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1. Introduction 
 

There are passive, semi-active, and active control 

devices for vibration mitigation of civil engineering 

structures in general (Spencer and Nagarajaiah 2003). 

Among these vibration control devices, a simple passive 

control device is the tuned mass damper (TMD), widely 

used worldwide. The TMD is a dynamic vibration absorber 

(DVA), composing of a single-degree-of-freedom (SDOF) 

mass block, attached to the primary structure through a 

spring and a viscous damper. Firstly, the spring stiffness is 

tuned to absorb the input energy from external disturbances 

effectively and simultaneously the structural vibration 

energy is transferred to the TMD. Then, the transferred 

energy is dissipated via the damping force introduced 

through the inertia force of a SDOF mass block, thereby 

achieving the target of the structural dynamic response 

reduction. The TMD is tuned near the target resonance 

frequency of the mode generalised system in the specific 

vibration mode being controlled (simply referred herein to 

as the structure, in practical terms, the SDOF structure), 

hence damping only one mode of the vibration. Because of 

its simple and reliable implementation, the applications of 
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the TMD for civil engineering structures have been 

investigated and extended by, for example, Chung et al. 

Chung et al. (2013), Lu and Chen (2011, 2011), Lu et al. 

(2017), Gu et al. (1994), Casalotti et al. (2014), Carpineto 

et al. (2014), Domaneschi et al. (2015), Shu et al. (2017), 

Zhang et al. (2013), Si et al. (2014), Stewart and Lackner 

(2014), Li et al. (2015), Kaiming and Hong (2016), Song et 

al. (2016), Matta (2013), Lavan (2017), Kaveh et al. (2015), 

and Leung and Zhang (2009). 

Notwithstanding the bright prospect of the TMD, on the 

inherent characteristics, the TMD is capable of enhancing 

performances of the protected structures under the narrow 

band excitations, such as wind loads, traffic loads, sea 

waves, as well as earthquakes with limited band frequency. 

Evidently, the band of tuning frequency (called the band of 

suppression frequency) in which the structural vibration can 

be suppressed by a TMD is very narrow. It goes without 

saying that the high sensitivity to tuning poses a serious 

concern of the TMD. Due to mistuned frequency, the 

vibration suppression performance of the TMD will be 

impaired significantly, in practical terms, meaning that the 

TMD is not all robust. The robustness of the TMD 

effectively refers to its ability against the change or 

estimation error in the structural natural frequency. 

On the other hand, for practical reasons, the auxiliary 

mass (i.e., TMD mass block) is limited to on the order of 

several percent of total mass of the structure. This 
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restriction makes the TMD less effective for strong 

earthquakes. The mass ratio effect of the TMD was 

investigated by carrying out numerical analyses under 

different earthquake records for SDOF structures with lots 

of periods (Bekdaş and Nigdeli 2013). A general 

observation is that the mass ratio of the TMD needs to be 

much higher (beyond 5%) for a higher performance of 

structures in the near-field ground motions (Li and Cao 

2015). Therefore, it is necessary to research and develop the 

TMD devices endowed with large mass ratio. Delightedly, 

Angelis et al. (2012), Reggio and Angelis (2015) have 

recently explored the non-conventional tuned mass damper 

(TMD) with large mass ratio for mitigating the seismic risk 

of both new and existing buildings. For tall buildings, 

however, the mass ratio of the TMD must be kept in 

minimum levels. Hence, when needing to enhance the 

performance of earthquake-resistant structures by resorting 

to the TMD, we need to deal with its detuning effect and 

demand on large mass ratio. 

In an attempt to remedy the detuning effect of the TMD, 

more than one tuned mass damper with different dynamic 

characteristics, that is the double and multiple tuned mass 

dampers (DTMD and MTMD) have been proposed and 

investigated by, for example, Li and Zhu (2006), Ok et al. 

(2009), Xu and Igusa (1992), Kareem and Kline (1995), 

Jangid (1995, 1999), Li (2000), Li and Liu (2003), Li and 

Qu (2006), Li and Liu (2002), Zuo and Nayfeh (2005), Lin 

et al. (2010, 2010), Fu and Johnson (2011), Jokic et al. 

(2011), Daniel et al. (2012), Stăncioiu and Ouyang (2012), 

Mohebbi et al. (2013), Dinh and Basu (2015). Likewise, the 

semi-active tuned mass damper (SATMD) with minimal 

power is also thought of as a promising solution to the 

detuning problem of the TMD, because of its unique feature 

in real-time updating the stiffness or damping of the TMD 

making use of the sensed data on the actual vibration states 

of the structures, for example, Nagarajaiah and Varadarajan 

(2005), Nagarajaiah and Sonmez (2007), Nagarajaiah 

(2009), Weber et al. (2011), Chung et al. (2013), Sun and 

Nagarajaiah (2014), Weber (2014), Lin et al. (2015), Sun 

(2018), Chey (2010), Lin et al. (2012), Kaveh et al. (2015). 

But, it is worth mentioning that owing to online update, the 

semi-active tuned mass damper is more applicable to 

systems with time-variant parameters (Sun 2018). For 

example, the stiffness of the structures in elasto-plastic 

states (i.e., damage states) will be degenerating during 

severe earthquake events. Earthquakes could be highly non-

stationary, thus meaning that the structural responses 

possess the time-variant energy and frequency content 

(Basu and Nagarajaiah 2008). Likewise, earthquakes can 

involve a broad range of frequencies. In these cases, The 

SATMD with adjustable dynamic parameters is adaptive to 

changes in the structural behaviour over time and provides a 

broad feedback adaptive range of control, thus reducing the 

structural responses. 

As regards impulsive earthquake applications, the TMD 

may reduce the structural seismic responses when a large 

mass ratio is taken into consideration (Chen and Wu 2001). 

But, this heavier additional mass will need an 

extraordinarily large space and thus, its use becomes 

economically impractical. In practical terms, the original 

plan of installing the TMD for a project is often abandoned, 

since the stroke of the TMD is too large and there is not 

enough space to house it. But glad to notice that the 

effectiveness of the TMD may be further enhanced through 

introducing an active force to act between the controlled 

structure and the TMD, then comprising the active tuned 

mass damper (ATMD) (Chang and Soong 1980) Hence, a 

very promising alternative to surmount this large mass ratio 

restriction is to take advantage of the ATMD to achieve 

better attenuation in the structural displacement and/or 

acceleration against the impulsive earthquakes. Likewise, 

the research in optimizing the feedback gains and damper 

characteristics of an ATMD system in order to minimize the 

structural displacements and/or accelerations has nowadays 

been carried out by many researchers, for example, Chang 

and Yang (1995), Ankireddi and Yang (1996), Yan et al. 

