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Abstract. The purpose of this work is to analyze the bending behavior of laminated composite plates using the refined four-
variable theory and the finite element method approach using an ANSY'S 12 computational code. The analytical model is based
on the multilayer plate theory of shear deformation of the nth-order proposed by Xiang et al 2011 using the theory principle
developed by Shimpi and Patel 2006. Unlike other theories, the number of unknown functions in the present theory is only four,
while five or more in the case of other theories of shear deformation. The formulation of the present theory is based on the
principle of virtual works, it has a strong similarity with the classical theory of plates in many aspects, it does not require shear
correction factor and gives a parabolic description of the shear stress across the thickness while filling the condition of zero shear
stress on the free edges. The analysis is validated by comparing results with those in the literature.
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1. Introduction

In recent years, laminated composite plate analysis has
undergone a considerable evolution and a variety of plate
theories have been introduced as a function of the
transverse deformation effect of the shear. Classical plate
theory (CPT), which neglects the deformation effect of
transverse shear, provides reasonable results for thin plates.
Reissner (1945) and Mindlin (1951) developed the first-
order theory that takes into account the effects of transverse
shear across thickness (FSDT). This theory requires shear
correction factors to correct the variation of transverse shear
stresses and shear deformations across the thickness. These
shear correction factors are sensitive not only to the
geometrical parameters of the plate, but also to the
boundary conditions and loading conditions.

To avoid the use of shear correction factors, some
authors have adopted higher order theories HSDT. Various
shear deformation plate (HSDT) theories have been
proposed, Whitney and Sun (1973) which assumed a
displacement field of order greater than 3. This theory is
complicated and has given precise results. Other theories
appeared later, each of them presents advantages and
disadvantages with different formalisms according to the
field of application. For example, Lo et al. (1977) proposed
a theory with eleven unknowns; Bhimaraddi and Stevens
(1984) with five unknowns; Reddy (1984), Reddy and Phan
(1985), five unknowns and Hanna and Leissa (1994) to four
unknowns. Ambartsumian (1969) proposed a transverse
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stress function to explain plate deformation. A similar
method was used by Soldatos and Timarci (1993) for the
dynamic analysis of laminated hulls. Later, new functions
were proposed by Reddy (1984), Senthilnathan et al.
(1987), Touratier (1991), Soldatos (1992), Karama et al.
(2003), Aydogdu (2009), Xiang et al. (2011a) and Mantari
et al. (2012).

El-Abbasi and Meguid (2000) devlopped new shell
element accounting for through thickness deformation. To
analyze the bending and transverse shear effects of
laminated composite plates, a new higher-order thirteen
nodes triangular element presented by Rezaiee-Pajand et al.
(2012). Patel (2014) studied the bending analysis of
laminated composite stiffened plates subjected to uniform
transverse loading with the geometric nonlinear. Structural
performance of ribbed ferrocement plates reinforced with
composite materials presented by Yousry et al. (2016). Two
triangular shell element having three and six nodes are
presented by Rezaiee-Pajand et al. (2018) analysis the for
geometrically nonlinear of thin and thick shell structures.
Kim and Bathe (2008) presented three-dimensional shell
element to model shell surface tractions and incompressible
behavior. The geometrically nonlinear formulation for a six-
node triangular shell element is proposed by Rezaiee-
Pajand et al. (2018). Chen (2016) studied the Effect of local
wall thinning on ratcheting behavior of pressurized 90°
elbow pipe under reversed bending using finite element
analysis. Isoparametric six-node triangular element is
utilized by Rezaiee-Pajand (2018) for geometrically
nonlinear analysis of functionally graded (FG) shells.

The effects of moisture and temperature on buckling of
laminated composite cylindrical shell panels are
investigated numerically and experimentally by Biswal et
al. (2016). Based on the continuum mechanic’s theory, a 6-
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node triangular isoparametric element is formulated by
Rezaiee-Pajand and Arabi (2016) for analysis geometrically
nonlinear of laminated shells. Large deformation bending
analysis and nonlinear flexural vibration of functionally
graded spherical shell using FEM studied by Kar and Panda
(2015).

On the other hand, a theory of Variable Refined Plate
(RPT) was first developed for isotropic plates by Shimpi
(2002) and extended to orthotropic plates by Shimpi and
Patel (2006), Kim et al. (2009) and Thai and Kim (2010)
used this theory to study laminated composite plates.
Piscopo (2010) studied the buckling of rectangular plates
under uni-axial and bi-axial compression by refined theory.
Narendar (2011) studied the mechanical buckling of
nanoplates and Thai (2012) developed a refined, non-local
theory of nanobeams. Thai and Choi (2012) developed the
efficient and simple refined theory for the buckling analysis
of functionally graded plates. Adim et al. (2018) used
simple higher order shear theory to analyze mechanical
buckling analysis of hybrid laminated composite plates
under different boundary conditions. Hebali et al. (2014)
proposed a novel four variable refined plate theory for static
bending, buckling, and vibration of functionally graded
plates. Ait Amar Meziane et al. (2014) studied the buckling
and free vibration response of functionally graded
exponential sandwich plates (FGM) under various boundary
conditions. Becheri et al. (2016) studied analytical buckling
of symmetrically laminated plates using nth-order shear
deformation theory with curvature effects. Hamidi et al.
(2015) investigated the thermomechanical bending of
functional gradient sandwich plates using a sinusoidal plate
theory with 5 unknowns taking into account the stretching
effect. Bouazza et al. (2016) developed an analytical
solution of refined theory of hyperbolic shear deformation
to obtain the critical buckling temperature of simply
supported cross-laminated plates. Reza Barati and
Shahverdi (2016) studied thermal vibration of embedded
FG nanoplates under non-uniform temperature distributions
with different boundary conditions using four-variable plate
theory. Analytical solution for mechanical buckling analysis
of magnetoelectroelastic plate resting on pasternak
foundation based on the third-order shear deformation plate
theory investigated by Ellali et al. (2018). Hygrothermal
effects on the free vibration behavior of composite plate
using  nth-order shear deformation theory and
micromechanical approach presented by Abdelmalek et al.
(2019). A nonlocal trigonometric shear deformation plate
theory was introduced for thermal buckling analysis of
functionally graded embedded nanosize plates by Khetir et
al. (2017). Younsi et al. (2018) have suggested a 3D and 2D
refined shear deformation theory taking under consideration
transverse shear deformation effects presented for the
bending and free vibration analysis of FG plates. Bouhadra
et al. (2018) have studied advanced composite plates using
higher shear deformation theory (HSDT) to consider the
influence of thickness stretching in functionally graded
plates. Moreover, survey of literature indicates that the
thermal buckling of FG plates has been widely investigated.
Some researches were presented on the linear thermal
buckling and vibration analysis of advance plates (Bousahla

et al. 2016, Bouazza et al. 2017, 2018, Menasria et al. 2017,
Chikh et al. 217, Bourada et al. 2019, Fourn et al. 2017,
Antar et al. 2019).

This section deals with the theory of nth-order shear
deformation (Xiang et al. 2011a). The effectiveness and
precision of this theory is demonstrated by (Xiang et al.
2011b, 2012, 2013a, b). Moreover, in this part we use
mainly the ideas of the new theory of refined plates
established by Shimpi (2002) that the author includes wy
and ws to model the transverse displacement (transverse
displacement of bending and shear) instead of the constant
displacement assumption wo (Mantari et al. 2012, Xiang et
al. 2011a, 2012, 2013a, b). To the best of the authors’
knowledge, there are no studies in the open literature on
bending behaviors of laminated composite plate via nth-
order four shear deformation theory. With the increased
usage of these materials, it is important to understand the
behaviors of composite structures subjected to different
mechanical loads. In this paper, these ideas are combined to
develop a new theory of nth-order deformation with
displacement field modification. Unlike other theories, this
theory requires only four unknown functions, compared to
five in the other shear deformation theories. The presented
theory is strongly similar to classical plate theory in many
aspects. It does not require the shear correction factor and
causes the transverse shear stress variation so that the
transverse shear stresses vary parabolically throughout the
thickness to satisfy the conditions of the upper and lower
shear stress free surfaces. The solution of the mechanical
buckling analysis of symmetric multilayer laminated sheets
is obtained. Numerical examples are presented to verify the
accuracy of this theory.

