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1. Introduction  

 

In the past two decades, a large number of studies have 

been carried out on the development and implementation of 

active, semi-active and hybrid control of structures (e.g., 

Connor 2003, Adeli 2004, Kim and Adeli 2004, Adeli and 

Jiang 2006, Jiang and Adeli 2005), and various control 

strategies such as sliding mode control have been proposed. 

However, most of the research has focused on the 

application of classical linear control theory, such as linear 

quadratic regulator (LQR) feedback control algorithm and 

linear quadratic Gaussian (LQG) control algorithm. In order 

to implement the LQR regulator, we must be able to 

measure all states of the system. This is obviously an 

unrealistic assumption, and we can only measure the sensor 

output. All sensors have noise, which means our 

measurements are not perfect. In addition, real systems 

always have some type of interference or process noise that 

affects them, which destroys the state equation. Therefore, 

we need a way to reconstruct our equations of state and 

generate their estimates, using our noise measurements and 

considering the interference entering the factory. We will 

not delve into the details of probability theory in this article, 
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but jump directly into the results. Readers interested in this 

topic can refer to the original paper by Kalman (1963). 

These algorithms only effectively control the structural 

response when the structure is small and a linear behavior is 

assumed. In order to effectively design a system control 

theory for a building, an effective control system and 

standard is needed that can reduce total consumption 

without compromising the user's preferred deployment 

within the building. In the literature, many methods have 

been proposed to achieve this goal by trying different 

control theorems, but all of these methods face some 

problems in correctly solving the problem. The 

Evolutionary Bat Algorithm (EBA) is one of the recently 

introduced optimization methods and has attracted the 

attention of researchers to solve different types of 

optimization problems. This paper applies EBA to the 

optimization of building control design, which is one of the 

most interesting optimization problems in recent years. The 

optimized parameter is the input to the fuzzy controller, 

which gives the status response as an output, which in turn 

changes the state of the associated actuator.  

In recent years, fuzzy logic control (FLC) has been used 

in many successful real-world control applications since the 

success of the presentation in Zadeh (1965) (Kickert and 

Mamdani 1978, Braae and Rutherford 1979, Chang and 

Zadeh 1972, Buvana and Jayashree 2019). Despite the 

success, it is clear that many basic issues remain to be 

resolved. In this paper, the Takagi-Sugeno (T-S) fuzzy 

dynamic model consists of fuzzy IF-THEN rules (Takagi 

and Sugeno 1985), which represent the local linear input-  
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output relationship of systems. This simple and versatile 

modeling approach attempts to express each fuzzy meaning 

through a linear system model. This allows us to use linear 

feedback control techniques with stable feedback. Wang et 

al. (1996) introduced the concept of a parallel distributed 

compensation (PDC) scheme. Used to design a fuzzy 

controller to stabilize the fuzzy model. Our idea is to design 

a compensator for each rule of the fuzzy model. Since each 

control rule is designed separately according to the 

corresponding rules of the T-S fuzzy model, the linear 

control design technique can be used to design the PDC 

fuzzy controller. The resulting overall fuzzy controller is 

typically non-linear and is a fuzzy blend of each individual 

linear controller. The fuzzy controller of each rule shares 

the same fuzzy set as the fuzzy model in the premise 

section. 

In addition, intelligence is also a popular area that has 

caught the attention of many researchers. Many algorithms 

are inspired by the wisdom of creatures in nature, and these 

algorithms are included in this field. In general, swarm 

intelligence methods require evolutionary computation and 

mimic the specific behavior or survival skills of the 

creature. For example, Tsai et al. (2012) presented the bat-

based prey discovery process proposes the Evolutionary Bat 

Algorithm (EBA). The algorithms have been applied to 

solve many problems in engineering. In this paper, the EBA 

is applied to the optimization of control design of buildings, 

which is one of the most concerned optimization problems 

in recent years. The optimized parameters are the input to 

the fuzzy controller, which gives response of states as an 

output, which in turn changes the state of the associated 

actuator. The closed-loop building system’s behavior can be 

rigorously predicted and controlled by establishing the 

controller design procedure closed-loop fuzzy system in 

Fig. 1. 