(1999), Nagashima (2001), Nishitani and Inoue (2001), 

Collins et al. (2006), Guclu and Yazici (2008), Li et al. 

(2010), Venanzi et al. (2013), Amini et al. (2013), 

Fitzgerald and Basu (2014), and Li and Cao (2019). 

However, the robustness of the ATMD is not to be 

compared with that of the MTMD. Happily, the robustness 

of the ATMD can be remarkably enhanced using the active 

multiple tuned mass dampers (AMTMD) with decentralized 

control force feature (Li et al. 2002, 2003). 

Despite these research progresses, it is imperative and of 

practical interest to further search for a simpler and more 

compact hybrid active tuned mass damper system with wide 

frequency spacing (i.e., high robustness against the change 

or estimation error in the structural natural frequencies) but 

not reducing the effectiveness using the least number of 

ATMD units. To this end, two active tuned mass dampers, 

with the least number, are taken into consideration to 

enhance the robustness of a single active tuned mass 

damper, and then creating a new control device. As far as 

the two active tuned mass dampers are concerned, there 

exist two ways of composition. Series of two active tuned 

mass dampers forms the hybrid active tuned mass dampers 

(HATMD) and the enhanced hybrid active tuned mass 

dampers (EHATMD) (Li and Cao 2015, Cao and Li 2018). 

The parallel connection of two tuned mass dampers with a 

linking dashpot between mass blocks to structure 

constitutes the tuned tandem mass dampers (TTMD) (Yang 

and Li 2017) and Tuned tandem mass dampers-inerters 

(TTMDI) (Cao and Li 2019). Along these lines, the present 

paper further proposes a novel device, named the active 

tuned tandem mass dampers (ATTMD), which are 

anticipated to have high robustness. Therefore, the first 

work of the present study is to present the closed-form 

expression in the frequency domain and investigate the 

performance of the ATTMD by extensive simulation results 

based on the selected criteria for the optimality under the 

ground acceleration. Subsequent to the first work, a real-

time Simulink implementation of dynamic analysis of the 

structure with the ATTMD, including comparison object: 

two ATMDs without the linking dashpot under actual and 

artificial earthquake records is carried out to verify the 

findings of effectiveness and stroke in the frequency 

domain. 
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Fig. 1 Mechanical model of the active tuned tandem mass 

dampers (ATTMD) system 

 

 

2. Closed-form expressions for dimensionless 
displacement variances of the ATTMD structure 
system 

 

Fig. 1 presents the mechanical model of the active tuned 

tandem mass dampers (ATTMD) located on a single-

degree-of-freedom (SDOF) structure, as previously 

mentioned, effectively representing the mode generalised 

system in the specific vibration mode being controlled of 

the multi-degrees-of-freedom (MDOF) structures, excited 

by the ground acceleration [ẍg(t)]. The present control 

system configuration contains both the ATMD1 and 

ATMD2. Likewise, a linking dashpot is introduced between 

the ATMD1 and ATMD2. The set of second-order 

differential equations of motion for the structure ATTMD 

system can then be established as follows 

1 1 1 1 2 2 2 2 1 2( ) ( ) ( )s g s s s s sm x t y c y k y c y k y c y k y u t u t           
 

1 1 1 1 2 2 2 2 1 2( ) ( ) ( )s g s s s s sm x t y c y k y c y k y c y k y u t u t                              (1) 

 1 1 1 1 1 1 1 2 1( ) ( )g s Tm x t y y c y k y c y y u t            (2) 

 2 2 2 2 2 2 1 2 2( ) ( )g s Tm x t y y c y k y c y y u t           (3) 

in which ms, m1, and m2 are the mass of the structure, 

ATMD1, and ATMD2, respectively; cs, c1, and c2 represent 

the viscous damping coefficients of the structure, ATMD1, 

and ATMD2, respectively; cT stands for the linking viscous 

damping coefficient introduced between the ATMD1 and 

ATMD2;
 
ks, k1, and k2 refer to the stiffness coefficients of 

the structure, ATMD1, and ATMD2, respectively; ys, y1, and 

y2 denote the relative displacements of the structure, 

ATMD1, and ATMD2 with reference to their respective 

supports, that are the ground and structure, respectively; 

and, u1(t) 
and u2(t) indicate the active control forces 

generated by the actuators in the ATMD1 and ATMD2, 

respectively, which are to be explicitly defined below. 

Next, suppose that calculating active control forces of 

the ATTMD system in real time by resorting to feeding 

back the sensing signal can be written in a compact 

representation as follows 

1 1 1 1 1 1( ) su t m y c y k y               (4) 

2 2 2 2 2 2( ) su t m y c y k y               (5) 

where 1m  and 2m , respectively, indicate the gains of both 

the ATMD1 and ATMD2, feeding back the acceleration of 

the structure; while 1c  and 
1k , 2c  and 

2k  correspond, 

respectively, to the gains of feeding back the velocity and 

displacement of the respective ATMDs, namely the 

ATMD1 and ATMD2. 

In order to render a compact formulation, we beforehand 

introduce the following new variables. 
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Denote the Laplace transforms of the displacement, 

velocity, acceleration responses, and ground acceleration, 

respectively by 

( ) [ ( )]s sY s L y t , 
1 1( ) [ ( )]Y s L y t , 

2 2( ) [ ( )]Y s L y t , 

( ) [ ( )]s ssY s L y t , 
1 1( ) [ ( )]sY s L y t , 

2 2( ) [ ( )]sY s L y t , 

2 ( ) [ ( )]s ss Y s L y t , 2

1 1( ) [ ( )]s Y s L y t , 2

2 2( ) [ ( )]s Y s L y t , 

( ) [ ( )]g gX s L x t . 

Employing Eqs. (4) and (5), the forms in the Laplace 

domain of Eqs. (1)-(3) can then be written, respectively as 
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Substituting s=iω into Eqs. (6)-(8), where i 1  , and 

introducing non-dimensional coefficients: 
s
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 , Eqs. (6)-(8) can then be rewritten, 

respectively as the following forms 
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(11) 

For the sake of conciseness and compactness, the 

corresponding coefficients of Eqs. (9)-(11) are provided in 

Table 1. 