2. Laminated plate modeling
2.1 Numerical modeling by ANSY'S software

The software chosen is the ANSYS version 12
Nakasone (2006), marketed by ANSYS, Inc. It is one of the
most used and best known software in the world for its
various functionalities. With a wide choice of element
types, material models, this software can cover a wide range
of current engineering problems.

2.1.1 Choice of the type of element

In this work we chose the element Shell99 to model the
laminated plates. Shell99 is a shell element that is suitable
for modeling laminated composite structures (250 layers).
The element is defined by eight nodes, each node has six
degrees of freedom, three nodal translations following
(x,y,z) and three rotations around the axes (xy,z). A
triangular-shaped element may be formed by defining the
same node number for nodes K, L and O. The geometry,
node locations, and the coordinate system for this element
are shown in Fig. 1.

2.1.2 Mesh plates
For reasons of symmetry, we modeled only 1/4 of the
plate. As for the density of the mesh, the finer the mesh, the
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Fig. 1 Shell99 geometry (Nakasone 2006)

more the accuracy improves but the calculation time
increases accordingly. A uniform mesh of 25 x 25 is made
to mesh the isotropic plates and multilayer plates. Figure 2b
shows an example of plate meshing which contains 625
elements and 1976 nodes. The figure2a show ¥% of the plate
modeling by finite element method and boundary
conditions.

2.2 Analytical modeling

2.2.1 Mathematical formulation

2.2.1.1 Kinematic

We consider a rectangular plate of length, a, width, b,
thickness, h, and fibre angle 0 defined in its system of axes
(X, ¥, 2), see Fig. 3. In which @ is the angle between the
global x-axis and the local x-axis of each lamina. The
laminated plate consists of k layers of equal thickness. In
this part, additional simplifying assumptions are made to
the n-shear deformation theory so that the number of
unknowns is reduced. The displacement field of the n-shear
deformation theory is given by Xiang et al (2011a).

w2 =tk ) 200) -3 2 2]ty 00
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Fig.3 Form of laminated composite plate (Reddy 1997)

Where ui, Uz, uz are displacements in the X, vy, z
directions, wo, ¢x and ¢y: are unknown displacement
functions of the mean plane of the plate.

By dividing the transverse displacement wointo bending
and shearing parts (wo=wytws) and making other
hypotheses given by ¢x=—0owy/0X and @y=—0Wn/0y,
Substituting (Wo=Wu+Ws, gx=—0Wp/0X) and ¢,=—0wyp/dy into
Eg. (1), the following equation is obtained

ow, 1(2 " of [ O
ul(x,y,z)—u(X,y)—ZE n[hj z ([ X ]Jr

ow, _1(2)" ([ ow,
uz(x,y,z):v(x,y)—zg n(hj z[( 8y]+

OX

aw, +w,)
Ty ] 2
n=3579,....

Us(X, Y, 2) = W, (X, ¥) + W (X, Y)

By simplifying the displacement field of the new refined
theory can be written in a simpler form as follow

U, (%, y,2) =u(, y)_za‘%_l[Z)” Zn(aNSJ

ox nih 5
ey, L(2Y(ow,
0,00, 2) =) -2 n[h] Z(ayj ®

n=3579,.....
Us (X, Y, 2) =W, (X, Y) + W, (X, y)

The displacement field of the present theory is chosen
on the basis of the following assumptions:

ELEMENTS

v

Fig. 2 Plate modeling by finite element method and boundary conditions
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(1) The parts of the bending components —zowy/ox and
—Z0Wp/dy in the plane are similar to those given by the
classical laminated plate theory (CLPT).

2 The parts of shear components

12\, (ow, 12\t (ow, ) .
-=l=| z"|—>| and -=|=| z"|—=| in the plane
nih OX n{h oy

give rise to parabolic variations of shear deformations and
thus to shear stresses across the thickness of the plate so
that zero shear stresses on the upper and lower faces.

2.2.1.2 Stress-strain relationship

The stresses in the main axes of the layer k can also be
obtained from the deformations expressed in the main axes.
The stresses are expressed as follows

Oy Q: Qu 0 (g
o, 17| Qe Qp 0 g (4)
Oy 0 0 st 7 xy

Oy, _ Q44 0 7 va
{O-xz } - |: 0 Q55 :H}/xz } (4a)
Where

ox, oy and ayy: In-plane stresses, gy, and oy, shear stresses

7, Yyz: The transverse shear strains

Qij: the reduced elastic constants of the material in the
axes of the plate. These constants according to the modulus
of elasticity in the principal axes give by

_ E1 _ Vi Ez _ Ez
Qn 1- ViaVo1 , le 1- ViaVa1 , QZZ 1- ViaVo1 , (5)
Qes =Gy, Qu =06y, st = G13
Where

E; and E; are Young’s moduli along and transverse to
the fibre, respectively
G12, G2z and Gas In-plane and transverse shear moduli
viz and vp; Poisson’s ratios along and transverse to the
fibre, respectively.
The stresses in layer k are expressed according to the
general relation as follows
(k) — — — (k)
Oy Qu Qu Qp Ex
oy =1Q, Qp Qu &y (6a)
Oy Qlﬁ Qz& Qee Vyy

(k) = = 7K (k)
{O-yz } ) |:Q44 Q45:| {yyz } (6b)
O-xz Q45 QSS yxz
Where

k Number of layers
The parameters (j”. of layer k are related to the

(k)

reference axes of the laminate as shown in Fig. 4. They are
expressed according to the parameters expressed in the axes
of the materials of the layers. Their expressions are given
by the expressions below

6ij :TlilQijTl
alm = TzilleTz

(i,j=12,6)

(I,m=45) )

L1 !
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1% iy i ,I
R ZT | il
| . ’ i
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|
|I I . .
|I| k L
Al
Fig. 4 Cross section of an n-layered laminate
With

Where T; and T, are the transformation matrix. The
superscript (—1) denotes the matrix inverse.

cos? @ sin?6 2sin &cosd
T, =| sin’o cos’d  —2sin Ocosd (8a)
—sin @cos@ sin Bcosd cos®H—sin? o
T - cos@ —sin@ 8b
2 lsin@ cos@ (8b)

2.2.1.3 The strain-displacements relations
The deformation components associated with the
displacements in Eq. (1) are

le)={e?l+ kPl + e i (2)

: 9
{yﬂ} _ {712}9 @ (©)
Vxa Y x

X 1y 1y a 2 ayZ ! 6,Xay
b=t ke ke | = _Ow, oW, 0w, ' (10)
X 17ty 1y aXZ ! ay2 1 axéy

27 n-1
9(z) =1 —(?j

2.2.1.4 Kinematics
equilibrium equations

The energy of deformation of the plate can be written as
follows

constitutive  equation and

U =1j eV
2N

L (11)

=E-[/ (Gxé‘x TOE, 0V O,V +0,Vy \
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By replacing the Eqgs. (6a), (6b) and (9) in equation (11)
and integrating across the plate thickness, the strain energy
of the plate is written as follows

u =3j[NX5g2 N OE NS+ MPAK + MO +
(12)

M kb AMEKS + MK + MEKS + Q5 + QL axdy

Xyxy

The resulting forces and moments acting on a laminate
can be obtained by integrating the stresses through the
thickness of the plates, as shown below

hi/2 N oz
N dz = dz
= [V a =3[

(13a)
~ [AJe" b+ [} [B°Jic}
M=o f e
~[ele}+ [l }+ [0 T
=Tt =3 1 (130

=[Bfle*}+ [0 Joe ) [ i
With
N J={NGN N
at=me g m | (14)
Mej= Mg
In the above expressions, the coefficients Ajand Bjj in

matrices [A], [B], etc. indicate the rigidity of the plate,
which can be defined as

(A.B,,0) =] Q, 2,2z
;.05 HN=[ QU@ d@.(f))z (19
(i,j=1,2,6)

In Eg. (14), A;j is the extensional stiffness matrix
because it is associated with the plate in-plane behaviour.
Dj is the bending stiffness matrix and B;j; refers to the
coupling between the laminate bending and extension.

