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1. Introduction  
 

In recent years, laminated composite plate analysis has 

undergone a considerable evolution and a variety of plate 

theories have been introduced as a function of the 

transverse deformation effect of the shear. Classical plate 

theory (CPT), which neglects the deformation effect of 

transverse shear, provides reasonable results for thin plates. 

Reissner (1945) and Mindlin (1951) developed the first-

order theory that takes into account the effects of transverse 

shear across thickness (FSDT). This theory requires shear 

correction factors to correct the variation of transverse shear 

stresses and shear deformations across the thickness. These 

shear correction factors are sensitive not only to the 

geometrical parameters of the plate, but also to the 

boundary conditions and loading conditions. 

To avoid the use of shear correction factors, some 

authors have adopted higher order theories HSDT. Various 

shear deformation plate (HSDT) theories have been 

proposed, Whitney and Sun (1973) which assumed a 

displacement field of order greater than 3. This theory is 

complicated and has given precise results. Other theories 

appeared later, each of them presents advantages and 

disadvantages with different formalisms according to the 

field of application. For example, Lo et al. (1977) proposed 

a theory with eleven unknowns; Bhimaraddi and Stevens 

(1984) with five unknowns; Reddy (1984), Reddy and Phan 

(1985), five unknowns and Hanna and Leissa (1994) to four 

unknowns. Ambartsumian (1969) proposed a transverse 
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stress function to explain plate deformation. A similar 

method was used by Soldatos and Timarci (1993) for the 

dynamic analysis of laminated hulls. Later, new functions 

were proposed by Reddy (1984), Senthilnathan et al. 

(1987), Touratier (1991), Soldatos (1992), Karama et al. 

(2003), Aydogdu (2009), Xiang et al. (2011a) and Mantari 

et al. (2012). 

El-Abbasi and Meguid (2000) devlopped new shell 

element accounting for through thickness deformation. To 

analyze the bending and transverse shear effects of 

laminated composite plates, a new higher-order thirteen 

nodes triangular element presented by Rezaiee-Pajand et al. 

(2012). Patel (2014) studied the bending analysis of 

laminated composite stiffened plates subjected to uniform 

transverse loading with the geometric nonlinear. Structural 

performance of ribbed ferrocement plates reinforced with 

composite materials presented by Yousry et al. (2016). Two 

triangular shell element having three and six nodes are 

presented by Rezaiee-Pajand et al. (2018) analysis the for 

geometrically nonlinear of thin and thick shell structures.  

Kim and Bathe (2008) presented three-dimensional shell 

element to model shell surface tractions and incompressible 

behavior. The geometrically nonlinear formulation for a six-

node triangular shell element is proposed by Rezaiee-

Pajand et al. (2018). Chen (2016) studied the Effect of local 

wall thinning on ratcheting behavior of pressurized 90° 

elbow pipe under reversed bending using finite element 

analysis. Isoparametric six-node triangular element is 

utilized by Rezaiee-Pajand (2018) for geometrically 

nonlinear analysis of functionally graded (FG) shells. 

The effects of moisture and temperature on buckling of 

laminated composite cylindrical shell panels are 

investigated numerically and experimentally by Biswal et 

al. (2016). Based on the continuum mechanic’s theory, a 6-
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node triangular isoparametric element is formulated by 

Rezaiee-Pajand and Arabi (2016) for analysis geometrically 

nonlinear of laminated shells. Large deformation bending 

analysis and nonlinear flexural vibration of functionally 

graded spherical shell using FEM studied by Kar and Panda 

(2015). 

On the other hand, a theory of Variable Refined Plate 

(RPT) was first developed for isotropic plates by Shimpi 

(2002) and extended to orthotropic plates by Shimpi and 

Patel (2006), Kim et al. (2009) and Thai and Kim (2010) 

used this theory to study laminated composite plates. 

Piscopo (2010) studied the buckling of rectangular plates 

under uni-axial and bi-axial compression by refined theory. 

Narendar (2011) studied the mechanical buckling of 

nanoplates and Thai (2012) developed a refined, non-local 

theory of nanobeams. Thai and Choi (2012) developed the 

efficient and simple refined theory for the buckling analysis 

of functionally graded plates. Adim et al. (2018) used 

simple higher order shear theory to analyze mechanical 

buckling analysis of hybrid laminated composite plates 

under different boundary conditions. Hebali et al. (2014) 

proposed a novel four variable refined plate theory for static 

bending, buckling, and vibration of functionally graded 

plates. Ait Amar Meziane et al. (2014) studied the buckling 

and free vibration response of functionally graded 

exponential sandwich plates (FGM) under various boundary 

conditions. Becheri et al. (2016) studied analytical buckling 

of symmetrically laminated plates using nth-order shear 

deformation theory with curvature effects. Hamidi et al. 

(2015) investigated the thermomechanical bending of 

functional gradient sandwich plates using a sinusoidal plate 

theory with 5 unknowns taking into account the stretching 

effect. Bouazza et al. (2016) developed an analytical 

solution of refined theory of hyperbolic shear deformation 

to obtain the critical buckling temperature of simply 

supported cross-laminated plates. Reza Barati and 

Shahverdi (2016) studied thermal vibration of embedded 

FG nanoplates under non-uniform temperature distributions 

with different boundary conditions using four-variable plate 

theory. Analytical solution for mechanical buckling analysis 

of magnetoelectroelastic plate resting on pasternak 

foundation based on the third-order shear deformation plate 

theory investigated by Ellali et al. (2018). Hygrothermal 

effects on the free vibration behavior of composite plate 

using nth-order shear deformation theory and 

micromechanical approach presented by Abdelmalek et al. 