Through simultaneously solving Eqs. (9)-(11), the 

transfer functions of the structure with the attached 

ATTMD, ATMD1, and ATMD2 can then be expressed in a 

compact form, respectively as below 
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Employing Eqs. (12)-(14) and taking 

0 (i ) ( i )g gS X X        
 into consideration, in which s0 is 

the intensity of the white noise, the second-order moments 

of displacements (i.e., displacement variances) of the 

structure with the attached ATTMD, ATMD1, and ATMD2 

can be evaluated, respectively by following expression 
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Further, the dimensionless displacement variance for the 

structure with the attached ATTMD can be determined in 
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Table 1 Respective coefficients of Eqs. (9)-(11) 

Equations Coefficients 

(9) 

C12=1−α1μ1− α1 μ2 11 2 sC   
10 1C   

12 0D   
11 1 1 12D f    2

10 1 1D f   

12 0E   
11 2 2 22E f    2

10 2 2E f   

(10) 

22 11C    
21 0C   

20 0C   

22 1D    21 1 1 1 2

1
2 TD f f f


 




    2

20 1D f  

22 0E    21 1 2

1
TE f f







    

20 0E   

(11) 

32 21C    
31 0C   

30 0C   

32 0D      31 1 21TD f f      
30 0D   

32 1E      31 2 2 1 22 1TE f f f       2

30 2E f  

 

 

the form (Spanos 1983) 

3
2 6

02 2s s
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                 (18) 

The dimensionless displacement variance for ATMD1 in 

ATTMD may be represented as 

1 1

3
2 10
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           (19) 

And likewise, the dimensionless displacement variance 

for ATMD2 in ATTMD is computed as 

2

3 '
2 10
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500 2 1000
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           (20) 

Herein, the scaling coefficient of 1/500 introduced in 

Eqs. (19) and (20) is to take into consideration the 

convenience of drawing. The calculations of I6, I10, and 
'

10I  

 

 

in Eqs. (19)-(20) are detailed in Table 2. 

 

 

3. Optimum performance of ATTMD in the frequency 
domain 

 

This section focuses on evaluating the optimum 

performance of ATTMD in the frequency domain, including 

both the optimization and performance evaluation. Fig. 2 

presents the framework for evaluating the optimum 

performance of ATTMD in the frequency domain. 

 

3.1 Gradient method based optimization of ATTMD 
 

The four variables (f1, f2, ξ1, and ξ2) to be optimized as 

well as their respective incremental intervals (Δf1, Δf2, Δξ1, 

and Δξ2) are listed in Table 3. The mass ratio of the ATMD1 

to the structure (μ1) is known as the smaller mass ratio 

(SMR), whereas the mass ratio of the ATMD2 to the 

structure (μ2) is called the larger mass ratio (LMR), yet the 

ratio of the SMR to LMR is named as η. Likewise, in order 

to seek to find the optimum SMR, the various values of η 

are taken into consideration in the numerical analysis. The 

α1 and α2 are the normalized acceleration feedback gain 

factors (NAFGF) of both the ATMD1 and ATMD2, 

respectively. The ratio between α1 and α2 is designated as γ. 

In order to deploy control forces on the ATMD1 and 

ATMD2, the different values of γ are singled out. And more 

importantly, in order to provide valuable insight into the 

sensitivity of the ATTMD to the linking damping ratio ξT 

between the ATMD1 and ATMD2, its diverse values are 

taken into account and served as the abscissa of all the 

graphs. The total mass ratio μT and total normalized 

acceleration feedback gain factor αT of the ATTMD are, 

respectively, equal to μ1+μ2 and α1+α2, in parallel to 

defining the SMR, LMR, and NAFGF. The assigned values  

 

 

Table 2 Calculations of I6, I10, and I
′
10 in Eqs. (18)-(20) 

Equations Coefficients 

(18) I6=Im (i.e., m=6)    
*

1
1 , 1, 2,3, ,

m i

m i s i
b b i m



 
    * , 0,1, 2, ,j sja a j m   

(19) I10=Im (i.e., m=10) 
   

*

1
1 , 1, 2,3, ,

m i

m i T i
b b i m



 
    

* , 0,1, 2, ,j ja a j m   

(20) I’10=Im (i.e., m=10) 
   

*

1
1 , 1, 2,3, ,

m i

m i t i
b b i m



 
    

* , 0,1, 2, ,j ja a j m   

General form 

(Spanos 1983) 
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Table 3 Targets and ranges of explored parameters as well 

as assigned parameter values 

μT=0.01   

ξs=0.02   

αT=4, 8   

η=0.25, 0.50, 0.75, 1.00
 

  

γ=1/4, 1/2, 1, 2, 4
 

  

f1 (To be optimized) 0≤ f1≤2.0 Δf1=0.001 

f2 (To be optimized) 0≤ f2≤2.0 Δf2=0.001 

ξ1 (To be optimized) 0≤ξ1≤0.999 Δξ1=0.001 

ξ2 (To be optimized) 0≤ξ2≤0.999 Δξ2=0.001 

ξT=0.0, 0.1, 0.2, 0.3, 0.4   

 

 

of μT, αT, η, γ, ξT, and ξs (the modal damping ratio of 

structures) are presented in Table 3. 

Since in the present work the focus is on the protection, 

i.e., taking into account the structural integrity and safety, of 

the civil engineering structure by reducing its displacement 

response, the objective function is defined as the 

dimensionless displacement variances of the structure with 

the attached ATTMD. Naturally, this objective function can  

 

 

measure the ATTMD performance and its minimization will 

lead to the corresponding optimal parameters of the 

ATTMD system. Likewise, the lower the value of the 

objective function, the higher the effectiveness of the 

ATTMD. In order to identify the optimal parameter values 

of the ATTMD system, a gradient-based searching 

technique in MATLAB software platform shown in Fig. 2 is 

taken into consideration. Due to the closed-form expression 

of the objective function, this optimization technique is 

capable of making precise determination on the ATTMD 

parameters. 

Here, it is especially pointed out that in the following 

graphs min.RHs 
denotes the minimum values of the 

dimensionless displacement variances of the structure 

coupled with the ATTMD; f1 opt and ξ1 opt represent the 

optimum tuning frequency ratio and the optimum damping 

ratio of the ATMD1, respectively; f2 opt and ξ2 opt refer to the 

optimum tuning frequency ratio and the optimum damping 

ratio of the ATMD2, respectively; and, RH1 and RH2 are the 

normalized values of the dimensionless displacement 

variances of both the ATMD1 and ATMD2 taking their 

respective optimum parameters. 

