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1. Introduction 
 

Reports on several earthquake events show that 

pounding between adjacent buildings is a major reason for 

damage or even collapse (Kasai and Maison 1997, Chase et 

al. 2014, Jankowski 2005, Ghandil and Aldaikh 2017). 

Therefore, extensive research has been focused on pounding 

mitigation (Barbato and Tubaldi 2013, Zargar et al. 2017, 

Jankowski and Mahmoud 2016, Aldaikh et al. 2015, Abdel 

Raheem 2014), risk assessment (Barbato and Tubaldi 2013, 

Tubaldi et al. 2016) and the development of 

phenomenological contact elements. The latter should 

enable a realistic description of the pounding phenomenon. 

Earlier models are energy-conserving. This includes the 

linear elastic and nonlinear elastic model, which follows 

Hertz's law (Davis 1992, Pantelides and Ma 1998, Chau et 

al. 2003, Mavronicola and Komodromos 2011, Chau and 

Wei 2001). The obvious disadvantage of these models is 

that they do not consider energy dissipation. Thus, a linear 

viscoelastic model was proposed in the literature 

(Anagnostopoulos 1992); however, abrupt jumps at the 

beginning and the end time instants of the collision time 

period are observed. Additionally, unwanted tensile forces 

occur at the end of the restitution time period. 

Consequently, two state-of-the-art pounding models have 

been proposed in the literature, whereby neither abrupt 
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jumps with regard to the collision force nor tensile forces 

are observed during the end of the restitution time period. 

Firstly, this includes the Hertz-Damp model (Muthukumar 

and DesRoches 2006, Zhang et al. 2014, Ye et al. 2009), 

which consists of a nonlinear Hertz spring and a nonlinear 

damping term. Secondly, the nonlinear viscoelastic model 

was proposed by Jankowski (Jankowski 2005, 2006, 2009). 

In this model, a nonlinear spring and a nonlinear damping 

term are active in parallel during the approach time period, 

but only the nonlinear spring is active during the restitution 

time period (Bamer 2018, Bamer and Markert 2018). 

Although the presentation of enhanced pounding 

elements is mostly done using simple multi degree of 

freedom systems with conform collision conditions (node-

to-node formulation), there are several papers in the 

literature, which apply finite-element-discretized structures 

for the description of the pounding problem (Pantelides and 

Ma 1998, Efraimiadou et al. 2013a, b, Ghandil and Aldaikh 

2017). However, the strategies of how to include the state-

of-the-art pounding models for the discretized structures, is 

not sufficiently discussed. Additionally, the treatment of 

high-dimensional dynamic problems is time consuming. 

Especially, the computation of the impact force in every 

calculation time step demands a considerably high 

computational effort, as search algorithms must be applied 

within the discretization of the defined collision surfaces. 

Thus, physically motivated model order reduction 

techniques can constitute effective strategies to overcome 

this issue. Model order reduction strategies for nonlinear 

systems, using the proper orthogonal decomposition 

method, have intensively been advocated in various fields 

of engineering over the last decades, and lately they have 

also been applied to materially nonlinear structures 

subjected to transient excitation (Bamer and Bucher 2012, 

Bamer et al. 2017a, Komodromos 2007, Bamer and  
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Markert 2017). Regarding the efficient treatment of 

dynamic contact problems, the application of substructure 

techniques was proposed recently. In particular, a 

theoretical paper was published by Zucca and Epureanu 

(2017), who applied the Craig-Bampton (Craig and 

Bampton 1968) and the Dual Craig-Bampton method 

(Rixen 2004, Kim et al. 2017) to a multi-degree-of-freedom 

system with conform contact conditions. An enhanced 

Craig-Bampton method was proposed (Boo et al. 2018). 

The pounding force is also evaluated in the works of Kun et 

al. (2018), Kheyroddin et al. (2018), Bi et al. (2018). 

Additionally, the Craig-Bampton method was applied to 

efficiently solve the multiple pounding problem using linear 

impact elements within a node-to-surface formulation 

(Bamer et al. 2017b). 

In this paper, an efficient hierarchical substructure 

technique is proposed and adapted to a node-to-surface 

formulation of state-of-the-art pounding models. Thus, 

within a step-by-step-procedure, the node-to-surface 

formulation of four different pounding models is 

introduced, and the applicability of the hierarchical 

substructure technique for this highly nonlinear type of 

problems is discussed. Firstly, in Section 2, the geometrical 

and material properties of the academic pounding problem, 

which goes along with the proposed strategy in the paper, is 

discussed. Subsequently, in Section 3, four applied 

pounding formulations for the node-to-surface collision are 

presented. Hereby, we discuss the simple energy-conserving 

linear and nonlinear Hertz model (Davis 1992, Pantelides 

and Ma 1998, Chau et al. 2003, Chau and Wei 2001); the 

Hertz-Damp model (Muthukumar and DesRoches 2006, Ye 

et al. 2009) and the nonlinear viscoelastic model 

(Jankowski 2005, 2006, 2009). In Section 4, the hierarchical 

Craig-Bampton strategy, adapted to structural pounding 

problems, is discussed. In Section 5, the numerical 

demonstration of the strategy, using the state-of-the-art 

pounding models, is presented, and, finally, in Section 6, the 

conclusion is drawn. 