(2019). A nonlocal trigonometric shear deformation plate 

theory was introduced for thermal buckling analysis of 

functionally graded embedded nanosize plates by Khetir et 

al. (2017). Younsi et al. (2018) have suggested a 3D and 2D 

refined shear deformation theory taking under consideration 

transverse shear deformation effects presented for the 

bending and free vibration analysis of FG plates. Bouhadra 

et al. (2018) have studied advanced composite plates using 

higher shear deformation theory (HSDT) to consider the 

influence of thickness stretching in functionally graded 

plates.  Moreover, survey of literature indicates that the 

thermal buckling of FG plates has been widely investigated. 

Some researches were presented on the linear thermal 

buckling and vibration analysis of advance plates (Bousahla 

et al. 2016, Bouazza et al. 2017, 2018, Menasria et al. 2017, 

Chikh et al. 217, Bourada et al. 2019, Fourn et al. 2017, 

Antar et al. 2019). 

This section deals with the theory of nth-order shear 

deformation (Xiang et al. 2011a). The effectiveness and 

precision of this theory is demonstrated by (Xiang et al. 

2011b, 2012, 2013a, b). Moreover, in this part we use 

mainly the ideas of the new theory of refined plates 

established by Shimpi (2002) that the author includes wb 

and ws to model the transverse displacement (transverse 

displacement of bending and shear) instead of the constant 

displacement assumption w0 (Mantari et al. 2012, Xiang et 

al. 2011a, 2012, 2013a, b). To the best of the authors’ 

knowledge, there are no studies in the open literature on 

bending behaviors of laminated composite plate via nth-

order four shear deformation theory. With the increased 

usage of these materials, it is important to understand the 

behaviors of composite structures subjected to different 

mechanical loads. In this paper, these ideas are combined to 

develop a new theory of nth-order deformation with 

displacement field modification. Unlike other theories, this 

theory requires only four unknown functions, compared to 

five in the other shear deformation theories. The presented 

theory is strongly similar to classical plate theory in many 

aspects. It does not require the shear correction factor and 

causes the transverse shear stress variation so that the 

transverse shear stresses vary parabolically throughout the 

thickness to satisfy the conditions of the upper and lower 

shear stress free surfaces. The solution of the mechanical 

buckling analysis of symmetric multilayer laminated sheets 

is obtained. Numerical examples are presented to verify the 

accuracy of this theory. 

 

 

2. Laminated plate modeling 
 

2.1 Numerical modeling by ANSYS software 
 

The software chosen is the ANSYS version 12 

Nakasone (2006), marketed by ANSYS, Inc. It is one of the 

most used and best known software in the world for its 

various functionalities. With a wide choice of element 

types, material models, this software can cover a wide range 

of current engineering problems. 

 

2.1.1 Choice of the type of element 
In this work we chose the element Shell99 to model the 

laminated plates. Shell99 is a shell element that is suitable 

for modeling laminated composite structures (250 layers). 

The element is defined by eight nodes, each node has six 

degrees of freedom, three nodal translations following 

(x,y,z) and three rotations around the axes (x,y,z). A 

triangular-shaped element may be formed by defining the 

same node number for nodes K, L and O. The geometry, 

node locations, and the coordinate system for this element 

are shown in Fig. 1. 

 

2.1.2 Mesh plates 
For reasons of symmetry, we modeled only 1/4 of the 

plate. As for the density of the mesh, the finer the mesh, the  

258



 

Bending behavior of laminated composite plates using the refined four-variable theory and the finite element method 

 

 

Fig. 1 Shell99 geometry (Nakasone 2006) 

 

 

more the accuracy improves but the calculation time 

increases accordingly. A uniform mesh of 25 × 25 is made 

to mesh the isotropic plates and multilayer plates. Figure 2b 

shows an example of plate meshing which contains 625 

elements and 1976 nodes. The figure2a show ¼  of the plate 

modeling by finite element method and boundary 

conditions. 

  

2.2 Analytical modeling 
 
2.2.1 Mathematical formulation 
2.2.1.1 Kinematic 
We consider a rectangular plate of length, a, width, b, 

thickness, h, and fibre angle θ defined in its system of axes 

(x, y, z), see Fig. 3. In which θ is the angle between the 

global x-axis and the local x-axis of each lamina. The 

laminated plate consists of k layers of equal thickness. In 

this part, additional simplifying assumptions are made to 

the n-shear deformation theory so that the number of 

unknowns is reduced. The displacement field of the n-shear 

deformation theory is given by Xiang et al (2011a). 
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Fig.3 Form of laminated composite plate (Reddy 1997) 

 

 

Where u1, u2, u3 are displacements in the x, y, z 

directions, w0, ϕx and ϕy: are unknown displacement 

functions of the mean plane of the plate. 

By dividing the transverse displacement w0into bending 

and shearing parts (w0=wb+ws) and making other 

hypotheses given by ϕx=−∂wb/∂x and ϕy=−∂wb/∂y, 

Substituting (w0=wb+ws, ϕx=−∂wb/∂x) and ϕy=−∂wb/∂y  into 

Eq. (1), the following equation is obtained 

( )

( )

),(),(),,(

,........9,7,5,3

21
),(),,(

21
),(),,(

3

1

2

1

1

yxwyxwzyxu

n

y

ww

y

w
z

hny

w
zyxvzyxu

x

ww

x

w
z

hnx

w
zyxuzyxu

sb

sbbn

n

b

sbbn

n

b

+=

=

















+
+












−








−




−=












+
+












−








−




−=

−

−

 

(2) 

By simplifying the displacement field of the new refined 

theory can be written in a simpler form as follow 
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(3) 

The displacement field of the present theory is chosen 

on the basis of the following assumptions: 

 

 

 

Fig. 2 Plate modeling by finite element method and boundary conditions 
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 (1) The parts of the bending components −z∂wb/∂x and 

−z∂wb/∂y in the plane are similar to those given by the 

classical laminated plate theory (CLPT). 