In the physical sense, min.RHs is used to measure the  

 

 

 

Fig. 2 Framework for evaluating the optimum performance of ATTMD in the frequency domain 
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Fig. 3 Three-dimensional min.RHs surface used for 

measuring the effectiveness of the ATTMD with reference 

to given ratio of the SMR to LMR (η) and linking damping 

ratio (ξτ) under αT=4.0 

 
 

 

effectiveness of the ATTMD, while RH1 and RH2 are 

harnessed to evaluate the relative magnitude of the strokes 

of both the ATMD1 and ATMD2 in the ATTMD. Likewise, 

analogous to the ATTMD, the objective functions of two 

ATMDs, two TMDs, and the TTMD are also to minimize 

the dimensionless displacement variances of the structures 

coupled with them in order to guarantee the structural 

integrity. By resorting to these objective functions and 

gradient-based searching technique, the results of min.RHs, 

RH1, RH2, and the optimum parameters will be exhibited and 

analysed next in detail. 

 

3.2 Estimating the performance of ATTMD 
 

The performance of ATTMD will be scrutinized through 

analysing and comparing the effectiveness, optimum tuning 

frequency ratio, optimum frequency spacing, optimum 

damping ratio, and stroke. 

 

3.2.1 Effectiveness 
The plot of three-dimensional min.RHs surface is 

displayed in Fig. 3 used for measuring the effectiveness of 

the ATTMD with reference to given ratio of the SMR to 

LMR (η) and linking damping ratio (ξτ) under αT=4.0, 

whereas under αT=8.0 is shown is in Fig. 4. 

It can be seen from Fig. 3 that for different values of η, 

the variation trends of min.RHs are very similar with the 

linking damping ratio. Decreasing in the effectiveness of 

the ATTMD may be observed for increasing the values of γ, 

such as the case of η=0.25; but overall, this decreasing trend 

is becoming less and less obvious with the decrease of η, 

such as the case of η=1.0. From three data superposed in the 

Fig. 3, the optimum effectiveness of the ATTMD can be 

discerned at the linking damping ratio of 0.1. Interestingly, 

increasing the values of η and γ leads to decreasing the 

effectiveness of the ATTMD, thus effectively meaning that 

the combination of η=0.25 and γ=1/4 can bring about the 

optimum effectiveness of the ATTMD. A possible 

explanation for this phenomenon is that both the mass 

distribution and the linking dashpot have influences on the 

dynamic characteristics of the ATMD1 and ATMD2.  

 
Fig. 4 Three-dimensional min.RHs surface used for 

measuring the effectiveness of the ATTMD with reference 

to given ratio of the SMR to LMR (η) and linking damping 

ratio (ξτ) under αT=8.0. 

 

 

Whether it is the ATTMD or two ATMDs, the difference 

between the dynamic characteristic of the ATMD1 and that 

of ATMD2 becomes more remarkable under a greater 

distinction of their mass. Likewise, viscosity of the linking 

dashpot will further amplify this difference when the 

linking damping ratio attains its optimality. Therefore, 

according to the different dynamic characteristics between 

the ATMD1 and ATMD2, the ATTMD system may be 

driven to the states of optimal effectiveness through 

deploying the suitable control forces. Notwithstanding the 

existence of the optimum effectiveness, given a total mass 

ratio and a normalized acceleration feedback gain factor 

(NAFGF), an accessible region of the linking damping ratio 

of the ATTMD with the nearly identical level of 

effectiveness can be easily identified, such as the range 

from 0.0 to 0.3 for μT=0.01 and αT=4.0. In case of the total 

normalized acceleration feedback gain factor (αT) of 8.0, 

Fig. 4 brings to light the analogous attribute to Fig. 3, along 

with increasing in the effectiveness of the ATTMD with 

increases αT. 

For further comparison purposes, Table 4 summarizes 

the optimum parameters, effectiveness, and optimum 

frequency spacing of the ATTMD and TTMD with different 

linking damping ratios as well as two ATMDs and two 

TMDs. Table 4 clearly shows that the ATTMD and two 

ATMDs without the dashpot possesses the nearly identical 

level of effectiveness, but remarkably higher than that of the 

passive counterparts of both the former and latter. 

 

3.2.2 Optimum tuning frequency ratio 
The graphs of variation trends of the optimum tuning 

frequency ratio of the ATMD1 in the ATTMD with regard 

to the linking damping ratio are presented in Fig. 5 with the 

changing of several important parameters for αT=4.0, 

whereas for αT=8.0 are demonstrated is in Fig. 6. It can be 

identified from Figs. 5 and 6 that for η=0.25 and η=0.5, the 

optimum tuning frequency ratio of the ATMD1 increases 

with the increasing in the linking damping ratio. For η=0.75 

and η=1.0, however, the optimum tuning frequency ratio of 

the ATMD1 takes on the complex variation trends. 

Likewise, the ATTMD with the combination of η=0.25 and  
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γ=1/4 has a higher optimum tuning frequency ratio of the 

ATMDI. 

Next, the graphs of variation trends of the optimum 

tuning frequency ratio of the ATMD2 in the ATTMD with 

respect to the linking damping ratio are reported in Fig. 7 

with the changing of several important parameters for 

αT=4.0, whereas for αT=8.0 are provided is in Fig. 8. It can 

be discerned from Figs. 7 and 8 that for η=0.25 and η=0.5, 

the optimum tuning frequency ratio of the ATMD2 

 

 

 

decreases with the increasing in the linking damping ratio. 

Simultaneously, it is interesting to find that in general the 

optimum tuning frequency ratio of the ATMD2 is 

insensitive to the values of γ. Analogously, for η=0.75 and 

η=1.0 the optimum tuning frequency ratio of the ATMD2 

also takes on the complex variation trends and thus, cannot 

be concluded in a single simple trend. 