 

 
2. Academic structural pounding benchmark 

 

In this section, an academic pounding example, used for 

the demonstrations in this paper, is presented. Two planar 

adjacent frame structures, as depicted in Fig. 1, are selected 

to represent the pounding benchmark example. As shown in 

this figure, the frames are arranged with an initial gap of 

𝑔0 = 0.2 m. The width and the height of the two frames are 

𝑙1 = 6.0 m , 𝑙2 = 6.0 m  and 𝑙1 = 6.0 m , 𝑙2 = 6.0 m . 

Throughout all columns and beams, a quadratic hollow steel 

cross section is chosen with the dimension 0.3 ∗ 0.3 𝑚2, 

and a thickness of 0.01 m. The density of the material is 

7850 kg m−3. The slabs are realized by various additional 

point masses, which are attached to the beams. They are 

visualized by the red marks in Fig. 1. Point masses of 

8000 kg and 2000 kg are chosen for the left and the right 

frame system, respectively. This leads to two frame systems 

with significantly different dynamic behavior. Rayleigh-

damping regarding the 2
nd

 and 5
th

 global mode with a 

damping ratio of 𝜁 = 4 % is assumed. It must be noted 

that, in this paper, we focused on creating an illustrative 

numerical example for the demonstration of the new 

substructure formulation adapted to earthquake-induced 

collision of structures. Thus, the choice of the geometrical 

measures of cross sections is not optimized according to a 

structural design analysis. The example in Fig. 1 serves as 

an academic benchmark example to compare state-of-the art 

methods with the proposed substructure formulation. 

As clearly seen in Fig. 1, the heights of the two frame 

systems are not equal. The application of a multi-story-

shear-frame system with concentrated mass in the slabs has 

already been done regarding this general situation 

(Jankowski 2009). The whole structure is discretized by 

two-node beam elements. In particular, the frame systems 

are discretized by two-node structural beam elements with 

lumped mass and three degrees of freedom per node, i.e., 

axial and tangential local displacements and rotation. 

Hermitian polynomials of third order are chosen for the  

 
Fig. 1 Dynamic system of adjacent structures; finite beam element; frame height measures h1, h2; frame width measures l1, l2; 

initial gap g0; slave (Γc
(1)

) and master (Γc
(2)

) contact surfaces and representative output node (rep. node) 
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shape functions for the degrees of freedom in transversal 

and rotational directions (Bathe 2006), i.e., for 𝜂 and 𝜑, 

respectively. Linear shape functions are chosen for the 

degrees of freedom in longitudinal direction, i.e., 𝜉. This is 

shown in the left upper corner of Fig. 1. This leads to a 

system with 796 degrees of freedom in total. For the 

realization of the finite element implementation, we use our 

in-house tool, which has been verified using the commercial 

software package ABAQUS
®

 (Shi et al. 2018). In order to 

check the accuracy of the finite element model, a reference 

solution using the state-of-the art central difference time 

integration scheme, is performed. No noticeable difference 

in the response functions (not shown in this paper) is 

observed.  

 
 
3. A node-to-surface pounding formulation using 
linear and nonlinear impact elements 
 

The regions, where potential collisions can take place 

during ground excitation, are defined by master and slave 

surfaces on the master and slave bodies, respectively. 

Conventionally, the slave body is labeled by superscript 

index 
(1)

 and the master body by superscript index 
(2)

. In this 

context, we define the potential contact surfaces between 

the master frame 𝑆1 and the slave frame 𝑆2 as Γ𝑐
(1)

 and 

Γ𝑐
(2)

in the un-deformed configuration, respectively (cf. Fig. 

1). In Fig. 2, the slave surface in the current configuration is 

defined as 𝛾𝑐
(1)

 and the master surface in the current 

configuration is defined as 𝛾𝑐
(2)

. Based on the node-to-

surface formulation, the gap function 𝑔𝑛
∗  is defined as the 

minimum distance between the slave point 𝐱𝑃
(1)

 and the 

opposite point on the corresponding master element of the 

discretized system in the current configuration, see Fig. 2, 

which is also called closest point projection (CPP) 

(Wriggers 2006). The magnitude 𝑚(1) is the lumped mass 

at the slave node 𝐱𝑃
(1)

. The corresponding pounding mass at 

the master side is derived from the linear interpolation of 

the opposite lumped masses 𝑚1(2) and 𝑚2
(2) of the 

corresponding master element. The impact element (IE), 

which bridges the non-conforming meshes, cf. Choi and 

Lee (2003), is defined between these two masses (𝑚(1) 

 

 

and 𝑚(2)) to describe the constitutive pounding law. 