 (2) The parts of shear components 
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give rise to parabolic variations of shear deformations and 

thus to shear stresses across the thickness of the plate so 

that zero shear stresses on the upper and lower faces. 

 

2.2.1.2 Stress-strain relationship 
The stresses in the main axes of the layer k can also be 

obtained from the deformations expressed in the main axes. 

The stresses are expressed as follows 
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Where 

σx, σy and σxy: In-plane stresses, σyz and σxz shear stresses 

γxz, γyz: The transverse shear strains 

Qij: the reduced elastic constants of the material in the 

axes of the plate. These constants according to the modulus 

of elasticity in the principal axes give by 
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Where 

E1 and E2 are Young’s moduli along and transverse to 

the fibre, respectively 

G12, G23 and G13 In-plane and transverse shear moduli  

v12 and v21 Poisson’s ratios along and transverse to the 

fibre, respectively. 

The stresses in layer k are expressed according to the 

general relation as follows 
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Where  

k Number of layers 

The parameters 
ijQ  of layer k are related to the 

reference axes of the laminate as shown in Fig. 4. They are 

expressed according to the parameters expressed in the axes 

of the materials of the layers. Their expressions are given 

by the expressions below 
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Fig. 4 Cross section of an n-layered laminate 

 

 

With 

Where T1 and T2 are the transformation matrix. The 

superscript (–1) denotes the matrix inverse. 
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2.2.1.3 The strain-displacements relations 
The deformation components associated with the 

displacements in Eq. (l) are 
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(10) 

 

2.2.1.4 Kinematics constitutive equation and 
equilibrium equations 

The energy of deformation of the plate can be written as 

follows 
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By replacing the Eqs. (6a), (6b) and (9) in equation (11) 

and integrating across the plate thickness, the strain energy 

of the plate is written as follows 
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The resulting forces and moments acting on a laminate 

can be obtained by integrating the stresses through the 

thickness of the plates, as shown below 
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In the above expressions, the coefficients Aij and Bij in 

matrices [A], [B], etc. indicate the rigidity of the plate, 

which can be defined as 
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In Eq. (14), Aij is the extensional stiffness matrix 

because it is associated with the plate in-plane behaviour. 

Dij is the bending stiffness matrix and Bij refers to the 

coupling between the laminate bending and extension. 

The transverse shear force that can be defined as follows 
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In the case of transverse bending, the actions exerted are 

reduced to the transverse loads exerted on the faces of the 

laminate. The work done by applied forces can be written as 

dxwwqV s

L
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Where 

q : Transverse distributed loads. 

The principle of minimum total potential energy is used 

herein to derive the governing equation (Reddy 84). This 

principle can be given in analytical form as follows 

0)( =+VU  (19) 

Where 

U :  strain energy of the plate. 

δ : indicates a variation with respect to x and y 

respectively.  

By replacing Eqs. (11), (18) in equation (19) and 

integrating the equation into parts. After this integration, 

collecting the coefficients of δu, δv, δwb and δwS, the 

equations of motion for the orthotropic laminated plates are 

obtained as follows 
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The equilibrium equations of the refined four-variable 

theory of laminated plates can be expressed in terms of 

displacements (u, v, wb, ws), by introducing the forces and 

moment of the laminated Eqs. (13a), (13b), (13c) and (16) 

in relations (20a)-(20d), we obtain the fundamental relations 

of refined four-variable theory of laminated plates 

0)2(3

)2(3

)(2

3

3

262

3

66122

3

163

3

11

3

3

262

3

66122

3

163

3

11

2

2

26

2

66122

2

162

2

66

2

162

2

11

=











+




++




+




−













+




++




+




−




+




++




+




+




+





y

w
B

yx

w
BB

yx

w
B

x

w
B

y

w
B

yx

w
BB

yx

w
B

x

w
B

y

v
A

yx

v
AA

x

v
A

y

u
A

yx

u
A

x

u
A

sssssssss

bbbb

 

(21a) 

03)2(

3)2(

2)(

3

3

222

3

262

3

66123

3

16

3

3

222

3

262

3

66123

3

16

2

2

22

2

262

2

662

2

26

2

66122

2

16

=











+




+




++




−













+




+




++




−




+




+




+




+




++





y

w
B

yx

w
B

yx

w
BB

x

w
B

y

w
B

yx

w
B

yx

w
BB

x

w
B

y

v
A

yx

v
A

x

v
A

y

u
A

yx

u
AA

x

u
A

sssssssss

bbbb

 

(21b) 

04)2(24

4)2(24

3)2(

)2(3

4

4

223

4

2622

4

66123

4

164

4

11

4

4

223

4

2622

4

66123

4

164

4

11

3

3

222

3

262

3

6612

3

3

163

3

262

3

66122

3

163

3

11

=+







+




+








++




+




−









+




+








++




+




−




+




+




++




+




+




++




+





q
y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

v
B

yx

v
B

yx

v
BB

x

v
B

y

u
B

yx

u
BB

yx

u
B

x

u
B

sssssssssss

bbbbb

 

04)2(24

4)2(24

3)2(

)2(3

4

4

223

4

2622

4

66123

4

164

4

11

4

4

223

4

2622

4

66123

4

164

4

11

3

3

222

3

262

3

6612

3

3

163

3

262

3

66122

3

163

3

11

=+







+




+








++




+




−









+




+








++




+




−




+




+




++




+




+




++




+





q
y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

v
B

yx

v
B

yx

v
BB

x

v
B

y

u
B

yx

u
BB

yx

u
B

x

u
B

sssssssssss

bbbbb

 

04)2(24

4)2(24

3)2(

)2(3

4

4

223

4

2622

4

66123

4

164

4

11

4

4

223

4

2622

4

66123

4

164

4

11

3

3

222

3

262

3

6612

3

3

163

3

262

3

66122

3

163

3

11

=+







+




+








++




+




−









+




+








++




+




−




+




+




++




+




+




++




+





q
y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

v
B

yx

v
B

yx

v
BB

x

v
B

y

u
B

yx

u
BB

yx

u
B

x

u
B

sssssssssss

bbbbb

 