The complex variation trends may arise from a 

difference between the dynamic characteristic of the  

 

Fig. 5 Variation trends of the optimum tuning frequency ratio of the ATMD1 with regard to linking damping ratio under 

αT=4.0 and under the circumstances of consecutively chosen values: (a) η=0.25, (b) η=0.5, (c) η=0.75, and (d) η=1.0 

 

Fig. 6 Variation trends of the optimum tuning frequency ratio of the ATMD1 with regard to linking damping ratio under  

αT=8.0 and under the circumstances of consecutively chosen values: (a) η=0.25, (b) η=0.5, (c) η=0.75, and (d) η=1.0 

150



 

Active tuned tandem mass dampers for seismic structures 

 

 

 

 

ATMD1 and that of ATMD2, which is caused by the 

combined effects of ξT, γ, and η. An augment of the linking 

damping ratio further widens the gap between the 

frequencies, while the value of each frequency decreases 

with the increasing of γ. Whether the ATTMD or two 

ATMDs, the optimization always tends to arrange the 

natural frequency of the ATMD2 with a heavier mass more 

near that of a structure so as to attenuate the response of the 

structure more effectively. Looking at Figs. 5-8, for the 

 

 

 

optimum tuning frequency ratios there is actually a regular 

tendency, that the optimum natural frequency of the 

ATMD2 is closer to that of a structure than the ATMD1, in 

spite of existence of the complex variation trends. But it 

brings about a sensitivity in the allocation of the tuning 

frequency ratios that the mass of the ATMD2 is 

approximate to that of the ATMD1 when η=0.75 and η=1.0, 

thus meaning that neither η=0.75 nor η=1.0 is an 

appropriate choice. 

 

Fig. 7 Variation trends of the optimum tuning frequency ratio of the ATMD2 with regard to linking damping ratio under  

αT=4.0 and under the circumstances of consecutively chosen values: (a) η=0.25, (b) η=0.5, (c) η=0.75, and (d) η=1.0 

 

Fig. 8 Variation trends of the optimum tuning frequency ratio of the ATMD2 with regard to linking damping ratio under  

αT=8.0 and under the circumstances of consecutively chosen values: (a) η=0.25, (b) η=0.5, (c) η=0.75, and (d) η=1.0 
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Table 4 The optimum parameters, optimum frequency 

spacing, and effectiveness of ATTMD and TTMD with 

different linking damping ratios as well as two ATMDs and 

two TMDs when μT=0.01 and η=0.25 

` ξT f1
 

f2
 

β min.RHs 

ATTMD 

αT=4 γ=1/4 

0.100 1.590 0.881 0.574 3.768 

0.200 1.674 0.802 0.704 3.832 

0.093 1.586 0.888 0.564 3.767 

αT=8 γ=1/4 

0.100 1.755 0.873 0.671 3.001 

0.200 1.810 0.775 0.801 3.056 

0.106 1.754 0.866 0.678 3.000 

Two 

ATMDs 

αT=4 γ=1/4 0.000 0.888 0.997 0.116 3.878 

αT=8 γ=1/4 0.000 0.860 0.993 0.144 3.130 

TTMD 

0.100 1.350 0.899 0.401 6.057 

0.200 1.450 0.850 0.522 6.102 

0.006 1.056 0.956 0.099 5.940 

Two TMDs 0.000 1.037 0.965 0.072 6.036 

Note. Black data in this table represents the optimum parameters 

and effectiveness of the ATTMD corresponding to the optimum 

linking damping ratios (In this status, the linking damping ratio is 

treated as one of the variables to be optimized). 

 

 

3.2.3 Optimum frequency spacing 
Through re-examination of Figs. 5(a), 6(a), 7(a), and 

8(a), it is a pleasure to discover that in the optimum 

scenarios, there is a clear difference between the optimum 

tuning frequency ratio of the ATMD1 and that of the 

ATMD2. This attribute is attributed to the remarkably 

different dynamic characteristics between the ATMD1 and 

ATMD2. In practical terms, this obvious difference 

between the optimum tuning frequency ratio of the ATMD1 

and that of the ATMD2 signifies the existence of wider 

optimum frequency spacing, which can flatten the 

 

 

frequency response curve of a structure over the wider 

frequency range. The wider optimum frequency spacing of 

the ATTMD means the higher robustness against the 

change or estimation error in the structural natural 

frequency produced from structural complexity and material 

nonlinearity, such as the stiffness degeneration of a frame 

structure suffering from major earthquakes. Herein, the 

optimum frequency spacing of the ATTMD can be defined 

as 1 2 1 2=2 +opt opt opt optf f f f  （ ）  [28-32]. Apparently, this 

constitutes the highlight of the proposed ATTMD. 

Further comparison of the optimum frequency spacing 

in Table 4 clearly suggests that the optimum frequency 

spacing of the ATTMD is obviously larger than that of the 

TTMD and by a long way exceeds those of two ATMDs and 

two TMDs without the linking dashpot. Therefore, the 

proposed ATTMD possesses the highest robustness. 

Otherwise, the optimum frequency spacing of the ATTMD 

increases with the increasing in the normalized acceleration 

feedback gain factors (αT). Furthermore, the results shown 

in Table 4 demonstrate that for the ATTMD, the optimum 

linking damping ratio leads to a slightly smaller optimum 

frequency spacing; whereas for the TTMD, the optimum 

linking damping ratio corresponds to a significantly smaller 

optimum frequency spacing. 

 

3.2.4 Optimum damping ratio 
The graphs of variation trends of the optimum damping 

ratio of the ATMD1 with regard to the linking damping 

ratio are depicted in Fig. 9 with the changing of several 

important parameters for αT=4.0, whereas for αT=8.0 are 

illustrated in Fig. 10. Next, the graphs of variation trends of 

the optimum damping ratio of the ATMD2 with respect to 

the linking damping ratio are reported in Fig. 11 with the 

changing of several important parameters for αT=4.0, while  

 

Fig. 9 Variation trends of the optimum damping ratio of the ATMD1 with respect to linking damping ratio under αT=4.0 and 

under the circumstances of consecutively chosen values: (a) η=0.25, (b) η=0.5, (c) η=0.75, and (d) η=1.0 
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for αT=8.0 are provided is in Fig. 12. From Figs. 9 and 10, it 

can be clearly concluded that in general the optimum 

damping ratio of the ATMD1 is equal to zero for different 

values of γ when the linking damping ratio is greater than or 

equal to 0.1. And likewise, it can be observed from Figs. 11 

and 12 that for the optimum damping ratio of the ATMD2 

there exists this feature too. The main reason that leads to 

no damping demand is that the dashpot of the ATMD1 and 

ATMD2 are localised to the linking one between them. 