 

 

2. Composite structure problems and motion 
systems 

 

 

Assume that the equation of motion for a shear-type-

building modeled by an n-degrees-of-freedom system 

controlled by actuators and subjected to ground excitation 

can be written as follows 

 
(1) 

where X x x x Rn

T n [ , , ]1 2   is an n-vector denoting 

the interfloor drift of the designated ith story unit. Matrices 

M, C and K are n×n mass, damping and stiffness matrices, 

respectively. The m-dimensional control force vector U(t) 

corresponds to the actuator forces (generated via active 

tendon system or an active mass damper, for example); this 

is only a static model, neglecting the dynamic equations of 

actuators. A discussion of their dynamic delay effects is 

given in the following section. 

For controller design, the standard first-order state 

equation corresponding to Eq. (1) is  

 
(2) 

where X X XT T T [  ]  is a 2n vector and 
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We have come to the LQ regularity, which lacks the 

assumption that all states are available for measurement, 

and we have also developed a Kalman filter that produces 

the best estimate of the state in the sense of equation. We 

can put them together and use a minimum standard control 

law (Athans et al. 1986). A so-called linear quadratic 

Gaussian or LQG optimal controller is obtained. The 

solution to the LQG problem is defined by the separation 

principle, which states that the best results are achieved by 

using the following procedure. First, the best estimate of 

state X(t) is obtained, and then the estimate is used as if it 

were an accurate measure of the state to solve the 

deterministic LQ control problem. Since both the LQ 

regulator and the Kalman filter are robust, it is expected that 

the LQG optimal controller will generally produce good 
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Fig. 1 Introduction the complete design procedure 
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robustness. Doyle and Stein (1981) has demonstrated that 

the LQG optimal controller can exhibit an arbitrarily poor 

stability margin. A fundamental limitation of LQG to 

structural control is the lack of robustness; that is, if the 

modeled plant dynamics of the model are different from the 

actual plant dynamics (only slightly), then predicted on the 

wrong model when finally interconnected with the 

structure. LQG designs can create unstable closed loop 

systems.  

LQG/LTR is an elegant method for achieving the 

required system performance and maximum robustness in 

the design of feedback control systems (Doyle and Stein 

1981, Stein and Athans 1987). In a sense, it is an integrated 

process that uses frequency and time domain concepts. 

Performance and robustness requirements are specified in 

the frequency domain, while most calculations are done in 

the time domain. The solution program basically involves a 

two-step approach. First, design a Kalman filter with the 

required loop transmission characteristics. Then a series of 

LQ feedback regulators close to the ideal limit are designed, 

which makes the stability margin asymptotically close to 

the stability margin of the Kalman filter. This method is 

easy to implement because it mainly involves repeated 

solutions of the algebraic Riccati equation. 

The first step of the design process is to shape the 

singular values of the so-called target feedback loop (TFL) 

in the frequency domain. The Kalman Filter methodology 

can be applied to the TFL design. Consider the fictitious 

stochastic state dynamics 

)()()(

)()()()(

tntXCtY

ttUBtXAtX

a

aaa



 
         (3) 

where fictitious process noise ε(t) is white, zero mean, with 

unity intensity matrix, and the measurement noise n(t) is 

white, zero mean, and with intensity matrix equal to I. The 

solution to the Kalman Filter problem yields the formula for 

calculating the filter gain matrix L P Cf a

T ( / )1   and Pf is 

the constant, symmetric, positive semidefinite matrix which 

is the solution to filter algebraic Riccati equation 

 (4) 

A distinction must be noted in this procedure; the 

Kalman filter formula and concepts are used as a means to 

an end, rather than in a precise optimal stochastic estimation 

and control context. The second and final step of the 

LQG/LTR design process involves the “recovery” of the 

TFL transfer matrix GTFL(s) by the compensated plant 

transfer matrix Ga(s)KLQG/LIR(s). The LQG/LTR method 

allows us to find KLQG/LIR(s) so that there is an approximate 

relation Ga(s)KLQG/LIR(s)≈GTFL(s) over the band of 

frequencies relevant to our concerns for robustness and 

performance. The LQG/LTR controller belongs to the class 

of so-called model-based controllers. One feedback loop 

involves the filter gain matrix L and the other loop involves 

controlling the gain matrix F. The filter gain L is fixed to be 

found in the TFL, as discussed in the first design step. The 

only remaining design gain matrix in K(s), the control gain 

matrix F, is calculated by a solution called the Low Cost 

Control Linear Quadratic Regulator (LQR) problem, as 

described below. 