04)2(24

4)2(24

3)2(

)2(3

4

4

223

4

2622

4

66123

4

164

4

11

4

4

223

4

2622

4

66123

4

164

4

11

3

3

222

3

262

3

6612

3

3

163

3

262

3

66122

3

163

3

11

=+







+




+








++




+




−









+




+








++




+




−




+




+




++




+




+




++




+





q
y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

v
B

yx

v
B

yx

v
BB

x

v
B

y

u
B

yx

u
BB

yx

u
B

x

u
B

sssssssssss

bbbbb

 

04)2(24

4)2(24

3)2(

)2(3

4

4

223

4

2622

4

66123

4

164

4

11

4

4

223

4

2622

4

66123

4

164

4

11

3

3

222

3

262

3

6612

3

3

163

3

262

3

66122

3

163

3

11

=+







+




+








++




+




−









+




+








++




+




−




+




+




++




+




+




++




+





q
y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

v
B

yx

v
B

yx

v
BB

x

v
B

y

u
B

yx

u
BB

yx

u
B

x

u
B

sssssssssss

bbbbb

 

04)2(24

4)2(24

3)2(

)2(3

4

4

223

4

2622

4

66123

4

164

4

11

4

4

223

4

2622

4

66123

4

164

4

11

3

3

222

3

262

3

6612

3

3

163

3

262

3

66122

3

163

3

11

=+







+




+








++




+




−









+




+








++




+




−




+




+




++




+




+




++




+





q
y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

v
B

yx

v
B

yx

v
BB

x

v
B

y

u
B

yx

u
BB

yx

u
B

x

u
B

sssssssssss

bbbbb

 

(21c) 

 

261



 

Mokhtar Bouazza, Tawfiq Becheri, Abderrahmane Boucheta and Noureddine Benseddiq 

 

024)2(24

4)2(24

3)2()2(3

2

452

2

442

2

554

4

223

4

2622

4

66123

4

164

4

11

4

4

223

4

2622

4

66123

4

164

4

113

3

22

2

3

262

3

66123

3

163

3

262

3

66122

3

163

3

11

=+



+




+




+








+




+








++




+




−









+




+








++




+




−




+




+




++




+




+




++




+





q
yx

w
A

y

w
A

x

w
A

y

w
H

yx

w
H

yx

w
HH

yx

w
H

x

w
H

y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

v
B

yx

v
B

yx

v
BB

x

v
B

y

u
B

yx

u
BB

yx

u
B

x

u
B

sssssssssssssssss

bsbsbssbsbss

sssssssss

 

024)2(24

4)2(24

3)2()2(3

2

452

2

442

2

554

4

223

4

2622

4

66123

4

164

4

11

4

4

223

4

2622

4

66123

4

164

4

113

3

22

2

3

262

3

66123

3

163

3

262

3

66122

3

163

3

11

=+



+




+




+








+




+








++




+




−









+




+








++




+




−




+




+




++




+




+




++




+





q
yx

w
A

y

w
A

x

w
A

y

w
H

yx

w
H

yx

w
HH

yx

w
H

x

w
H

y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

v
B

yx

v
B

yx

v
BB

x

v
B

y

u
B

yx

u
BB

yx

u
B

x

u
B

sssssssssssssssss

bsbsbssbsbss

sssssssss

 

024)2(24

4)2(24

3)2()2(3

2

452

2

442

2

554

4

223

4

2622

4

66123

4

164

4

11

4

4

223

4

2622

4

66123

4

164

4

113

3

22

2

3

262

3

66123

3

163

3

262

3

66122

3

163

3

11

=+



+




+




+








+




+








++




+




−









+




+








++




+




−




+




+




++




+




+




++




+





q
yx

w
A

y

w
A

x

w
A

y

w
H

yx

w
H

yx

w
HH

yx

w
H

x

w
H

y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

v
B

yx

v
B

yx

v
BB

x

v
B

y

u
B

yx

u
BB

yx

u
B

x

u
B

sssssssssssssssss

bsbsbssbsbss

sssssssss

 

024)2(24

4)2(24

3)2()2(3

2

452

2

442

2

554

4

223

4

2622

4

66123

4

164

4

11

4

4

223

4

2622

4

66123

4

164

4

113

3

22

2

3

262

3

66123

3

163

3

262

3

66122

3

163

3

11

=+



+




+




+








+




+








++




+




−









+




+








++




+




−




+




+




++




+




+




++




+





q
yx

w
A

y

w
A

x

w
A

y

w
H

yx

w
H

yx

w
HH

yx

w
H

x

w
H

y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

v
B

yx

v
B

yx

v
BB

x

v
B

y

u
B

yx

u
BB

yx

u
B

x

u
B

sssssssssssssssss

bsbsbssbsbss

sssssssss

 

024)2(24

4)2(24

3)2()2(3

2

452

2

442

2

554

4

223

4

2622

4

66123

4

164

4

11

4

4

223

4

2622

4

66123

4

164

4

113

3

22

2

3

262

3

66123

3

163

3

262

3

66122

3

163

3

11

=+



+




+




+








+




+








++




+




−









+




+








++




+




−




+




+




++




+




+




++




+





q
yx

w
A

y

w
A

x

w
A

y

w
H

yx

w
H

yx

w
HH

yx

w
H

x

w
H

y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

v
B

yx

v
B

yx

v
BB

x

v
B

y

u
B

yx

u
BB

yx

u
B

x

u
B

sssssssssssssssss

bsbsbssbsbss

sssssssss

 