The transverse shear force that can be defined as follows

{QYZ}Z{A‘? A:SHAZ} )
sz A54 A55 Vv

A=[70,0@ e Gi=e5 @D

In the case of transverse bending, the actions exerted are
reduced to the transverse loads exerted on the faces of the
laminate. The work done by applied forces can be written as

With

V = —J'q(wb + w, )dx (18)

Where

g : Transverse distributed loads.

The principle of minimum total potential energy is used
herein to derive the governing equation (Reddy 84). This
principle can be given in analytical form as follows

SU+V)=0 (19)

Where

U: strain energy of the plate.

0 indicates a variation with respect to x and y
respectively.

By replacing Egs. (11), (18) in equation (19) and
integrating the equation into parts. After this integration,
collecting the coefficients of du, ov, ow, and ows, the
equations of motion for the orthotropic laminated plates are
obtained as follows

N
6:; =0 (20a)
agxxy +%¥:o (20b)

*MP My MY
{ axzx +2 ooy Y4 Y :l g=0 (20c)

2Ms _OPMS PMS soQ:
9 le+2 Ly — +&+&
ox ooy oy X oy

The equilibrium equations of the refined four-variable
theory of laminated plates can be expressed in terms of
displacements (u, v, wp, Ws), by introducing the forces and
moment of the laminated Eqgs. (13a), (13b), (13c) and (16)
in relations (20a)-(20d), we obtain the fundamental relations
of refined four-variable theory of laminated plates

}q:o (20d)

6v

AOSron T T T ) D e O

o*w, 63 o*w, o*w,
_{811Tab+3816 5)(2 jL(Blz +2Bg) 6yb By ayiab:| (213.)

3
—[Bfla W 3B: ow +(Bf2+2866) +B§6 9 WS}:O

6 3 ’\XZ ayS
2u 2u o%u o%v o%v
A16 ¢ 7 H(A,+ Aes) d + Azs : 7t Asa +2Aze (;X'y A, (;yz
o*w, o*w, o%w,
,{BIEF;Jr(Bu+ZB66)7_;+SBZGW+ Bzzay—;} (21b)
. ow L dw,  _, ow,
{Ble on° 12 +2866) V +3By ——5 ox 8y +Bzz 8)/3 :|:0
o%u % o v
B —5+3Bi— 72— +(BIZ+2866) 7+ Bx——=+Bie—=
OX ox*oy OX ay oy OX
3
+ (B, + 25@6) 138, 0V oV

o WBﬁ

4
{D W | gp, O +2(D12+2D66)a

11 4 16 3
oX OoX
o Way o'w, 8y (21¢)
+ 4D26 D2274b
oxoy® oy
s O'w, s O'w, .
_{Dn pv +4D —= ooy +2(D3, + 2D66) 8y

4 4
+4D§67§ (;";3 + D;Z—%y"fs}q -0
X
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s a u s agu s aBU S 63u
Bi—> P 3816 8)/ (B1z +ZBee) 6)/ BZG?
s o'y s 0% BS v
+ BlG 8X (BIZ +ZBSG) 6X26y 3 26 ~ ~ 2 6X5’y
s O | o'w . 0w
+B;,—-|Dn Ab +4U5 :
oy® OX ox“oy
. o*w, . 0'w, o*w,
2( DlZ 2D66) + 4 DZB 22 4
o’ ('N X0 V oy
4 4 4
T T o) T gy O
OX ox“oy ox2oy? OXoy
. 0'w o*w, , 0%w
Jrsz 0y4 }rAss 44 ayz +2A45 .\/Jrq 0
or, more concisely
L, L, Ls Ly 0
L, Ly Li Ly|jV _ 0
L Ly Ly Ly |[W q
L, Ly Lay Ly (W q
With
Lll = Allvxx +2A16vxy + Aﬁévyy ;
L = AV +(A12 +A66)vxy + AZGVyy
Ly =By Vs _3B16Vxxy _(Blz +ZBae)nyy _Bzevyyy
LlA = _Blslvxxx _3Blsavxxy _(Blsz + ZBGSG)nyy - stavyyy
Ly = AV 2RV 1ALV S
Lzs :_Blev _(Blz +2E’66)Vxxy _3BZGVXW - BZZVyyy

Lyy =BV o +(BY, +2Bg )V, +3B5V,, +Bo,V

Ly; =Dy +4DyV +2(D,, +2D66)Vwy +4DyeV + D,V 0,
L34 = Dlslvxxxx +4D156Vxxxy +2(D152 +2D656)vxxyy +4D256vxyyy + DZSZVyyyy
L44 = Hlslvxxxx +lll-llstivxxxy +2(H152 +2H(§6)Vxxyy4stevxyyy
+H252Vyyyy _A555Vxx _A:zlvyy _ZAZBny
In addition
2 3 4 ~2
Vxx :iz;vxxx :%;Vuxx :i;;;vyy = ‘ 2 ;
OX OX OX oy
3 4 2 3
Vi :is;vywy :6—4ny :L;Vxxy :af
oy oy 0oxdy Ox“0y
3 4 4 4
VXW = a 2 ;VXXW = aZWbZ ;vxxxy = a3 ’VXYW = a 3
oxoy ox2oy ooy oxoy

2.2.1.5 Analytical solutions

2.2.1.5.1 Antisymmetric cross-ply laminates

For antisymmetric cross-ply
following terms of plate stiffness are null

Ajg = Ay = Dig = Dy = Dy = Djs = i
=Fp=Hy=Hy;=Hj=Hx=0

B,, = B,; = B,s = B, = B}, =B, =B
=Bg =E,=E;;=E,,=E4, =0

laminates plates,

(21d)

(22)

(23)

(24)

the

AASZAESZAESZD :F45:0

. . (25)
By, =By By, =—Bu1; B =-Ey
To solve the system of Eq. (21), we use the method of
Navier. It is assumed that the displacements u,v,w,,ws are
written in the following form in order to satisfy the
boundary conditions

u(x,y)= >.> U, cosaxsin gy
m=1 n=1
v(X,y)= DDV, sin axcos fy
m;l n:)l (26)
W, (X, Y) =D D W, sin axsin gy
m=1 n=1
w, (X, ) = > > W, sin axsin gy
m=1 n=1

To solve this problem, Navier introduced the external
force as a double trigonometric series.

a(x,y) = iiqmn sin axcos Ay

m=1 n=1

@7)

Where

a=mrz/a; f=nx/b

The two types of sinusoidal r uniform distributed loads
to which the plate is subjected are given by the following
expressions

Qmn=¢ Sinusoidal load
Qun = 169 Uniformly load (28)
mn

Substitute the Egs. (24), (25) and (26) in the system of
Eqg. (21), we obtain the following system of equations

S Sz Sz Sw [[Um 0
S Su S; Su|V _ 0 (29)
Siz Sz Sz Sas |[Womn Qmn
Suu Su Sz Sa (W Qumn
Where

S0 = AL’ AGSY s, = af(A, + Ay),

$,=-Bya’, s, = Blla

Sy = A%oz2 +A,p

Sy = Bmﬂsx Sy = Bf1ﬁ3| (30)

S5 = Dy’ +2(Dy, + 2D )’ f + D, B
=DSa’ +2(D5, +2Dg)a’ B + DL, B
Su = Hia' +2(H5, + 2Hga)azﬁ2 +H,p + Asssaz + A:ztﬁz
According to the Eqgs (29) and (30), the generalized
displacements can be solved. The stresses of the rectangular

laminated composite can then be obtained from the Eqgs.
(4a), (4b), (6a) and (6b), as follows

(k)

Oy gu gu glﬁ v
Oy = Z 912 926 926
m Qs Qs Qs

Q

Xy
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(e, - 2a"W,,, —a’f(2)\W,,,) sin axsin fy
x - ﬂum 28W,,, - B2F (W, ) sin axsin fy (31a)
(@+ AN, 2-2a+BlaW,, - 2a+B)f @W Smn)cosozxcos,b’y