Let the state weighting Qc and the control weighting Rc 

be chosen as Q C C R IC a

T

a C ,   where  is the 

recovery parameter. To compute the control gain matrix F 

for the LQG/LTR controller, we solve the algebraic Riccati 

equation  

 (5) 

The presence of a general performance limit 

(Maciejowski 1989) within the right half of the system's 

required bandwidth is not considered a charge for the 

method. 

The structural model order reduction problem can 

generally be said as follows: Given a complete order 

structure model G(s), find a low-order model, such as an rth 

order model, so that G(s) is close in some sense. In this 

report, we hope that the reduced structural model is like 

 
(6) 

 

and the additive modeling error is small in infinity norm. 

The state space truncation method removes unimportant 

states from the state space model. Without loss of 

generality, let us ignore the effects of earthquake excitation 

and consider the full-order structural model G(s) given by 

 
(7) 

Divide the state vector X into components to be retained 

and components to be discarded 

 

(8) 

The r-vector contains the components to be retained, 

while the (n-r)-vector contains the components to be 

discarded. Now partition the matrices A, B and C 

conformably with X to obtain 

 
(9) 

If X2(t) represents the fast dynamics of the system, we 

may approximate the low-frequency behavior by setting 

Ẋ2(t)=0. This gives the quasi-steady-state solution (Lu et al. 

1998) 

 (10) 
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1  is nonsingular. 

Eliminating X2(t) from Eq. (7) yields 
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(11) 

The rth-order reduced model given by state-space 

truncation method is  
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Fig. 2 Uncertainty representations for the active structural 

control system 

 

 

The state-space truncation is a simple but general 

procedure for generating reduced-order models. Because 

G(s) can have an infinite number of state-space realization 

by means of nonsingular transformation, there are, in 

principle, an infinite number of candidate truncation 

schemes. The property of the reduced-order model depends 

on the realization selected for truncation; for a truncation 

scheme to be useful, it must preserve stability and carry it 

with a guaranteed error bound. 

Although there are an infinite number of different state 

space implementations for a given model G(s), the analysis 

of the degree of participation in states in the energy transfer 

from past inputs to future outputs drives the consideration 

of balanced implementation as an appropriate 

implementation.  

Consider the LQ (Linear Quadratic) problem 

 
(13) 

subject to  

 (14) 

with 

 (15) 

From the result of Moore (1981), we can conclude that 

 
(16) 

Model reduction by balanced truncation simply applies 

the truncation operation to a balanced realization of a full-

order model G(s). Furthermore, it satisfies the twice-the -

sum-of-the-tail infinity norm bound (Enns 1984) 

 
(17) 

where the infinity norm is defined as  

 
(18) 

Recall that singular values of matrix A are the square 

roots of the eignvalues of A*A; i.e. 

 
(19) 

 

where A* is the complex conjugate transpose of A 

(Maciejowski 1989). And ( )A and ( )A  denote the 

maximum and minimum singular value of A respectively. 

The following lemma and definition quantify the 

tolerable size of 
~

( ) a s  in terms of singular value of  ( )G sr
 

and establish a relationship with the achievable control-loop 

bandwidth. 

The following lemma and definition quantify the 

tolerable size of 
~

( ) a s  in terms of singular value of  ( )G sr
 

and establish a relationship with the achievable control-loop 

bandwidth. 

Lemma 1: Consider the system shown in the Fig. 2. 

Suppose that 
~

( ) a s  has no unstable poles and that the 

controller stabilizes the reduced order structural model 
 ( )G sr

. If for all frequency  

 

(20) 

then controller K stabilizes the full order structural model 

G(s). Given G(s),  ( )G sr  and ~
( ) a s  as defined earlier, the 

robust frequency is 

 
(21) 

Loosely speaking, the bandwidth of a control system is 

the frequency range where the open-loop transfer function 

is large, i.e. 

 (22) 

for all 

 (23) 

Notice (23) implies  

 (24) 

and 

 
(25) 

The significance of the robust frequency in the context 

of model reduction is that the frequency is an upper bound 

on the bandwidth B of any control system whose 

controller is designed on the reduced order model  ( )G sr
. 