024)2(24

4)2(24

3)2()2(3

2

452

2

442

2

554

4

223

4

2622

4

66123

4

164

4

11

4

4

223

4

2622

4

66123

4

164

4

113

3

22

2

3

262

3

66123

3

163

3

262

3

66122

3

163

3

11

=+



+




+




+








+




+








++




+




−









+




+








++




+




−




+




+




++




+




+




++




+





q
yx

w
A

y

w
A

x

w
A

y

w
H

yx

w
H

yx

w
HH

yx

w
H

x

w
H

y

w
D

yx

w
D

yx

w
DD

yx

w
D

x

w
D

y

v
B

yx

v
B

yx

v
BB

x

v
B

y

u
B

yx

u
BB

yx

u
B

x

u
B

sssssssssssssssss

bsbsbssbsbss

sssssssss

 

(21d) 

or, more concisely 
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2.2.1.5 Analytical solutions 
2.2.1.5.1 Antisymmetric cross-ply laminates 
For antisymmetric cross-ply laminates plates, the 

following terms of plate stiffness are null 
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(25) 

To solve the system of Eq. (21), we use the method of 

Navier. It is assumed that the displacements u,v,wb,ws are 

written in the following form in order to satisfy the 

boundary conditions 
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(26) 

To solve this problem, Navier introduced the external 

force as a double trigonometric series. 
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1 1




=



=

=  (27) 

Where 

bnam  == ;  
The two types of sinusoidal r uniform distributed loads 

to which the plate is subjected are given by the following 

expressions 

Qmn=q      Sinusoidal load 

2

16
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q
Qmn =      Uniformly load (28) 

Substitute the Eqs. (24), (25) and (26) in the system of 

Eq. (21), we obtain the following system of equations 
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(30) 

According to the Eqs (29) and (30), the generalized 

displacements can be solved. The stresses of the rectangular 

laminated composite can then be obtained from the Eqs. 

(4a), (4b), (6a) and (6b), as follows 
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2.2.1.5.2 Antisymmetric angle-ply laminates 
For antisymmetric angle-ply laminates, the following 

terms of plate stiffness are null 
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(32) 

To solve the Eq. (21), one uses the method of Navier. It 

is assumed that the displacements u, v, wb, ws are written in 

the following form in order to satisfy the boundary 

conditions 
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(33) 

Substitute the Eqs. (32) and (33) in the system of Eq. 

(21), we obtain the system of Eq. (29) with the following 

coefficients: 
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(34) 

Stresses of the rectangular laminated composite can then 

be obtained from the equations. (4a), (4b), (6a) and (6b), as 

follows 

( )
( )

( ) ( ) ( )( ) 















+−+−+

−−−

−−−



















=


















yxWzfWzU

yxWzfWzU

yxWzfWzU

QQQ

QQQ

QQQ

mnsmnbmn

mnsmnbmn

mnsmnbmn

mn

kk

xy

y

x













coscos)(22

sinsin)(

sinsin)(

2

22

22

;

)(

662616

262612

161211

)(

 

(35a) 

Table 1 Mechanical properties of materials 

Materials E1 G12 G13 G23 v12 

Material 1a 25E2 0.5E2 0.5E2 0.2E2 0.25 

Material 2b 40E2 0.6E2 0.6E2 0.5E2 0.25 

aPagano 70; bNoor 75 
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3. Results and interpretations 
 

In the first step, based on mathematical formulations, a 

computer program is developed to study the behavior of 

orthotropic, symmetric cross-ply, antisymmetric cross-ply 

and antisymmetric angle-ply laminated symmetric plates 

with simply supported edges using the refined four-variable 

plate theory. The mechanical characteristics of the materials 

used summarized in Table 1. 

The numerical results of deflections and stress are given 

in dimensionless form 
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3.1 Comparison of results 
 

3.1.1 Orthotropic square plates and symmetric cross-
ply laminated plates 

In the first part, we are interested in validating the 

results of orthotropic square plates and symmetric cross-ply 

laminated plates of stacking sequences (0°/90°/0°) and 

(0°/90°/90°/0°) obtained by the four variables refined 

theory by resulted available in literature. The plates have 

simply supported subjected to uniform (CU) or sinusoidal 

distributed loads (CDS), respectively. The tests are 

performed for different geometric ratio values (a/h=10, 20 

and 100) for the CDS load and geometric ratio values 

(a/h=10 and 100) for the CU load. Material 1 is used. The 

results are presented in Tables 2, 3,4 and 5. 

From the Tables 2-5, we can see that the results obtained 

by the present theory RPT are close to those obtained by the 

FSDT theory. The theory involves four unknown variables, 

as against five in case of first-order shear deformation 

theory. The theory gives rise to transverse shear stress 

variation such that the transverse shear stresses vary 

parabolically across the thickness satisfying shear stress 

free conditions at top and bottom surfaces of the plate. The 

theory does not require problem-dependent shear correction 

factors that are associated with the first-order shear 

deformation theory. 

Table 6 presented the nondimensionalized deflections of  
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Table 2 Comparison of the results of nondimensionalized 

deflections and maximum nondimensionalized stresses. 

Case of simply supported orthotropic square plates 

subjected to sinusoidal distributed loads (Material 1) 

a/h Theories W  x  
y  

xy  

10 

FSDTa 0.6383 0.5248 0.0339 0.0246 

Present (n=3) 0.6041 0.5747 0.0284 0.0227 

Present (n=5) 0.6011 0.5652 0.0280 0.0280 

Present (n=7) 0.5971 0.5594 0.0277 0.0277 

Present (n=9) 0.5939 0.5556 0.0275 0.0275 

20 

FSDTa 0.4836 0.5350 0.0286 0.0222 

Present (n=3) 0.4746 0.5477 0.0271 0.0216 

Present (n=5) 0.4738 0.5453 0.0270 0.0280 

Present (n=7) 0.4727 0.5439 0.0269 0.0277 

Present (n=9) 0.4719 0.5429 0.0269 0.0275 

100 

FSDTa 0.4333 0.5385 0.0267 0.0213 

Present (n=3) 0.4330 0.5391 0.0267 0.0213 

Present (n=5) 0.4329 0.5390 0.0267 0.0280 

Present (n=7) 0.4329 0.5389 0.0267 0.0277 

Present (n=9) 0.4329 0.5389 0.0267 0.0275 

CLPTa 0.4312 0.5387 0.0267 0.0213 

aReddy 2004 

 

Table 3 Comparison of the results of nondimensionalized 

deflections and maximum nondimensionalized stresses. 