(k) — — qk) .
Tyl _ Qu Qs AW, cosaxsin By
{O-XZ} ) ”‘Z”<|:Q45 Q55:| g(Z){BWsmn sin OKXCOSﬂy}> (31b)

2.2.1.5.2 Antisymmetric angle-ply laminates
For antisymmetric angle-ply laminates, the following
terms of plate stiffness are null

A1 :Aze: 16_D26_D156 D256_F16
—er—Hle_Hzﬁ_HlS6 HZSG_O
B, =By, =B, =By =B, =By, =B, (32)

= Bese =B, =E,=E,=Ex=0
A45 = Afs = Ajs = D45 = I:45 =0;
To solve the Eq. (21), one uses the method of Navier. It
is assumed that the displacements u, v, wy, Ws are written in

the following form in order to satisfy the boundary
conditions

u(x,y)= iiumn sin axcos gy

m=1 n=1

v(X,y) = ZZan cos axsin By
m=1n=1

(33)

0

W, (%, Y) =D D W, sin axsin gy

m=1n=1

sin axsin gy

w, (%, y) =2 > Wer,

Substitute the Eqgs. (32) and (33) in the system of Eq.
(21), we obtain the system of Eq. (29) with the following
coefficients:

S = Auaz + Aﬁsﬂzx S = aB(A, + Agg),

S;3= _(3Biaazﬁ + Bzeﬁs)' Sy, = _(3B1Ssazﬂ + steﬁg)
Sp = Aseaz + Azzﬂ2 = _(Buso‘3 +3Bzeaﬂ2)s
S =—(Bya +3steaﬂ ) (34)

S33= Dna +2(Dy, + 2Dee)a2ﬂ2 + Dzzﬁ4

Sy = Df1a4 +2(Dy, + ZDEG)O’ZﬂZ + Dzszﬁ4

Sy = Hfl‘XA +2(Hy, +2H;6)a2ﬁ2 + H;zﬂA + A5550’2 + Aj4ﬂz

Stresses of the rectangular laminated composite can then

be obtained from the equations. (4a), (4b), (6a) and (6b), as
follows

(k) — (k)

U Qll le Qlﬁ
oy :Z Q12 Qze st
Oy " Q16 Qze Qee
(35a)
—10"W, - a’f(2W,, )sinaxsin fy
ﬁUmn W, - B2 ()W, ) sin axsin By
(o + Bz - 2a + plaW,,, - 2a + B)F (W, Jcosaxcos fy

Table 1 Mechanical properties of materials

Materials E1 G12 Gi3 Gas3 V12
Material 12 25E2 0.5E> 0.5E> 0.2E> 0.25
Material 2 40E2 0.6E> 0.6E2 0.5E> 0.25

apagano 70; "Noor 75

) P ) )
Op| _ Q. Qs aW,, cosaxsin fy
{sz} B mzr;<L345 QJ ‘ (Z){ﬁWSmn sin ax cos ﬁy}> (35h)

3. Results and interpretations

In the first step, based on mathematical formulations, a
computer program is developed to study the behavior of
orthotropic, symmetric cross-ply, antisymmetric cross-ply
and antisymmetric angle-ply laminated symmetric plates
with simply supported edges using the refined four-variable
plate theory. The mechanical characteristics of the materials
used summarized in Table 1.

The numerical results of deflections and stress are given
in dimensionless form

8 2
W =W (x, y)[Ezh ] o,=0,(@l2b/2 z)(hz],
q b%q

2 2
5, =0,(@l2,bl2, Z)[bhij’ 5, =0, (@b, z)[;ij, (36)

c,=0,(al20, Z)[br;}

3.1 Comparison of results

5,=0,(0b/2, z)(hj,
bq

3.1.1 Orthotropic square plates and symmetric cross-
ply laminated plates

In the first part, we are interested in validating the
results of orthotropic square plates and symmetric cross-ply
laminated plates of stacking sequences (0°/90°/0°) and
(0°/90°/90°/0°) obtained by the four variables refined
theory by resulted available in literature. The plates have
simply supported subjected to uniform (CU) or sinusoidal
distributed loads (CDS), respectively. The tests are
performed for different geometric ratio values (a/h=10, 20
and 100) for the CDS load and geometric ratio values
(a/h=10 and 100) for the CU load. Material 1 is used. The
results are presented in Tables 2, 3,4 and 5.

From the Tables 2-5, we can see that the results obtained
by the present theory RPT are close to those obtained by the
FSDT theory. The theory involves four unknown variables,
as against five in case of first-order shear deformation
theory. The theory gives rise to transverse shear stress
variation such that the transverse shear stresses vary
parabolically across the thickness satisfying shear stress
free conditions at top and bottom surfaces of the plate. The
theory does not require problem-dependent shear correction
factors that are associated with the first-order shear
deformation theory.

Table 6 presented the nondimensionalized deflections of
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Table 2 Comparison of the results of nondimensionalized
deflections and maximum nondimensionalized stresses.
Case of simply supported orthotropic square plates
subjected to sinusoidal distributed loads (Material 1)

a/h Theories W o, o, Oy
FSDT? 0.6383 0.5248  0.0339  0.0246
Present (n=3) 0.6041 0.5747 0.0284 0.0227
10 Present(n=5) 0.6011 0.5652  0.0280  0.0280
Present (n=7) 0.5971 05594  0.0277  0.0277
Present (n=9) 0.5939  0.5556 0.0275 0.0275
FSDT? 0.4836 0.5350 0.0286  0.0222
Present (n=3) 0.4746 0.5477  0.0271  0.0216
20  Present (n=5) 0.4738 0.5453 0.0270 0.0280
Present (n=7) 0.4727 05439  0.0269  0.0277
Present (n=9) 0.4719 05429  0.0269  0.0275
FSDT®? 0.4333 0.5385  0.0267  0.0213
Present (n=3) 0.4330 0.5391  0.0267  0.0213
100 Present (n=5) 0.4329 0.5390  0.0267  0.0280
Present (n=7) 0.4329 05389  0.0267  0.0277
Present (n=9) 0.4329 0.5389  0.0267  0.0275
CLPT? 0.4312 0.5387 0.0267 0.0213
®Reddy 2004

Table 3 Comparison of the results of nondimensionalized
deflections and maximum nondimensionalized stresses.
Case of simply supported orthotropic square plates
subjected a uniform load (Material 1)

a/h Theories Orthotrope ~ (0°/90°/0°%)  (0°/90°/90%/0%)
FSDT? 0.9519 1.0219 1.0219
Present (n=3) 0.8976 0.9159 0.9280
10 Present (n=5) 0.8931 0.9123 0.9252
Present (n=7) 0.8872 0.9066 0.9200
Present (n=9) 0.8826 0.9021 0.9156
ANSYS 0.9671 1.0373 1.0392
FSDT? 0.6528 0.6697 0.6833
Present (n=3) 0.6522 0.6685 0.6822
100 Present (n=5) 0.6522 0.6685 0.6821
Present (n=7) 0.6521 0.6684 0.6821
Present (n=9) 0.6521 0.6684 0.6820
ANSYS 0.6540 0.6710 0.6847
2Reddy 2004

simply supported three-layer square laminates of three-layer
(450/30°/60°) and (45°/30°/90°) under sinusoidal transverse
load with various span-to-thickness ratios (a/h=5,10,20
and 100). It is noted that for thick plates (L/h=5) and for
thin plates (a/h=100). Material set 1 is used. The theory is
variationally consistent and avoids the need of shear
correction factors.

Figs. 5 and 6 show the stacking of the layers of the
laminated plates simulated on computation software of
structures Ansys 12.