Fig. 3 shows the closed-loop configuration of the 

feedback control system with the controller K(s) to be 

designed on the reduced-order model. From Fig. 3 the 

following equation can be derived 

 

 

(26) 

For controller design, the additive model error can be 

considered as high frequency modeling uncertainty, and the 

effect of can be ignored from the preliminary controller 

design. This performance consideration must be tempered 

with a bandwidth limitation so that high frequency 

unmolded dynamics do not cause system instability, while 

the decision of system bandwidth is usually based on the  
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hard constrain: and some engineering judgments. In order to 

improve the low frequency performance of the feedback 

control system, the plant can augment with integrator one in 

each control channel before the LQG/LTR controller is to 

be designed. The overall outer-loop controller is 

K I s KLQG LTR(s) ( / ) (s)/
 (27) 

Define 

 (28) 

to be the augmented system consisting of reduced-order 

model and the integrator one in each control channel. The 

state-space representation of can be written as  
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then the LQG/LTR design procedure can be followed to 

design the controller KLQG/LTR(s) for augmented system 

Ga(s). 

 

 

3. Intelligent control system 
 

3.1 Modified system 
 

Consider a system N(0;0) described by the following 

equation (Gauthier et al. 1994, Kapitaniak et al. 1993) 

) ,()( uxftx   (34) 

where x(t) is the state vector, u(t) is the input vector and f is 

a vector-valued function which satisfies those assumptions 

of general continuity and boundedness given in Steinberg 

and Kadushin (1973). 

 

 

For the convenience of presenting the control system 

structure in this paper, the remainder of this section is 

divided into two parts. The Takagi-Sugeno fuzzy model of 

the system is established and the PDC technique is used to 

design a fuzzy controller, and a stability criterion is given to 

determine whether the closed-loop fuzzy system F(C,0) is 

stable. 

The closed-loop fuzzy system F(C,0) 
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Which be rewritten as 

 

 

(35) 

For the convenience of the stability analysis, we assume 

that Q=P
-1

 (is a common positive definite matrix) and we 

can further define Wi=KiQ,  so that for Q>0 we have 

Ki=WiQ
-1

. Hence, according to the Lyapunov approach, the 

following lemma is given to guarantee the asymptotic 

stability of F(C,0). 

Lemma 2 (Wang and Tanaka 1996) The closed-loop 

fuzzy system is asymptotically stable in the large via PDC if 

there exist a and, such that the following linear matrix 

inequality (LMI) conditions hold 

 
(36) 

In the following, based on Lemma 2, we synthesize a 

fuzzy controller to stabilize the system. However, not every 

fuzzy controller can satisfy the stability criterion. This 

implies that there may be no fuzzy controller available to 

stabilize. Hence, the closed-loop fuzzy system is classified 

into two types. 

1) Type 1:. If is a common positive definite matrix and 

the stability conditions in Lemma 2 are satisfied, then the 

fuzzy controller can stabilize. 

2) Type 2:. If  is not a common positive definite matrix 

or the stability conditions in Lemma 2 are not satisfied, then 

the fuzzy controller and the dither (as an auxiliary of the 

G s G s I sa r( )  ( )( / )









 



r

ji
ijji

r

i
iiiii txGtxwtxwtxKBAtxwtxw

W
tx )())(())((2)(})){(())((

1
)(

1











 



r

ji
ijji

r

i
iiiii txGtxwtxwtxKBAtxwtxw

W
tx )())(())((2)(})){(())((

1
)(

1



0
T

i

T

iiii

T

i BWWBQAQA

 

Fig. 3 The closed-loop configuration of the feedback control system 

n(s)

sensor noise

G(s)

reduced order model

d(s) disturbance

K(s)

controller

r=0

command

K

additive model error

Y(s)

Y(s)

Sum3

Sum2
Sum1

Sum

311



 

Tim Chen, Alex Bird, John Mazhar Muḥammad, S. Bhaskara Cao, Charles Melvilled4 and C.Y.J. Cheng 

 

fuzzy controller) are simultaneously introduced to 

asymptotically stabilize the system when the fuzzy 

controller cannot stabilize F2(C,0). 

Therefore, in the remainder of this paper, attention is 

devoted to the stability analysis of F2(C,0). 