Case of simply supported orthotropic square plates 

subjected a uniform load (Material 1) 

a/h Theories Orthotrope (00/900/00) (00/900/900/00) 

10 

FSDTa 

Present (n=3) 

Present (n=5) 

Present (n=7) 

Present (n=9) 

ANSYS 

0.9519 

0.8976 

0.8931 

0.8872 

0.8826 

0.9671 

1.0219 

0.9159 

0.9123 

0.9066 

0.9021 

1.0373 

1.0219 

0.9280 

0.9252 

0.9200 

0.9156 

1.0392 

100 

FSDTa 

Present (n=3) 

Present (n=5) 

Present (n=7) 

Present (n=9) 

ANSYS 

0.6528 

0.6522 

0.6522 

0.6521 

0.6521 

0.6540 

0.6697 

0.6685 

0.6685 

0.6684 

0.6684 

0.6710 

0.6833 

0.6822 

0.6821 

0.6821 

0.6820 

0.6847 
aReddy 2004 

 

 

simply supported three-layer square laminates of three-layer 

(450/30°/60°) and (45°/30°/90°) under sinusoidal transverse 

load  with various span-to-thickness ratios (a/h=5,10,20 

and 100). It is noted that for thick plates (L/h=5) and for 

thin plates (a/h=100). Material set 1 is used. The theory is 

variationally consistent and avoids the need of shear 

correction factors. 

Figs. 5 and 6 show the stacking of the layers of the 

laminated plates simulated on computation software of 

structures Ansys 12.  

In the following, we present in Figs. 7-12, the Z-axis 

displacement of the orthotropic square plates and 

symmetrical cross-ply laminated square plates of type 

(00/900/00), (00/900/900/00), respectively. These results 

obtained using the finite element method for a/h=10,100. 

The values of the deflections also exist in Table 5 in the 

nondimensionalized form. Symmetric laminates are thus  

Table 4 Comparison of the results of nondimensionalized 

deflections and maximum nondimensionalized stresses. 

Case of simply supported three-layered antisymmetric 

cross-ply square laminate plates (00/900/00) subjected to 

doubly sinusoidal distributed loads (Material 1) 

a/h Theories W  x  
y  

xy  
xz  

yz  

10 

FSDTa 0.6693 0.5134 0.2536 0.0252 0.4089 0.1936 

Present 

(n=3) 
0.6041 0.5747 0.1649 0.0227 0.3017 0.3017 

Present 

(n=5) 
0.6011 0.5652 0.1731 0.0223 0.2882 0.2882 

Present 

(n=7) 
0.5971 0.5594 0.1761 0.0221 0.2731 0.2731 

Present 

(n=9) 
0.5939 0.5556 0.1775 0.0219 0.2634 0.2634 

20 

FSDTa 0.4921 0.5318 0.1997 0.0223 0.4205 0.1805 

Present 

(n=3) 
0.4746 0.5477 0.1759 0.0216 0.3028 0.3028 

Present 

(n=5) 
0.4738 0.5453 0.1780 0.0215 0.2886 0.2886 

Present 

(n=7) 
0.4727 0.5439 0.1787 0.0215 0.2733 0.2733 

Present 

(n=9) 
0.4719 0.5429 0.1790 0.0214 0.2635 0.2635 

100 

FSDTa 0.4337 0.5384 0.1804 0.0213 0.4247 0.1746 

Present 

(n=3) 
0.4330 0.5391 0.1794 0.0213 0.3031 0.3031 

Present 

(n=5) 
0.4329 0.5390 0.1795 0.0213 0.2887 0.2887 

Present 

(n=7) 
0.4329 0.5389 0.1795 0.0213 0.2733 0.2733 

Present 

(n=9) 
0.4329 0.5389 0.1795 0.0213 0.2635 0.2635 

CLPTa 0.4312 0.5387 0.1796 0.0213 -- -- 

aReddy 2004 
 

 

Fig. 5 Stacking layers of symmetric cross-ply laminated of 

type (0°/90°/0°) 

 

 

Fig.6 Stacking layers of symmetric cross-ply laminated of 

type (0°/90°/90°/0°) 
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Table 5 Comparison of the results of nondimensionalized 

deflections and maximum nondimensionalized stresses. 

Case of simply supported four-layered symmetric cross-ply 

square laminate plates (00/900/900/00) subjected to doubly 

sinusoidal distributed loads (Material 1) 