In the following, we present in Figs. 7-12, the Z-axis
displacement of the orthotropic square plates and
symmetrical cross-ply laminated square plates of type
(00/900/00), (00/900/900/00), respectively. These results
obtained using the finite element method for a/h=10,100.
The values of the deflections also exist in Table 5 in the
nondimensionalized form. Symmetric laminates are thus

Table 4 Comparison of the results of nondimensionalized
deflections and maximum nondimensionalized stresses.
Case of simply supported three-layered antisymmetric
cross-ply square laminate plates (0%90%0°) subjected to
doubly sinusoidal distributed loads (Material 1)

a’/h Theories VV Ex Ey Exy Exz 6)/1

FSDT? 0.6693 0.5134 0.2536 0.0252 0.4089 0.1936

P(ﬁjg;‘t 0.6041 05747 0.1649 0.0227 0.3017 0.3017
Present
10 (n=5)
P(rrfj‘;r)‘t 0.5971 0.5594 0.1761 0.0221 0.2731 0.2731

P(rrfjgr)“ 0.5939 0.5556 0.1775 0.0219 0.2634 0.2634

FSDT? 04921 05318 0.1997 0.0223 0.4205 0.1805
P(rrfjgr)‘t 0.4746 0.5477 0.1759 0.0216 0.3028 0.3028
Present 1738 05453 0.1780 0.0215 0.2886 0.2886

20 (n=5)

P(rrfi%‘t 0.4727 0.5439 0.1787 0.0215 0.2733 0.2733

P(rrfig;‘t 0.4719 05429 0.1790 0.0214 0.2635 0.2635
FSDT* 04337 05384 0.1804 0.0213 0.4247 0.1746

P(rrfigg‘t 0.4330 05391 0.1794 0.0213 0.3031 0.3031

Present
(n=5)
Present
(n=7)
P(rrfig;‘t 0.4329 0.5389 0.1795 0.0213 0.2635 0.2635

CLPT® 0.4312 0.5387 0.1796 0.0213  -- -
“Reddy 2004

0.6011 0.5652 0.1731 0.0223 0.2882 0.2882

0.4329 0.5390 0.1795 0.0213 0.2887 0.2887
100
0.4329 0.5389 0.1795 0.0213 0.2733 0.2733

Layer# Material#

Theta

90

o

Fig. 5 Stacking layers of symmetric cross-ply laminated of
type (0°/90°/0°)

Layer# Materialg

Theta

90

50

0

Fig.6 Stacking layers of symmetric cross-ply laminated of
type (0°/90°/90°/0°)
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Table 5 Comparison of the results of nondimensionalized
deflections and maximum nondimensionalized stresses.
Case of simply supported four-layered symmetric cross-ply
square laminate plates (0%90%90%0°) subjected to doubly
sinusoidal distributed loads (Material 1)

a/h Theories W Ex Ey Exy Exz 5312

FSDT* 0.6693 0.5134 0.2536 0.0252 0.4089 0.1936
P(rrfj‘;’)“ 0.6041 0.5747 0.1649 0.0227 0.3017 0.3017
Present

10  (n=5)
Present
(n=7)
P(rr?jgr)‘t 0.5939 05556 0.1775 0.0219 0.2634 0.2634
FSDT* 0.4921 0.5318 0.1997 0.0223 0.4205 0.1805
P(rr‘fjgr)‘t 0.4746 0.5477 0.1759 0.0216 0.3028 0.3028
Present 04733 05453 0.1780 0.0215 0.2886 0.2886

20 (n=5)

Present

(n=7)

P(rrfjg’;‘ 0.4719 0.5429 0.1790 0.0214 0.2635 0.2635

FSDT* 0.4337 0.5384 0.1804 0.0213 0.4247 0.1746

P(rrfjg’;‘ 0.4330 0.5391 0.1794 0.0213 0.303L 0.3031

Present

(n=5)

Present

(n=7)

P(rr?jg’;‘ 0.4329 0.5389 0.1795 0.0213 0.2635 0.2635

CLPT® 04312 05387 0.1796 0.0213  -- -
aReddy 2004

0.6011 0.5652 0.1731 0.0223 0.2882 0.2882

0.5971 0.5594 0.1761 0.0221 0.2731 0.2731

0.4727 0.5439 0.1787 0.0215 0.2733 0.2733

0.4329 0.5390 0.1795 0.0213 0.2887 0.2887
100
0.4329 0.5389 0.1795 0.0213 0.2733 0.2733

largely used, unless some specific conditions require
nonsymmetric laminates.

3.1.1.2 Antisymmetric laminates
In this part, we see very interesting to validate the

MODATL. SOLUTION

STEP=1
SUB =1
TIME=1
uz (BVE)
RSYS=0
DMK =.96TE-05
SMN =-.367E-05
SMX =.517E-10

Table 6 Nondimensionalized deflections of simply
supported three-layer square laminates under sinusoidal
transverse load (Material 1)
(45°/30°/60°) (45°/30°/90°)
Theory a/h a/h
5 10 20 100 5 10 20 100

P('ﬁjg’;to.gsm 0.4375 0.3090 0.2675 0.9955 0.4916 0.3624 0.3208
Present
(n=5)
Present
(n=7)
Present

(n=9) 0.9142 0.4283 0.3064 0.2674 0.9681 0.4816 0.3597 0.3207

0.93740.4352 0.3082 0.2675 0.9931 0.4888 0.3615 0.3207

0.92530.4313 0.3072 0.2675 0.9797 0.4847 0.3605 0.3207

results of Nondimensionalized deflections and the
maximum stresses of the antisymmetric laminated plates of
stacking sequences (0%90°) et (0°/90°%)4 by results available
in  literatures, for  different geometrical ratios
(a/h=10,20,100).

The results of Tables 7 and 8, show that the
nondimensionalized deflections and nondimensionalized
stress obtained by the CLPT theory are independent of
geometric ratio (a/h), while the nondimensionalized
deflection values and stresses obtained by the present theory
and the FSDT theory depend on geometric ratio (a/h), this
variation explains the deformation effect of the transverse
shear. It is also observed that the deformation effect of the
transverse  shear causes an increase of the
nondimensionalized deflections in the center of the plate.

Still according to the preceding Tables, the difference
between the present theory and the classical laminate plate
theory concerning the nondimensionalized deflections at the
center of the plate decreases when the geometric ratio (a/h)
increases. For example, for eight-layer cross-ply square
laminated plates under a sinusoidal distributed loads of
geometric ratio (a/h=10), the difference between the present
theory and the first-order shear deformation theory is about
0.21%, while for a geometric ratio (a/h=20), it is only
0.10%. In the case of an isotropic plate there is no coupling

—.98TE-05
—-.B&OE-05
—.752ZE-05
—.845E-05
—-.537E-05
—.430E-05
—-.322E-05

—.215E-05

—-.107E-05

-517E-10

Fig. 7 Displacement following the Z-axis of a simply supported orthotropic plate subjected to a uniform load, Material 1,

Shel99 element, a/h=10
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NODAL SOLUTION

STER=1
SUB =1
TIME=1
Uz (AVG)
RS¥YS=0
DM¥ =.065401
SMI =-.065461
SM¥ =.193E-94

-.065401

.05el3z2

.050863

.043584

-038325

.028058

.021787

.014518

.007249

.199E-04

Fig. 8 Displacement following the Z-axis of a simply supported orthotropic plate subjected to a uniform load, Material 1,

Shel99 element, a/h=100

NODAT. SOLUTION

STEF=1
SUB =1

TIME=1

Uz (BVE)
RS¥5=0

DM =.104E-04

SMN =-.104E-04
SMX =.447E-10 2

—-.104E-04

—-.892ZE-05

—.B07E-05

—-.89ZE-05

-.576E-05

—.461E-05

—.346E-05

—-.231E-05

—.115E—-05

-447E-10

Fig. 9 Displacement following the Z-axis of a simply supported cross-ply laminated plate (0°/90°/0°) subjected to a uniform

load, Material 1, Shel99 element, a/h=10

NODRL SOLUTIICN
STEF=1

SUB =1

TIME=1

Uz (BVE
RSYS=0

DMX =.067096
SMN =—.06708&

SMX =.187E-jp4

—.067096

—.05%963%9

.05z2182

.044725

.037268

.029811

.022354

.014897

—.00744

-167TE-04

Fig. 10 Displacement following the Z-axis of a simply supported cross-ply laminated plate (0°/90°/0°) subjected to a uniform

load, Material 1, Shel99 element, a/h=100

between in-plane behaviour and flexural behaviour of the
plate. For an orthotropic layer of thickness, the material
directions of which are the same as the reference directions
of the plate (the reference directions of the stresses and
strains applied to the plate), as in the case of an isotropic
plate, the in-plane resultants depend only on the in-plane
strains and the moments depend only on the curvatures.