 

3.2 Stability of fuzzy control 
 

The T-S fuzzy model of the model NR(0;0) is 

established. Subsequently, a fuzzy controller is obtained via 

the PDC scheme. 

The ith rule of the fuzzy model FR(0;0) is represented as 

follows: 

Model Rule: 

The ith rule of the fuzzy controller is given as follows: 

Control Rule i: 

IF )(1 txR  is ),(1 mm

R

iM   and … and 

)(txRk  is ),( mm

R

ikM   

THEN )(),()( txKtu RmmiR  ,       (37) 

Thus, the overall fuzzy controller is 

 

(38) 

The derive the closed-loop fuzzy system FR(0;0) as 

follows 

 
(39) 

From above discussion, we can infer that if the dither 

has a sufficiently large frequency and a proper membership 

function is chosen, the trajectory of the closed-loop fuzzy 

system and that of the closed-loop system would be made as 

close as desired (Zames and Shneydor 1976, 1977, Wang 

and Abed 1995). This enables a rigorous prediction of the 

stability of the closed-loop system by establishing that of 

the closed-loop fuzzy system. 

 

 

4. Stability design and EBA fuzzy algorithm 
 

Hereafter, we are concerned with the stability of the 

closed-loop fuzzy system FR(C;0) instead of discussing the 

stability of the closed-loop system N(C,d). Hence, the 

stability criterion of FR(C;0) is presented in the following. 

Theorem 1 The closed-loop fuzzy system is 

asymptotically stable in the large via PDC if there exist a 

Q>0 and Wi(αm, βm), i=1,2,…,r such that the following LMI 

conditions hold 
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(40) 

where  

QKW immi ),(   , QKW jmmj ),( 
. 

The proof of the above theorem can be similarly derived 

by following the same procedure as that in the proof of 

Wang and Tanaka (1996) but being replaced by Ai(αm, βm), 

Aj(αm, βm), Wi(αm, βm) and Wj(αm, βm), respectively. This proof 

is lengthy, so it is not repeated here. 

The complete design procedure can be summarized in 

the following algorithm. 

Problem: Given a system, how can we synthesize a 

fuzzy controller and find an appropriate dither signal to 

stabilize the closed-loop system? 

Correctly select the parameter results for the appropriate 

step size to move the human agent in the solution space. 

This means improving the accuracy of finding an 

approximate optimal solution and reducing the likelihood of 

falling into local optimum. In our experiments, the medium 

chosen was air, because air is the original medium of 

existence in the natural environment in which bats live. A 

brief review of the operation of the EBA is as follows: 

Step 1: Construct the T-S fuzzy model of the system. 

Step 2: Utilize the concept of PDC technique to design a 

fuzzy controller. Subsequently, adjust the feedback gains 

and verify the stability condition of the closed-loop fuzzy 

system F(C;0) by means of Lemma 2. 

Step 3: If the stability condition of Lemma 2 cannot be 

satisfied by regulating the feedback gains, a dither, as an 

auxiliary of the fuzzy controller, is injected into N(0;0). 

Step 4: Apply the method to build the corresponding 

model. 

Step 5: Reconstruct the T-S fuzzy model of NR(0;0) and 

use the PDC scheme to deduce the fuzzy controller. 

Step 6: Derive the closed-loop fuzzy system by 

substituting the fuzzy controllerinto the fuzzy model. 

Furthermore, adjust the parameters (αm, βm) of the dither to 

satisfy the stability criterion of Theorem 1 (Mossaheb, 

1983). 

Step 7: The artificial agents are spread into the solution 

space by randomly assigning coordinates to them. 

Step 8: The artificial agents are moved according to Eqs. 

(41)-(42). A random number is generated and then it is 

checked whether it is greater than the fixed pulse emission 

rate. If the result is positive, the artificial agent is moved 

using the random walk process. 

Dxx t

i

t

i  1  (41) 

where 
t

ix  indicates the coordinate of the ith artificial agent 

at the tth iteration, 
1t

ix  represents the coordinate of the ith 

artificial agent at the last iteration, and D is the moving 

distance that the artificial agent goes in this iteration. 

TD    (42) 

where γ is a constant corresponding to the medium chosen 

in the experiment, and ΔT[-1,1] is a random number. 
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γ=0.17 is used in our experiment because the chosen 

medium is air. 