a/h Theories W  x  
y  

xy  
xz  

yz  

10 

FSDTa 0.6693 0.5134 0.2536 0.0252 0.4089 0.1936 

Present 

(n=3) 
0.6041 0.5747 0.1649 0.0227 0.3017 0.3017 

Present 

(n=5) 
0.6011 0.5652 0.1731 0.0223 0.2882 0.2882 

Present 

(n=7) 
0.5971 0.5594 0.1761 0.0221 0.2731 0.2731 

Present 

(n=9) 
0.5939 0.5556 0.1775 0.0219 0.2634 0.2634 

20 

FSDTa 0.4921 0.5318 0.1997 0.0223 0.4205 0.1805 

Present 

(n=3) 
0.4746 0.5477 0.1759 0.0216 0.3028 0.3028 

Present 

(n=5) 
0.4738 0.5453 0.1780 0.0215 0.2886 0.2886 

Present 

(n=7) 
0.4727 0.5439 0.1787 0.0215 0.2733 0.2733 

Present 

(n=9) 
0.4719 0.5429 0.1790 0.0214 0.2635 0.2635 

100 

FSDTa 0.4337 0.5384 0.1804 0.0213 0.4247 0.1746 

Present 

(n=3) 
0.4330 0.5391 0.1794 0.0213 0.3031 0.3031 

Present 

(n=5) 
0.4329 0.5390 0.1795 0.0213 0.2887 0.2887 

Present 

(n=7) 
0.4329 0.5389 0.1795 0.0213 0.2733 0.2733 

Present 

(n=9) 
0.4329 0.5389 0.1795 0.0213 0.2635 0.2635 

CLPTa 0.4312 0.5387 0.1796 0.0213 -- -- 

aReddy 2004 
 

 

largely used, unless some specific conditions require 

nonsymmetric laminates. 

 

3.1.1.2 Antisymmetric laminates 
In this part, we see very interesting to validate the  

 

 

Table 6 Nondimensionalized deflections of simply 

supported three-layer square laminates under sinusoidal 

transverse load (Material 1) 

Theory 

(450/300/600) (450/300/900) 

a/h a/h 

5 10 20 100 5 10 20 100 

Present 

(n=3) 
0.9364 0.4375 0.3090 0.2675 0.9955 0.4916 0.3624 0.3208 

Present 

(n=5) 
0.9374 0.4352 0.3082 0.2675 0.9931 0.4888 0.3615 0.3207 

Present 

(n=7) 
0.9253 0.4313 0.3072 0.2675 0.9797 0.4847 0.3605 0.3207 

Present 

(n=9) 
0.9142 0.4283 0.3064 0.2674 0.9681 0.4816 0.3597 0.3207 

 

 

results of Nondimensionalized deflections and the 

maximum stresses of the antisymmetric laminated plates of 

stacking sequences (00/900) et (00/900)4 by results available 

in literatures, for different geometrical ratios 

(a/h=10,20,100). 

The results of Tables 7 and 8, show that the 

nondimensionalized deflections and nondimensionalized 

stress obtained by the CLPT theory are independent of 

geometric ratio (a/h), while the nondimensionalized 

deflection values and stresses obtained by the present theory 

and the FSDT theory depend on geometric ratio (a/h), this 

variation explains the deformation effect of the transverse 

shear. It is also observed that the deformation effect of the 

transverse shear causes an increase of the 

nondimensionalized deflections in the center of the plate. 
Still according to the preceding Tables, the difference 

between the present theory and the classical laminate plate 
theory concerning the nondimensionalized deflections at the 
center of the plate decreases when the geometric ratio (a/h) 
increases. For example, for eight-layer cross-ply square 
laminated plates under a sinusoidal distributed loads of 
geometric ratio (a/h=10), the difference between the present 
theory and the first-order shear deformation theory is about 
0.21%, while for a geometric ratio (a/h=20), it is only 
0.10%. In the case of an isotropic plate there is no coupling  

 

 
 

 

Fig. 7 Displacement following the Z-axis of a simply supported orthotropic plate subjected to a uniform load, Material 1, 

Shel99 element, a/h=10 
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between in-plane behaviour and flexural behaviour of the 

plate. For an orthotropic layer of thickness, the material 

directions of which are the same as the reference directions 

of the plate (the reference directions of the stresses and 

strains applied to the plate), as in the case of an isotropic 

plate, the in-plane resultants depend only on the in-plane 

strains and the moments depend only on the curvatures. 

 

 

 

 

5. Conclusions 
 

In the first part of this paper, we presented a theory of 

laminated plates belonging to the family of shear models 

and the equivalent monolayer approach family of multilayer 

composites modeling. In the second part, a computer code 

under Matlab based on the refined four-variable theory was 

 

Fig. 8 Displacement following the Z-axis of a simply supported orthotropic plate subjected to a uniform load, Material 1, 

Shel99 element, a/h=100 

 

Fig. 9 Displacement following the Z-axis of a simply supported cross-ply laminated plate (0°/90°/0°) subjected to a uniform 

load, Material 1, Shel99 element, a/h=10 

 

Fig. 10 Displacement following the Z-axis of a simply supported cross-ply laminated plate (0°/90°/0°) subjected to a uniform 

load, Material 1, Shel99 element, a/h=100 
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Table 7 Comparison of the results of nondimensionalized 

deflections and maximum nondimensionalized stresses. 

Case of simply supported two-layered antisymmetric cross-

ply square laminate plates (00/900) subjected to doubly 

sinusoidal distributed loads (Material 1) 

a/h Theories W  x  
y  

xy  
xz  

yz  

10 

FSDTa 1.2373 0.7157 0.7157 0.0525 0.2728 0.2728 

Present 

(n=3) 
1.2161 0.7468 0.7468 0.0533 0.3190 0.3190 

Present 

(n=5) 
1.2233 0.7401 0.7401 0.0533 0.2830 0.2830 

Present 

(n=7) 
1.2234 0.7352 0.7352 0.0531 0.2685 0.2685 

Present 

(n=9) 
1.2223 0.7319 0.7319 0.0530 0.2602 0.2602 

20 

FSDTa 1.1070 0.7157 0.7157 0.0525 0.2728 0.2728 

Present 

(n=3) 
1.1018 0.7235 0.7235 0.0527 0.3199 0.3199 

Present 

(n=5) 
1.1035 0.7218 0.7218 0.0527 0.2833 0.2833 

Present 

(n=7) 
1.1035 0.7206 0.7206 0.0526 0.2686 0.2686 

Present 

(n=9) 
1.1033 0.7198 0.7198 0.0526 0.2603 0.2603 

100 

FSDTa 1.0653 0.7157 0.7157 0.0525 0.2728 0.2728 

Present 

(n=3) 
1.0651 0.7161 0.7161 0.0525 0.3202 0.3202 

Present 

(n=5) 
1.0652 0.7160 0.7160 0.0525 0.2834 0.2834 

Present 

(n=7) 
1.0652 0.7159 0.7159 0.0525 0.2687 0.2687 

Present 

(n=9) 
1.0652 0.7159 0.7159 0.0525 0.2603 0.2603 

CLPTa 1.0636 0.7157 0.7157 0.0525 -- -- 

aReddy 2004 
 

 

