceptance 

among professionals involved in the subject but it is in the 

hands of the developers to present the results and the 

investigations themselves in a solid and sufficiently 

attractive manner so that positive changes are generated in 

the state of the art and practice.  
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