]1,0[),(   t

ibest

t

i xxx R  (43) 

where β is a random number; xbest indicates the coordinate 

of the near best solution found so far throughout all 

artificial agents; and Rt

ix  represents the new coordinates of 

the artificial agent after the operation of the random walk 

process. 

Step 9: The fitness of the artificial agents is calculated 

by the user defined fitness function and updated to the 

stored near best solution. 

Step 10: Check the termination condition to decide 

whether to return to step 8 or terminate the program and 

output a near optimal solution. 

The fitness function used in the evaluation process is a 

set of user-defined criteria. In other words, the fitness 

function is a mathematical representation of the solution 

space, and the user wishes to solve the problem or obtain an 

optimal solution for this purpose. Therefore, the fitness 

function is designed in this paper to find the common 

symmetric positive definite matrix and the control force of 

the controller. 

 

 

5. Experiment and simulation result 
 

Consider a building (Yang et al. 1998) in which each 

story unit is constructed identically. This 76-story building 

is modeled as a vertical cantilever beam. The finite element 

model is constructed by treating the building portion 

between two adjacent floors as a classic beam element of 

uniform thickness, resulting in 76 translations and 76 

rotational degrees of freedom. Then, all 76 rotational 

degrees of freedom were removed by static condensation. 

This results in 76 degrees of freedom, indicating the 

displacement of each floor in the lateral direction. The first 

five natural frequencies are 0.16, 0.765, 1.992, 3.790, and 

6.395 Hz, respectively. The proportional damping matrix of 

a building with 76 lateral degrees of freedom is calculated 

by using the Rayleigh method to assume a 1% damping 

ratio for the first five modes. The model has a mass, 

damping and stiffness matrix called the “76 DOF model”. 

The equation of motion of the building equipped with an 

ATMD on the top floor can be expressed as 

,  (44) 

in which ]x,x,...,x,x[ m7621 x  is the displacement 

vector with xi being the displacement of the ith floor and xm 

being the relative displacement of the inertial mass of 

damper with respect to the top floor, and a prime indicates 

the transpose of a vector or a matrix. In Eq. (44), M, C, and 

K are (77×77) mass, damping and stiffness matrices, u is a 

scalar control force, W is the wind excitation vector with 

dimension 77, H is a control influence vector, and η is an 

excitation influence matrix. 

The resulting state equation is given by  

 (45) 

in which ] ,[  xxx   is the 48-dimensional state vector and 

x [x3, x6, x10, x13, x16, x20, x23, x26, x30, x33, x36, x40, x43, 

x46, x50, x53, x56, x60, x63, x66, x70, x73, x76, xm]. In addition, A 

is a (48×48) system matrix, B is a (48×1) actuator location 

vector, and E is a (48×77) excitation influence matrix. 

Similarly, the 76 DOF model (building without ATMD) 

can be reduced to a 23 DOF system by retaining the first 46 

complex modes of the original system. The resulting state 

equation is also expressed by Eq. (44). In this case, 

however, the dimensions of x, A, B, and E are (46×1), 

(48×46), (48×1) and (48×76), respectively, and u=0. To 

further reduce the computational efforts, instead of reducing 

wind loads through the model reduction method 

(transformation) described above, the wind load vector W 

can be modelled physically by lumping wind forces on 

adjacent floors at the locations that correspond to the 24 

DOF model (or 23 DOF model). Thus, in Eq. (44), the 

dimension of W becomes 24 and E is an appropriately 

modified (48×24) matrix. These simplified models are 

denoted by 24 DOF with W24 and 23 DOF with W23 

models, respectively.   

A nondimensionalized version of this performance 

criterion is given by 
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(46) 

where σẍi is the rms acceleration of the ith floor, and 

σẍ75o=9.914 cm/sec
2
 is the rms acceleration of the 75th floor 

without control. In the performance criterion J1, 

accelerations only up to 75th floor are considered because 

the 76th floor is the top of the building and it is not used by 

the occupants. 

The second criterion is the average percentage of 

acceleration reduction for floors above the 49th floor, i.e., 

 
i

ioxixiox2 ])([ 
6

1
J   for i= 50, 55, 60, 65,70 and 75 

(47) 

in which σẍio is the rms acceleration of the ith floor without 

control. The third and fourth evaluation criteria are the 

ability of the controllers to reduce the floor displacements. 