5. Conclusions

In the first part of this paper, we presented a theory of
laminated plates belonging to the family of shear models
and the equivalent monolayer approach family of multilayer
composites modeling. In the second part, a computer code
under Matlab based on the refined four-variable theory was
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WODAL SOLUTION

Uz (2vE)
R5YS5=0

DX =.104E-04
SMN =-.104E-04
SMX =.385E-10 7 g

—-.104E-04

-.924E-05

-.B08E-05

—-.693E-05

-.577E-05

—.46ZE-05

-.348E-05

-.231E-05

—-.115E-05

.385E-10

Fig. 11 Displacement following the Z-axis of a simply supported cross-ply laminated plate (0°/90°/90°/0°) subjected to a

uniform load, Material 1, Shel99 element, a/h=10

Table 7 Comparison of the results of nondimensionalized
deflections and maximum nondimensionalized stresses.
Case of simply supported two-layered antisymmetric cross-
ply square laminate plates (0°90°) subjected to doubly
sinusoidal distributed loads (Material 1)

Table 8 Comparison of the results of nondimensionalized
deflections and maximum nondimensionalized stresses.
Case of simply supported eight-layered antisymmetric
cross-ply square laminate plates (0%90%), subjected to
doubly sinusoidal distributed loads (Material 1)

a/h Theories W o, G, Gy 6, Oy a/h Theories W o, o, Gy oy, Gy,
FSDT* 1.2373 0.7157 0.7157 0.0525 0.2728 0.2728 FSDT® 0.6216 0.4950 0.4950 0.0221 0.2728 0.2728
P(rrfjgr)‘t 12161 0.7468 0.7468 0.0533 0.3190 0.3190 P(rrfjg';t 0.6229 0.5285 0.5285 0.0236 0.3416 0.3416
Present Present

10 (nw) 12233 07401 0.7401 0.0533 0.2830 0.2830 10 (nez) 06191 05198 05198 0.0232 0230 0.2930
P(rrf:‘;r)‘t 12234 07352 0.7352 0.0531 0.2685 0.2685 P(ﬁj%‘t 0.6146 0.5145 0.5145 0.0220 0.2742 0.2742
P(fig')“ 12223 0.7319 0.7319 0.0530 0.2602 0.2602 P(fig?t 0.6111 0.5111 05111 0.0228 0.2639 0.2639
FSDT* 11070 0.7157 0.7157 0.0525 0.2728 0.2728 FSDT* 04913 0.4950 04950 0.0221 0.2728 0.2728
P(rrfigr)‘t 1.1018 0.7235 0.7235 0.0527 0.3199 0.3199 P(fzgr)‘t 0.4918 0.5034 0.5034 0.0225 0.3427 0.3427
Present 1 1035 0.7218 07218 0.0527 0.2833 02833 Present 4907 05012 05012 0.0224 0.2934 0.2934

20 (n=5) 20 (n=5)

P(fi‘;')“ 1.1035 0.7206 0.7206 0.0526 0.2686 0.2686 P(rrfji')“ 0.4896 0.4999 0.4999 0.0223 0.2744 0.2744
P(r::gr)‘t 1.1033 0.7198 0.7198 0.0526 0.2603 0.2603 P(fjgr)‘t 0.4887 0.4990 0.4990 0.0223 0.2640 0.2640

FSDT? 1.0653 0.7157 0.7157 0.0525 0.2728 0.2728

FSDT? 0.4496 0.4950 0.4950 0.0221 0..2728 0..2728

P(r::gr)‘t 1.0651 0.7161 0.7161 0.0525 0.3202 0.3202 P(rrfjgr)‘t 0.4496 0.4953 0.4953 0.0221 0.3431 0.3431

P(r::‘;r)‘t 1.0652 0.7160 0.7160 0.0525 0.2834 0.2834 P(fjgr)‘t 0.4496 0.4952 0.4952 0.0221 0.2935 0.2035
100 100

P(rrfi‘;’)‘t 1.0652 0.7159 0.7159 0.0525 0.2687 0.2687 P(rrfj‘;';‘t 0.4496 0.4952 0.4952 0.0221 0.2744 0.2744

P(fig’)‘t 1.0652 0.7159 0.7159 0.0525 0.2603 0.2603 P(rrfjg';‘t 0.4495 0.4951 0.4951 0.0221 0.2640 0.2640

CLPT* 10636 07157 07157 00525 - - CLPT* 04479 0.4950 04950 0.0221 — -
*Reddy 2004 *Reddy 2004

developed for the behavioral analysis of bending of
orthotropic plates and laminated composite plates. Plates
subjected to either doubly sinusoidal charges or uniform
charge. The results obtained are compared with the results
available in the bibliography and the finite element method
Ansysl12. After modeling, we ended up with the following
results:

Composite plates are widely used in civil, mechanical,
aeronautical, and especially aerospace structures. This is
mainly due to their very high strength and specific rigidity
and the advantage of adapting their properties to meet the
requirements of the practice.

By dividing the transverse displacement into shearing
parts, the number of unknowns in the theory is reduced,
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NODAL SOLUTION
STEP=1

SME =.144E-p4

—.068467

—-.060858

—.053249

—.04564

—.038031

—.030422

-022813

.015204

—.007595

-144E-04

Fig. 12 Displacement following the Z-axis of a simply supported cross-ply laminated plate (0°/90°/90°//0°) subjected to a

uniform load, Material 1, Shel99 element, a/h=100

which saves computing time.

The results of the sample problem show good agreement
with the literature values as seen from the validation checks.
It should be noted that the present theory involves only four
independent variables as against five in the case of FSDT.
Also, the present theory does not required shear correction
factors as in the case of FSDT.

The orientation of the fibers has a great effect on the
mechanical behavior of laminated composite plates.

References

Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N.
(2019), “Hygrothermal effects on the free vibration behavior of
composite plate using nth-order shear deformation theory: a
micromechanical approach”, Iran J. Sci. Technol. Tran. Mech.
Eng., 43(1), 61-73. https://doi.org/10.1007/s40997-017-0140-y.

Ambartsumyan, S.A. (1969), Theory of Anisotropic Plate,
Technomic Publishing.

Antar, K., Amara, K., Benyoucef, S., Bouazza, M. and Ellali, M.
(2019), “Hygrothermal effects on the behavior of reinforced-
concrete beams strengthened by bonded composite laminate
plates”, Struct. Eng. Mech., 69(3), 327-334.
https://doi.org/10.12989/sem.2019.69.3.327.

Aydogdu, M. (2009), “A new shear deformation theory for
laminated composite plates”, Compos. Struct., 89, 94-101.
https://doi.org/10.1016/j.compstruct.2008.07.008.

Becheri, T., Amara, K., Bouazza, M. and Benseddiqg, N. (2016),
“Buckling of symmetrically laminated plates using nth-order
shear deformation theory with curvature effects”, Steel Compos.
Struct., 21(6), 1347-1368.
https://doi.org/10.12989/scs.2016.21.6.1347.

Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M.,
Mohamed, Z. and Boussad, A. (2018), “Mechanical buckling
analysis of hybrid laminated composite plates under different
boundary conditions”, Struct. Eng. Mech., 66(6), 761-769.
https://doi.org/10.12989/sem.2018.66.6.761.

Bhimaraddi, A. and Stevens, L.K. (1984), “A higher order theory
for free vibration of orthotropic, homogeneous, and laminated
rectangular plates”, J. Appl. Mech.,, 51(1), 195-198.
https://doi.org/10.1115/1.3167569.

Biswal, M., Sahu, S.K., Asha, A.V. and Nanda, N. (2016),
“Hygrothermal effects on buckling of composite shell-
experimental and FEM results”,Steel Compos. Struct., 22(6),
1445-1463. http://dx.doi.org/10.12989/scs.2016.22.6.1445.

Bouazza, M., Lairedj, A., Benseddiq, N. and Khalki, S. (2016), “A
refined hyperbolic shear deformation theory for thermal
buckling analysis of cross-ply laminated plates”, Mech. Res.
Commun., 73, 117-126.
https://doi.org/10.1016/j.mechrescom.2016.02.015.