 

 

 

In other words, the linking dashpot locally dissipates a 

significant amount of vibrational energy from the structures 

in lieu of those of the ATMD1 and ATMD2, so as to achieve 

the optimum state of the ATTMD. Here, it is remarkable to 

note that under the circumstances that the linking damping 

ratio takes its optimum values, such as 0.093 available in 

Table 4, instead of 0.1, analogous results can still be 

obtained that the optimum damping ratios of the ATMD1 

and ATMD2 are simultaneously equal to zero. This feature  

 

Fig. 10 Variation trends of the optimum damping ratio of the ATMD1 with respect to linking damping ratio under αT=8.0 and 

under the circumstances of consecutively chosen values: (a) η=0.25, (b) η=0.5, (c) η=0.75, and (d) η=1.0 

 

Fig. 11 Variation trends of the optimum damping ratio of the ATMD2 with respect to linking damping ratio under αT=4.0 and 

under the circumstances of consecutively chosen values: (a) η=0.25, (b) η=0.5, (c) η=0.75, and (d) η=1.0 
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Fig. 13 Three-dimensional RH1 histogram of the ATMD1 

with regard to given ratio of the SMR to LMR (η) and 

linking damping ratio (ξT) under αT=4.0 

 

 

manifestly simplifies the composition of the ATTMD, 

thereby further highlighting its simplicity and practicability 

for application. 

 

3.2.5 Stroke 
The variation trends of three-dimensional RH1 

histogram, utilized for measuring the relative magnitude of 

the stroke of the ATMD1, with regard to given ratio of the 

SMR to LMR (η) and linking damping ratio (ξT) under 

αT=4.0 and αT=8.0 are compared in Figs. 13 and 14, and is 

briefly described as follows: (1) when the linking damping 

ratio is around 0.1, the stroke of the ATMD1 is much less 

than that of Two ATMDs. (2) When the linking damping 

ratio is equal to or greater than 0.2, the stroke of the 

 

 

Fig. 14 Three-dimensional RH1 histogram of the ATMD1 

with regard to given ratio of the SMR to LMR (η) and 

linking damping ratio (ξT) under αT=8.0 

 

 

ATMD1 cannot be further reduced. (3) The stroke of the 

ATMD1 is insensitive to deploying the control forces, i.e., 

varying the values of γ. (4) Varying the values of η does not 

lead to changing the variation trends of RH1. (5) Smaller is 

the stroke of the ATMD1 in the ATTMD with the 

combination of η=0.25 and γ=1/4 with respect to other 

combinations. 

Figs. 15 and 16 present the three-dimensional 

histograms reflecting the variation trends of RH2, used for 

measuring the relative magnitude of the stroke of the 

ATMD2, with respect to given ratio of the SMR to LMR (η) 

and linking damping ratio (ξT) under αT=4.0 and αT=8.0. 

Through scrutinizing Figs. 15 and 16, the following 

demonstrations can be reached. The stroke of the ATMD2  

 

Fig. 12 Variation trends of the optimum damping ratio of the ATMD2 with respect to linking damping ratio under αT=8.0 and 

under the circumstances of consecutively chosen values: (a) η=0.25, (b) η=0.5, (c) η=0.75, and (d) η=1.0 
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Fig. 15 Three-dimensional RH2 histogram of the ATMD2 

with regard to given ratio of the SMR to LMR (η) and 

linking damping ratio (ξT) under αT=4.0 

 

 

Fig. 16 Three-dimensional RH2 histogram of the ATMD2 

with regard to given ratio of the SMR to LMR (η) and 

linking damping ratio (ξT) under αT=8.0 

 

 

decreases with the increasing in the linking damping ratio. 

But when the linking damping ratio is beyond ξT=0.2, the 

rate of descent of the stroke of the ATMD2 reduces. 

Deployment of the control forces has a certain effect on the 

stroke of the ATMD2. For example, for the ATTMD with 

the combination of η=0.25 and γ=4, the ATMD1 and 

ATMD2 simultaneously maintain the smaller stroke. 

However, it can been seen from Figs. 3 and 4 that the 

ATTMD with this combination provides the low level of 

effectiveness. Additionally, increasing the total normalized 

acceleration feedback gain factor (αT) increases the stroke 

of the ATMD2. 

In order to further delineate the effects of the linking 

damping ratio on the relative magnitude of the stroke of 

ATMD1 and ATMD2 in the ATTMD, Figs. 13-16 

simultaneously present the data of RH1 and RH2 in the 

ATTMD with the combination of η=0.25 and γ=1/4. These 

data indicate clearly that the relative magnitude of the 

stroke of ATMD1 in the ATTMD is remarkably smaller 

than that of two ATMDs without a linking dashpot. 

Likewise, for the combination of η=0.25 and γ=1/4, in the 

case of αT=8.0, the stroke of ATMD2 in the ATTMD is 

slightly larger than that of two ATMDs without a linking 

dashpot when the linking damping ratio equals 0.1. 

However, when the linking damping ratio is equal to or 

larger than 0.2, the stroke of ATMD2 in the ATTMD is 

smaller than that of two ATMDs. 

The above phenomena are ascribed to that the linking 

dashpot generates a phase difference between the ATMD1 

with ATMD2. This phase delay gives rise to a remarkably 

different dynamic characteristic between the ATMD1 and 

ATMD2, thereby making the linking dashpot effectively 

dissipate vibrational energy under an appropriate linking 

damping ratio. Likewise, for the ATMD1 and ATMD2, the 

larger the allocated NAFGF, the more vigorous its 

vibration. Nevertheless, the linking dashpot, with a large 

damping ratio, greatly suppresses their vibrations, which 

brings out the control effectiveness decline of the ATTMD 

system. Further, the linking damping ratio impacts on the 

strokes more heavily than the deployment of control forces. 

Consequently, compared with two ATMDs, the strokes of 

the ATMD1 and ATMD2 are less sensitive to deploying the 

control forces and decrease globally with the increasing of 

linking damping ratio. 

Herein, it is worthwhile emphasizing that through 

analysing comprehensively on Figs. 3, 4, 13-16, increasing 

the linking damping ratio of the ATTMD with the 

combination of η=0.25 and γ=1/4 not only can reduce the 

stroke of the ATMD2, but also render a higher effectiveness 

than the combination of η=0.25 and γ=4. 