The normalized version are given as follows 

 

 

(48) 

; 

for i= 50, 55, 60, 65,70, 75 and 76 

(49) 

where σxi and σxio are the rms displacements of the ith floor 

with and without control, respectively, and σx76o=10.040 cm 

is the rms displacement of the 76 floor of the uncontrolled 

building. 

Each proposed control design must satisfy the actuator 

capacity constraints given by σu≤100 kN and σxm≤25 cm, 

where σu and σxm are rms control force and rms actuator 

stroke, respectively.  In addition to above constraints, the 
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control effort requirements of a proposed control design 

should be evaluated in terms of the following 

nondimensionalized criteria 

 (50) 

 (51) 

in which σẋm is the rms actuator velocity (relative velocity 

between the ATMD and the top floor). The performance 

criteria correspond to the physical size (i.e., stroke) and 

control power (i.e., actuator velocity) of the actuator. For 

the building without control, σẋ76o is 9.328 cm/sec.in which 

σẋm is the rms actuator velocity (relative velocity between 

the ATMD and the top floor).  

A numerical simulation (integration) for the on-line 

implementation of the proposed control design should be 

conducted to evaluate the performance in terms of the 

following non-dimensionalized criteria 
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1
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 for i=50, 55, 60, 65,70, 75 and 76       (55) 

where xpi=peak displacement of ith floor, ẍpi=peak 

acceleration of ith floor, xpio=peak displacement of ith floor 

without control, and ẍpio=peak acceleration of ith floor 

without control; for instance, xp76o=26.009 cm and ẍp75o= 

26.334 cm/sec
2
. 

The actuator capacity constraints for the deterministic 

response analysis are: the maximum control force 

max|u(t)|≤300 kN and the maximum stroke max|xm(t)|≤75 

cm. In addition, the proposed control designs should be 

evaluated for the following control capacity criterion 

 (56) 

 (57) 

where xpm=peak stroke of actuator, ẋpm=peak velocity of the 

actuator, and ẋp75o=22.622 cm/sec=peak velocity of 76th 

floor without control. 

However, the limitation is not applied for the controller 

gains because the total effect contributed to the whole 

system by the control force is relatively small. All 

parameters used in our experiment for EBA are listed in 

Table 1. 

Like other swarm intelligence algorithms and 

evolution methods, EBA requires recursive operations to 

find the closest solution. Therefore, the same experiment 

should be repeated multiple times to test whether the 

convergence results are consistent. The number of runs  

Table 1 Parameters for EBA 

Boundary condition for matrix positive 

definite matrix and controller gains 
[-5, 5] 

Medium Material Air 

Number of Run 40 

Population size 26 

Number of Iteration 700 

 

 

Fig. 4 Number of feasible solutions obtained by EBA in 40 

runs 

 

 

listed in Table 1 is intended to provide a series of 

experimental results for examination by statistical methods. 

In this paper, we choose a fixed number of iterations as the 

termination criterion. The media material used to transmit 

the sound waves is chosen to be air because it is suitable for 

the natural environment in which the bat is located. In 

addition, the population size represents the number of 

human agents that exist simultaneously in the solution space 

in each iteration. The larger population size provides a 

greater opportunity for the algorithm to find the closest 

solution. However, a larger population size requires more 

memory resources and computing power. Therefore, we set 

the population size to 16 in the experiment. The number of 

feasible solutions that EBA obtains in different runs is 

shown in Fig. 4. 

 

 

6. Conclusions 
 

This article discusses the issue of optimizing controller 

design issues, in which the evolutionary bat optimization 

algorithm is combined with the fuzzy controller in the 

practical application of the building. The controller of the 

system design includes different sub-parts such as system 

initial condition parameters, EB optimal algorithm, fuzzy 

controller, stability analysis and sensor actuator. The 

advantage of the design is that if the controller is useless, 

the modified criterion of controller is derived by 

asymptotically adjusting design parameters. Numerical 

verification of the time domain and the frequency domain 

shows that the new system design provides accurate 

prediction and control of the structural displacement 

response, which is necessary for the active control structure 

in the fuzzy model. The dynamic fuzzy controller proposed 

in this paper is used to find the optimal control force 

required for active nonlinear control of building structures. 
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