Bouazza, M. and Zenkour, A.M. (2018), “Free vibration
characteristics of multilayered composite plates in a
hygrothermal environment via the refined hyperbolic theory”,
Eur. Phys. J. Plus., 133, 217.

Bouazza, M., Kenouza, Y., Benseddiq, N. and Zenkour Ashraf, M.
(2017), “A two-variable simplified nth-higher-order theory for
free vibration behavior of laminated plates”, Compos Struct.,
182, 533-541. https://doi.org/10.1016/j.compstruct.2017.09.041.

Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and
Mahmoud, S.R. (2018), “Improved HSDT accounting for effect
of thickness stretching in advanced composite plates”, Struct.
Eng. Mech., 66(1), 61-73.
https://doi.org/10.12989/sem.2018.66.1.061.

Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A.
and Tounsi, A. (2019), “Dynamic investigation of porous
functionally graded beam using a sinusoidal shear deformation
theory”, Wind Struct., 28(1), 19-30.
https://doi.org/10.12989/was.2019.28.1.019.

Bousahla, A.A., Benyoucef, S. Tounsi, A. and Mahmoud, S.R.
(2016), “On thermal stability of plates with functionally graded
coefficient of thermal expansion”, Struct. Eng. Mech., 60(2),
313-335. http://dx.doi.org/10.12989/sem.2016.60.2.313.

Chen, X. and Xu, C. (2016), “Effect oflocal wall thinning on
ratcheting behavior of pressurized 90° elbow pipe under
reversed bending using finite element analysis”, Steel Compos.
Struct., 20(4), 703-753.
https://doi.org/10.12989/scs.2018.28.3.389.

Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017),
“Thermal buckling analysis of cross-ply laminated plates using
a simplified HSDT”, Smart Struct. Syst., 19(3), 289-297.
https://doi.org/10.12989/ss5.2017.19.3.289.

El-Abbasi, N. and Meguid, S.A. (2000), “A new shell element
accounting for through thickness deformation”, Comput. Meth.
Appl. Mech. Eng., 189, 841-862. https://doi.org/10.1016/S0045-
7825(99)00348-5.

Ellali, M., Amara, K., Bouazza, M. and Bourada, F. (2018), “The
buckling of piezoelectric plates on Pasternak elastic foundation
using higher-order shear deformation plate theories”, Smart
Struct Syst., 21(1), 113-122.
https://doi.org/10.12989/ss5.2018.21.1.113.

Fourn, H., Ait Atmane, H., Bourada, M., Bousahla, A.A., Tounsi,
A. and Mahmoud, S.R. (2018), “A novel four variable refined
plate theory for wave propagation in functionally graded



Bending behavior of laminated composite plates using the refined four-variable theory and the finite element method 269

material plates”, Steel Compos. Struct., 27(1), 109-122.
https://doi.org/10.12989/scs.2018.27.1.109.

Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A.
(2015), “A sinusoidal plate theory with 5-unknowns and
stretching effect for thermomechanical bending of functionally
graded sandwich plates”, Steel Compos. Struct., 18(1), 235-253.
https://doi.org/10.12989/scs.2015.18.1.235.

Hanna, N.F. and Leissa, A.W. (1994), “A higher order shear
deformationtheory for the vibration of thick plates”, J. Sound
Vib., 170(4), 545-555. https://doi.org/10.1006/jsvi.1994.1083.

Hebali, H., Bakora, A., Tounsi, A. and Kaci, A. (2016), “A novel
four variable refined plate theory for bending, buckling, and
vibration of functionally graded plates”, Steel Compos. Struct.,
22(3), 473-495. https://doi.org/10.12989/scs.2016.22.3.473.

Kar, V.R. and Panda, S.K. (2015a), “Large deformation bending
analysis of functionally graded spherical shell using FEM”,
Struct. Eng. Mech., 53(4), 661-679.
https://doi.org/10.12989/sem.2015.53.4.661.

Karama, M., Afaq, K.S. and Mistou, S. (2003), “Mechanical
behaviour of laminated composite beam by new multi-layered
laminated composite structures model with transverse shear
stress continuity”, Int. J. Solid. Struct., 40(6), 1525-1546.
https://doi.org/10.1016/S0020-7683(02)00647-9.

Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and
Mahmoud, S.R. (2017), “A new nonlocal trigonometric shear
deformation theory for thermal buckling analysis ofembedded
nanosize FG plates”, Struct. Eng. Mech., 64(4), 391-402.
https://doi.org/10.12989/sem.2017.64.4.391.

Kim, D.N. and Bathe, K.J. (2008), “A 4-node 3D-shell element to
model shell surface tractions and incompressible behavior”,
Compult. Struct., 86, 2027-2041.
https://doi.org/10.1016/j.compstruc.2008.04.019.

Kim, S.E., Thai, H.T. and Lee, J. (2009), “Buckling analysis of
plates using the two variable refined plate theory”, Thin Wall.
Struct., 47(4), 455-462.
https://doi.org/10.1016/j.tws.2008.08.002.

Lo, K.H., Christensen, R.M. and Wu, E.M. (1977), “A high-order
theory of plate deformation. Part 2, Laminated plates”, J. Appl.
Mech., 44(4), 669-676. https://doi.org/10.1115/1.3424155.

Mantari, J.L, Oktem, A.S. and Guedes Soares, C. (2012), “A new
higher order shear deformation theory for sandwich and
composite laminated plates”, Compos. Part B: Eng., 43, 1489-
1499. https://doi.org/10.1016/j.compositesb.2011.07.017.

Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and
Mahmoud, S.R. (2017), “A new andsimple HSDT for thermal
stability analysis of FG sandwich plates”, Steel Compos. Struct.,
25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.

Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), “An
efficient and simple refined theory for buckling and free
vibration of exponentially graded sandwich plates under various
boundary conditions”, J. Sandw. Struct. Mater., 16(3), 293-318.
https://doi.org/10.1177/1099636214526852.

Mindlin, R.D. (1951), “Inuence of rotary inertia and shear on
exural motions of isotropic, elastic plates”, J. Appl. Mech., 18,
31-38.

Nakasone, Y., Yoshimoto, S. and Stolarski, T.A. (2006),
Engineering Analysis with Ansys Software, Elsevier,
Butterworth-Heinemann Linacre House, Jordan Hill, Oxford
0OX2 8DP30 Corporate Drive, Burlington.

Narendar, S. (2011), “Buckling analysis of micro-/nano-scale
plates based on two variable refined plate theory incorporating
nonlocal scale effects”, Compos. Struct., 93(12), 3093-3103.
https://doi.org/10.1016/j.compstruct.2011.06.028.

Noor, A.K. (1975), “Stability of multilayered composite plate”,
Fibre. Sci. Technol., 8, 81-89. https://doi.org/10.1016/0015-
0568(75)90005-6.

Pagano, N.J. (1970), “Exact solution for rectangular bidirectional

composites and sandwich plates”, J. Compos.Mater., 4(1), 20-
34. https://doi.org/10.1177/002199837000400102.

Patel, S.N. (2014), “Nonlinear bending analysis of laminated
composite stiffened plates”, Steel Compos. Struct., 17(6), 867-
890. http://dx.doi.org/10.12989/scs.2014.17.6.867.

Piscopo, V. (2010), “Refined buckling analysis of rectangular
plates under uniaxial and biaxial compression”, World Acad.
Sci., Eng. Technol., 46, 554-561.

Reddy, J.N. (1984), “A simple higher-order theory for laminated
composite  plates”, J. Appl. Mech.,, 51, 745-752.
https://doi.org/10.1115/1.3167719.

Reddy, J.N. (1984), Energy and Variational Methods in Applied
Mechanics, John Wiley and Sons, New York.

Reddy, J.N. (2004), Mechanics of Laminated Composite Plates
and Shells, Theory and Analysis, 2nd Edition, CRC Press, New
York.

Reddy, J.N. and Phan, N.D. (1985), “Stability and vibration of
isotropic, orthotropic and laminated plates according to a
higher-order shear deformation theory”, J. Sound Vib., 98(2),
157-170. https://doi.org/10.1016/0022-460X(85)90383-9.