 

 

4. Effectiveness and stroke verification of ATTMD in 
time domain 

 

Subsequent to the frequency domain analysis, the 

effectiveness and stroke verification of ATTMD in the time 

history domain will be performed in this section. We 

consider a seismically excited three-storey building with a 

set of ATTMD or Two ATMDs installed on the top floor. 

The structural mass and stiffness coefficients for each 

storey are msi=1.0198×10
5
 kg and ksi=1.28472×10

8
 N/m for 

i=1,2,3. The structural modal information of the three-

storey building is given in the following. Natural 

frequencies of the three modes of the structure are 

ωs1=15.7960 rad/s, ωs2=44.2595 rad/s, ωs3=63.9568 rad/s, 

respectively. The corresponding generalised modal masses 

of the structure are * 5

1 1.87762 10 kgm   , 

* 5

2 2.9196 10 kgm   , and * 5

3 9.48 10 kgm   , respectively. 

Three damping ratios for of the three modes of the structure 

are assumed to be ξs1=ξs2=ξs3=0.02 of the critical damping, 

which is modelled as Rayleigh damping. Employing 

Rayleigh damping, the damping matrix of the three-storey 

structure may be obtained through a linear combination of 

mass-proportional and stiffness-proportional damping terms 

(Erduran 2012). Three earthquake records shown in Table 5, 

including two actual El-Centro and Tianjin records, and one 

artificial Shanghai record, a synthesized ground motion 

using the target response spectrum in compliance with the  
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Fig. 17 Framework for effectiveness and stroke verification of ATTMD in the time history domain 

 
Fig. 18 Time history plots of displacement of three-storey building with and without the optimum ATTMD (taking the 

optimum linking damping ratio) or optimum Two ATMDs with μT=0.01, η=0.25, and γ=1/4 for two normalized acceleration 

feedback gain factors and three earthquake records: (a) αT=4 and El-Centro, (b) αT=8 and El-Centro, (c) αT=4 and Tianjin, (d) 

αT=8 and Tianjin, (e) αT=4 and Shanghai, and (f) αT=8 and Shanghai 
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Table 5 Characteristics of earthquake records 

Earthquake 

Records 
Name Year 

Record 

Station 

PGA 

(cm/s2) 

Sampling 

Interval 
(s) 

Time 

Range 
(s) 

Scaled 

PGA 

El-Centro 

Imperial 

Valley, 
USA 

1940 
117 

El-Centro 
314.70 0.02 0~30 0.4 g 

Tianjin 

Ninhe 

Tianjin, 
CHN 

1976 
Tianjin 

Hospital 
145.80 0.01 0~19 0.4 g 

Shanghai 

Synthesized 

ground 
motion 

— Shanghai 35.00 0.01 0~27 0.4 g 

 

 

code for seismic design of buildings, are used as the input 

excitations in the numerical simulation. The damper mass is 

taken to be 1% of the first-mode generalised modal mass 

(i.e., μT=0.01). Employing the analysis results in the 

frequency domain, the designing parameters of investigated 

ATTMD and Two ATMDs with μT=0.01, η=0.25, and γ=1/4 

are given in the Table 6. In this numerical study, two cases 

 

Table 6 Designing parameters of investigated ATTMD and 

Two ATMDs with μT=0.01, η=0.25, and γ=1/4 in two cases 

of the optimum linking damping ratio (ξTopt) and ξT=0.2 

under three earthquakes (%)  

 αT ξT 1 1k k  

(N/m) 
2 2k k  

(N/m) 

1 1c c  

(N∙s/m) 

2 2c c  

(N∙s/m) 

cT 

(N∙s/m) 

ATTMD 

4 
0.093 235688.5 295541.1 0 0 6824.0 

0.200 262568.6 241068.6 0 0 14687.1 

8 
0.106 288264.5 281078.6 0 0 8236.9 

0.200 306965.2 225110.3 0 0 15333.6 

Two 

ATMD 

4 0 73885.3 372548.0 242.3 4210.8 0 

8 0 69299.3 369564.7 275.5 5607.5 0 

 

 

of the optimum linking damping ratio and ξT=0.2 are 

considered, as shown in Table 6. Fig. 17 presents the 

framework for effectiveness and stroke verification of the 

ATTMD in the time history domain. 

Fig. 18 presents the time history plots of displacement  

 
Fig. 19 Time history plots of stroke of the ATMD1 in the optimum ATTMD (taking the optimum linking damping ratio) and 

optimum Two ATMDs with μT=0.01, η=0.25, and γ=1/4 for two normalized acceleration feedback gain factors and three 

earthquake records: (a) αT=4 and El-Centro, (b) αT=8 and El-Centro, (c) αT=4 and Tianjin, (d) αT=8 and Tianjin, (e) αT=4 and 

Shanghai, and (f) αT=8 and Shanghai 
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of three-storey building with and without the optimum 

ATTMD or optimum Two ATMDs with μT=0.01, η=0.25, 

and γ=1/4 with αT=4.0 and αT=8.0 subjected to three 

earthquakes. For the charts shown in Fig. 18, the following 

two conclusions can be identified: (1) the ATTMD is 

capable of reducing the displacement of the three-storey 

building under earthquakes, and (2) the ATTMD and two 

ATMDs without the dashpot possesses the nearly identical 

level of effectiveness. 

Fig. 19 shows the time history plots of stroke of the 

ATMD1 in the optimum ATTMD and optimum Two 

ATMDs with μT=0.01, η=0.25, and γ=1/4 with αT=4.0 and 

αT=8.0 subjected to three earthquakes. As expected, the 

charts shown in Fig. 19 clearly demonstrate that the stroke 

of the ATMD1 is much less than that of Two ATMDs. 

Fig. 20 presents the time history plots of stroke of the 

ATMD2 in the optimum ATTMD and optimum Two 

ATMDs with μT=0.01, η=0.25, and γ=1/4 with αT=4.0 and 

αT=8.0 subjected to three earthquakes. Similar to the results 

in Figs. 15 and 16, under the circumstances of μT=0.01, 

 

 

η=0.25, and γ=1/4 with αT=4.0 and αT=8.0, at the optimum 

linking damping ratio the stroke of ATMD2 in the ATTMD 

is nearly identical to that of two ATMDs without the 

dashpot. 

In order to examine the effect of linking damping ratio 

in the time domain, Table 7 presents the effectiveness ratios 

(ER) of investigated ATTMD and Two ATMDs with 

μT=0.01, η=0.25, and γ=1/4  in two cases of the optimum 

linking damping ratio and ξT=0.2 under three earthquakes. 