developed for the behavioral analysis of bending of 

orthotropic plates and laminated composite plates. Plates 

subjected to either doubly sinusoidal charges or uniform 

charge. The results obtained are compared with the results 

available in the bibliography and the finite element method 

Ansys12. After modeling, we ended up with the following 

results: 

 

Table 8 Comparison of the results of nondimensionalized 

deflections and maximum nondimensionalized stresses. 

Case of simply supported eight-layered antisymmetric 

cross-ply square laminate plates (00/900)4 subjected to 

doubly sinusoidal distributed loads (Material 1) 

a/h Theories W  x  
y  

xy  
xz  

yz  

10 

FSDTa 0.6216 0.4950 0.4950 0.0221 0.2728 0.2728 

Present 

(n=3) 
0.6229 0.5285 0.5285 0.0236 0.3416 0.3416 

Present 

(n=5) 
0.6191 0.5198 0.5198 0.0232 0.2930 0.2930 

Present 

(n=7) 
0.6146 0.5145 0.5145 0.0229 0.2742 0.2742 

Present 

(n=9) 
0.6111 0.5111 0.5111 0.0228 0.2639 0.2639 

20 

FSDTa 0.4913 0.4950 0.4950 0.0221 0.2728 0.2728 

Present 

(n=3) 
0.4918 0.5034 0.5034 0.0225 0.3427 0.3427 

Present 

(n=5) 
0.4907 0.5012 0.5012 0.0224 0.2934 0.2934 

Present 

(n=7) 
0.4896 0.4999 0.4999 0.0223 0.2744 0.2744 

Present 

(n=9) 
0.4887 0.4990 0.4990 0.0223 0.2640 0.2640 

100 

FSDTa 0.4496 0.4950 0.4950 0.0221 0..2728 0..2728 

Present 

(n=3) 
0.4496 0.4953 0.4953 0.0221 0.3431 0.3431 

Present 

(n=5) 
0.4496 0.4952 0.4952 0.0221 0.2935 0.2935 

Present 

(n=7) 
0.4496 0.4952 0.4952 0.0221 0.2744 0.2744 

Present 

(n=9) 
0.4495 0.4951 0.4951 0.0221 0.2640 0.2640 

CLPTa 0.4479 0.4950 0.4950 0.0221 -- -- 

aReddy 2004 
 

 

Composite plates are widely used in civil, mechanical, 

aeronautical, and especially aerospace structures. This is 

mainly due to their very high strength and specific rigidity 

and the advantage of adapting their properties to meet the 

requirements of the practice. 

By dividing the transverse displacement into shearing 

parts, the number of unknowns in the theory is reduced,  

 

Fig. 11 Displacement following the Z-axis of a simply supported cross-ply laminated plate (0°/90°/90°/0°) subjected to a 

uniform load, Material 1, Shel99 element, a/h=10 
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which saves computing time. 

The results of the sample problem show good agreement 

with the literature values as seen from the validation checks. 

It should be noted that the present theory involves only four 

independent variables as against five in the case of FSDT. 

Also, the present theory does not required shear correction 

factors as in the case of FSDT. 

The orientation of the fibers has a great effect on the 

mechanical behavior of laminated composite plates. 
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CC 

 

 

Nomenclature 
 

x, y, z : coordinate reference system 

u, v and w0 
: in-plane and transverse displacements 

of a point (x, y) on the mid-plane 

u1, u2 and u3  
: displacements in x, y and z directions, 

respectively 

ϕx and ϕy : rotations of normal to the mid-plane 

a : length of the plate (meter) 

b : width of the plate (meter) 

h : Total thickness of the plate (meter) 

a/h : span-to-thickness ratio (Unit less) 

E1 and E2 
: Young’s moduli along and transverse 

direction of the fiber (GPa) 

G12, G23 : in-plane shear moduli (GPa) 

G13 : transverse shear moduli (GPa) 

v12 and v21 
: Poison’s ratios in respective plane 

(Unit less) 

Qij 
: plane stress reduced elastic constants 

in the material axes of the plate 

ijQ  : transformed material constants 
s

ij

s

ijij

s

ijij HDDAA ,,,,  : plate stiffness 

θ : fibre orientation angle 

k : total number of layers 

U : strain energy of the plate. 

q : transverse distributed loads 

δ 
: variation with respect to x and y 

respectively 

xzxzxyyx  ,,,,  : components of stress 
s

yz

s

xzxyyx  ,,,,  : components of strain 

yzxzxyyx  ,,,,  : non-dimensionlized stress components 

W  
: non-dimensional transverse 

displacement 

j

s

i

b

i QMM ,,  

(i=x,y,xy, j=xz, yz) 

: resultants moments, shear forces, 

respectively 

m, n 
: number of half waves in the x- and y-

directions, respectively 

w : transverse displacement 

wb 
: bending component of transverse 

displacement 

Ws 
: shear component of transverse 

displacement 

T1 and T2 are the transformation matrix 

CLPT : classical laminate plate theory 

FSDT : first-order shear deformation theory 

HSDT : higher-order shear deformation theory 

CU : uniform distributed loads 

CDS : sinusoidal distributed loads 
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