Reissner, E. (1945), “The effect of transverse shear deformation on
the bending of elastic plates”, J. Appl. Mech., 12, 69-77.

Reza Barati, M. and Shahverdi, H. (2016), “A four-variable plate
theory for thermal vibration of embedded FG nanoplates under
non-uniform temperature distributions with different boundary
conditions”,  Struct. Eng.  Mech., 60(4), 707-727.
https://doi.org/10.12989/sem.2016.60.4.707.

Rezaiee-Pajand, M. and Arabi, E. (2016), “A curved triangular
element for nonlinear analysis of laminated shells”, Compos.
Struct., 153(1), 538-548.
https://doi.org/10.1016/j.compstruct.2016.06.052.

Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2018), “A
triangular shell element for geometrically nonlinear analysis”,
Acta Mechanica, 229(1), 323-342.
https://doi.org/10.1007/s00707-017-1971-8.

Rezaiee-Pajand, M., Masoodi, A.R. and Arabi, E. (2018),
“Geometrically nonlinear analysis of FG doubly-curved and
hyperbolical shells via laminated by new element”, Steel
Compos. Struct., 28(3), 389-401.
http://dx.doi.org/10.12989/scs.2016.22.6.1445.

Rezaiee-Pajand, M., Masoodi, A.R. and Arabi, E. (2018), “On the
shell thickness-stretching effects using seven-parameter
triangular element”, Eur. J. Comput. Mech., 27(2), 163-185.
https://doi.org/10.1080/17797179.2018.1484208.

Rezaiee-Pajand, M., Shahabian, F. and Tavakoli, F.H. (2012), “A
new higher-order triangular plate Bending element for the
analysis of laminated composite and sandwich plates”, Struct.
Eng. Mech., 43(2), 253-271.
https://doi.org/10.12989/sem.2012.43.2.253.

Senthilnathan, N.R., Chow, S.T., Lee, K.H. and Lim, S.P. (1987),
“Buckling of shear-deformable plates”, AIAA J., 25(9), 1268-
1271. https://doi.org/10.2514/3.48742.

Shaheen, Y.B., Mahmoud, A.M. and Refat, H.M. (2016),
“Structural performance of ribbed ferrocement plates reinforced
with composite materials”, Struct. Eng. Mech., 60(4), 567-594.
http://dx.doi.org/10.12989/sem.2016.60.4.567.

Shimpi, R.P. (2002), “Refined plate theory and its variants”, AIAA
J., 40(1), 137-46. https://doi.org/10.2514/2.1622.

Shimpi, R.P. and Patel, H.G. (2006), “A two variable refined plate
theory for orthotropic plate analysis”, Int. J. Solid. Struct.,
43(23), 6783-6799.
https://doi.org/10.1016/j.ijsolstr.2006.02.007.

Soldatos, K.P. (1992), “A transverse shear deformation theory for
homogeneous monoclinic plates”, Acta Mech., 94(3), 195-200.
https://doi.org/10.1007/BF01176650.

Soldatos, K.P. and Timarci, T. (1993), “A unified formulation of
laminated composite, shear deformable, five-degrees-of-


https://doi.org/10.1007/s00707-017-1971-8

270 Mokhtar Bouazza, Tawfiq Becheri, Abderrahmane Boucheta and Noureddine Benseddiq

freedom cylindrical shell theories”, Compos. Struct., 25(1-4),
165-171. https://doi.org/10.1016/0263-8223(93)90162-J.

Thai, H.T. (2012), “A nonlocal beam theory for bending, buckling,
and vibration of nanobeams”, Int. J. Eng. Sci., 52, 56-64.
https://doi.org/10.1016/j.ijengsci.2011.11.011.

Thai, H.T. and Choi, D.H. (2012), “An efficient and simple refined
theory for buckling analysis of functionally graded plates”,
Appl. Math. Model., 36(3), 1008-1022.
https://doi.org/10.1016/j.apm.2011.07.062.

Thai, H.T. and Kim, S.E. (2010), “Free vibration of laminated
composite plates using two variable refined plate theory”, Int. J.
Mech. Sci., 52, 626-633.
https://doi.org/10.1016/j.ijmecsci.2010.01.002.

Touratier, M. (1991), “An efficient standard plate theory”, Eng.
Sci., 29(8), 901-916. https://doi.org/10.1016/0020-
7225(91)90165-Y.

Whitney, J.M. and Sun, C.T. (1973), “A higher order theory for
extensional motion of laminated composites”, J. Sound Vib.,
30(1), 85-97. https://doi.org/10.1016/S0022-460X(73)80052-5.

Xiang, S. and Kang, G.W. (2013b), “A nth-order shear
deformation theory for the bending analysis on the functionally
graded plates”, Eur. J. Mech. A/Solid., 37, 336-343.
https://doi.org/10.1016/j.euromechsol.2012.08.005.

Xiang, S., Jiang, S.X., Bi, Z.Y,, Jin, Y.X. and Yang, M.S. (2011b),
“A nth-order meshless generalization of Reddy’s third-order
shear deformation theory for the free vibration on laminated
composite  plates”, Compos. Struct., 93(2), 299-307.
https://doi.org/10.1016/j.compstruct.2010.09.015.

Xiang, S., Jin, Y.X,, Bi, Z.Y,, Jiang, S.X. and Yang, M.S. (2011a),
“A n-order shear deformation theory for free vibration of
functionally graded and composite sandwich plates”, Compos.
Struct., 93(11), 2826-2832.
https://doi.org/10.1016/j.compstruct.2011.05.022.

Xiang, S., Kang, G.W. and Xing, B. (2012), “A nth-order shear
deformation theory for the free vibration analysis on the
isotropic plates”, Meccanica, 47(8), 1913-1921.
https://doi.org/10.1007/s11012-012-9563-0.

Xiang, S., Kang, G.W.,, Yang, M.S. and Zhao, Y. (2013a), “Natural
frequencies of sandwich plate with functionally graded face and
homogeneous core”, Compos. Struct, 96, 226-231.
https://doi.org/10.1016/j.compstruct.2012.09.003.

Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud,
S.R. (2018), “Novel quasi-3D and 2D shear deformation
theories for bending and free vibration analysis of FGM plates”,
Geomech. Eng., 14(6), 519-532.
https://doi.org/10.12989/gae.2018.14.6.519.

CcC

Nomenclature

XY, Z : coordinate reference system
. in-plane and transverse displacements
u, v and wo - ;
of a point (x, y) on the mid-plane
: displacements in x, y and z directions,
Uz, Uz and us -
respectively
éx and ¢y : rotations of normal to the mid-plane
a : length of the plate (meter)
b : width of the plate (meter)
h : Total thickness of the plate (meter)
a/h : span-to-thickness ratio (Unit less)
E, and E, : Young’s moduli along and transverse

direction of the fiber (GPa)

Gi2, G23 : in-plane shear moduli (GPa)
Gis : transverse shear moduli (GPa)
vizand Vot : Pf)ison’s ratios in respective plane
(Unit less)
) . plane stress reduced elastic constants
Qi in the material axes of the plate
Q; : transformed material constants
A, A, Dy, D, HS  : plate stiffness
0 : fibre orientation angle
k : total number of layers
U : strain energy of the plate.
q : transverse distributed loads
s : variation with respect to x and vy

respectively
: components of stress

£, €y Va1 Vrr ¥y - COMpoONents of strain

lo e e e

6,,0,,0,.,0,.0, :non-dimensionlized stress components

W : non-dimensional transverse
displacement

Mib,l\/lf,Qj resultants moments, shear forces,

(i=X,Y,Xy, j=xz, y2) respectively
: number of half waves in the x- and y-
directions, respectively
w : transverse displacement

bending component of transverse
displacement

shear component of
W .

displacement

T1 and T, are the transformation matrix

m, n

Wh

transverse

CLPT : classical laminate plate theory

FSDT : first-order shear deformation theory
HSDT : higher-order shear deformation theory
Cu : uniform distributed loads

CDS : sinusoidal distributed loads