In light of Table 7, the following findings can be 

summarized. Increasing the linking damping ratio, the 

change is not obvious in the effectiveness ratios (ER) of 

ATTMD for reduction of the structural displacement. 

Likewise, the ATTMD keeps the nearly identical 

effectiveness to Two ATMDs. As regards the stroke of 

ATTMD, increasing the linking damping ratio can enhance 

the effectiveness ratio (ER) of ATMD2 but decreases that of 

ATMD1. Likewise, it is worth pointing out that with the 

increase of the linking damping ratio, the perturbation in the 

total stroke (i.e., sum of the stroke of ATMD1 and ATMD2)  

 
Fig. 20 Time history plots of stroke of the ATMD2 in the optimum ATTMD (taking the optimum linking damping ratio) and 

optimum Two ATMDs with μT=0.01, η=0.25, and γ=1/4 for two normalized acceleration feedback gain factors and three 

earthquake records: (a) αT=4 and El-Centro, (b) αT=8 and El-Centro, (c) αT=4 and Tianjin, (d) αT=8 and Tianjin, (e) αT=4 and 

Shanghai, and (f) αT=8 and Shanghai 
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is very small, thus analogous to the results in the frequency 

domain. 

Thus it can be seen that the findings of the effectiveness 

and stroke in the time domain are well agreement with the 

ones in the frequency domain. 

 

 

5. Conclusions 
 

Employing the derived objective function of the 

structure installed with the ATTMD and the gradient-based 

searching technique, the optimum ATTMD is systematically 

evaluated and thoroughly compared with the optimum two 

ATMDs, two TMDs, and TTMD in the frequency domain. 

Subsequent to work in the frequency domain, the real-time 

Simulink implementation of dynamic analysis of the 

structure with the ATTMD under three earthquakes is 

conducted to corroborate the findings of the effectiveness 

and stroke in the frequency domain. The three earthquakes 

include two actual El-Centro and Tianjin records and one 

artificial Shanghai record. In accordance with the extensive 

numerical results obtained and assessment presented, the 

main conclusions can be drawn as follows: 

(1) Employing the derived closed-form expression of the 

objective function of the structure-ATTMD system, the 

gradient-based optimization technique is capable of 

making precise determination on the ATTMD 

parameters. 

(2) Given a total mass ratio of the ATTMD, such as 

μT=0.01, the appropriate combination of both the mass 

ratio between ATMD1 and ATMD2 as well as the 

allocation ratio of their control forces, such as η=0.25 

and γ=1/4, can bring about the optimum effectiveness of 

the ATTMD. Likewise, the ATTMD and two ATMDs 

without the linking dashpot possesses the nearly 

identical level of effectiveness, but remarkably higher 

than that of the TTMD and two TMDs. 

(3) The frequency spacing characterizing the robustness 

 

 

of the ATTMD is obviously larger than that of the 

TTMD and by a long way exceeds those of two ATMDs 

and two TMDs without the linking dashpot. Likewise, 

the frequency spacing of the ATTMD is comparable to 

that of the AMTMD. 

(4) The optimum damping ratios of the ATMD1 and 

ATMD2 are simultaneously equal to zero. That is, 

neither of them needs dampers. This property manifestly 

simplifies the composition of the ATTMD, thereby 

further highlighting its simplicity and practicability for 

application. 

(5) The stroke of the ATMD1 is much less than that of 

Two ATMDs. At the optimum linking damping ratio the 

stroke of ATMD2 in the ATTMD is nearly identical to 

that of two ATMDs without the linking dashpot. 

Likewise increasing the linking damping ratio can 

reduce the stroke of ATMD2. 

(6) Representative numerical results in the time domain 

support the findings of the effectiveness and stroke in 

the frequency domain. 

Therefore, the ATTMD with the least number of ATMD 

units is deemed to be a high robustness control device and 

doesn’t reduce the effectiveness. Likewise, the stroke of the 

ATTMD is smaller than that of two ATMDs without a 

linking dashpot. The ATTMD system only needs the linking 

dashpot, thus embodying its simplicity. Furthermore, the 

ATTMD may be designed and implemented in accordance 

with the technical guidelines and engineering practical 

experiences for the ATMD. 

In closing, we present the layout principle of the 

ATTMD for seismic plan-asymmetric structures to promote 

its wider practical applications. For one-way plan-

asymmetric structures, In order to reduce the structural 

translational and torsional responses more effectively, the 

smaller ATMD is installed at the stiff edge which is near to 

the centre of stiffness (CS), while the larger ATMD is set at 

the flexible edge which is away from the CS. For two-way 

plan-asymmetric structures, the same arrangement principle 

Table 7 Effectiveness ratios (ER) of investigated ATTMD and Two ATMDs with μT=0.01, η=0.25, and γ=1/4 in 

two cases of the optimum linking damping ratio (ξTopt) and ξT=0.2 under three earthquakes (%) 

  EI-Centro Tianjin Shanghai 

αT ERysi Two ATMDs 
ATTMD 

Two ATMDs 
ATTMD 

Two ATMDs 
ATTMD 

ξTopt 0.2 ξTopt 0.2 ξTopt 0.2 

4 

ERys1 30.13 29.29 31.87 40.58 42.12 41.30 39.00 37.26 35.22 

ERys2 28.54 27.70 30.42 41.58 43.17 42.37 39.00 37.33 35.44 

ERys3 26.61 25.81 28.28 41.84 43.61 43.01 38.87 37.25 35.64 

ERy1  38.31 29.15  33.17 22.99  39.97 29.79 

ERy2  -6.25 6.26  -6.86 6.53  2.00 9.6 

8 

ERys1 32.67 32.25 32.98 48.82 48.56 48.33 40.89 40.22 39.12 

ERys2 29.54 29.37 30.17 50.88 51.47 50.65 40.82 40.26 39.01 

ERys3 27.43 27.62 28.56 51.26 51.86 51.37 40.94 41.68 39.10 

ERy1  36.81 25.69  35.04 24.58  38.84 27.18 

ERy2  -8.92 2.83  -6.54 5.96  -2.85 6.55 

Note：

Peak displacement of uncontrolled structure

Peak displacement of controlled structure
ER 100% 1, 2, 1, 2, 3

Peak displacement of uncontrolled structure
yi i s s s



  ，  
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can be adopted, but two sets of ATTMD are required. 
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