Adapting the definition of the gap function to practical 

structural pounding problems, the possible candidate 

element for collision on the master surface defined by the 

nodes 𝐱1
(2)

 and 𝐱2
(2)

, characterized by the parameter 𝜉 , 

can be written in parametric representation as 

𝐱(2)(𝜉) =  𝐱1
(2) + (𝐱2

(2) − 𝐱1
(2)) 𝜉 . (1) 

The line between the possible collision point on the 

master element and the corresponding collision point on the 

slave surface 𝐱𝑃
(1)

 is defined introducing the gap parameter 

𝑔𝑛 as 

𝐱(2)(𝑔𝑛) =   𝐱𝑃
(1) + 𝑔𝑛 𝐧

(2) . (2) 

In this equation, 𝐧(2) denotes the unit normal vector 

with respect to the master element surface, which is directed 

per definition towards the corresponding node on the slave 

surface  𝐱𝑃
(1)

 in the initial configuration, where the frame 

systems are separated, and no contact is prescribed. The two 

unknowns of the system of Eqs. (1) and (2) are the variables 

𝑔𝑛  and 𝜉 . Solving these two equations leads to the 

solutions 𝑔𝑛
∗  and 𝜉∗ , if an intersection point is found. 

Furthermore, if the condition 0 ≤ 𝜉∗ ≤ 1 is fulfilled, a pair 

of a slave node and a corresponding master element is 

found. Through the definition of 𝐧(2), the gap parameter  

𝑔𝑛
∗  is negative if no collision is detected. Contrariwise, it is 

positive if a collision is detected, i.e., if penetration occurs. 

This procedure must be repeated for each slave node. The 

brute-force-search method, in which every possible contact 

pair is checked, is used to find the correct nearest master 

element, as the total loop over the number of slave nodes is 

easily manageable for the academic example. 

The above-mentioned definition of the gap function 

enables the introduction of the Macaulay bracket (Wriggers 

2006) for the description of the collisions 

〈𝑔𝑛
∗  〉 ∶= {

𝑔𝑛
∗      if  𝑔𝑛

∗ ≥ 0
0       if  𝑔𝑛

∗ < 0
 . (3) 

This definition can be applied for the description of an 

arbitrary constitutive collision law, represented by an 

impact element (IE), shown in the right subplot of Fig. 2. 

Four impact elements are presented together with the  

 
Fig. 2 Illustration of the gap function based on CPP, the lumped masses, the interpolation of the corresponding 

pounding mass at the master side and the embedding of the nonlinear viscoelastic impact element (IE) 
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node-to-surface pounding formulations. This includes the 

energy-conserving linear spring and the nonlinear Hertz 

elements as well as the energy-dissipating Hertz-Damp and 

the nonlinear viscoelastic model. 

The linear pounding element represents the simplest 

collision formulation (cf. first subplot of Fig. 3). If the gap 

parameter becomes positive, i.e., penetration is detected, a 

linear spring is active, defined by the spring stiffness 

parameter 𝜖. The collision force is then described by using 

definition in Eq. (3) 

𝐹𝑐 =   ϵ 〈𝑔𝑛
∗  〉  . (4) 

In this paper, a value of 1.5 ·  109 [𝑁/𝑚] is chosen for 

the parameter 𝜖. A significant improvement is achieved 

using Hertz's law (Ye et al. 2009). The collision force 

increases nonlinearly with increasing penetration 

𝐹𝑐 =  𝑘ℎ〈𝑔𝑛
∗  〉

3

2  . (5) 

 The parameter 𝑘ℎ  is the nonlinear spring stiffness, 

which describes the hardness of the impact surface. 

Regarding the illustrative example, a value of 2.0 ·
 109 [𝑁/𝑚1.5] is chosen (Jankowski 2005, Ye et al. 2009). 

The corresponding rheological element is depicted in the 

second subplot of Fig. 3. The nonlinear Hertz spring within 

the rheological model is indicated by crossing out the 

conventional spring sign.  

The disadvantage of the above-mentioned two pounding 

elements is the lack of describing energy dissipation. 

Introducing the Hertzdamp formulation (Muthukumar 

and DesRoches 2006), a nonlinear dashpot element is added 

in parallel to the nonlinear Hertz spring. A possible 

rheological model is shown in the third subplot of Fig. 3. 

The collision force is described by 

𝐹𝑐 =  𝑘ℎ〈𝑔𝑛
∗  〉

3

2 + 𝑐ℎ �̇�𝑛
∗ . (6) 

The variable �̇�𝑛 denotes the gap velocity and the 

magnitude 𝑐ℎ  defines the nonlinear damping coefficient, 

which is calculated by 

𝑐ℎ =  𝜁ℎ𝑑〈𝑔𝑛
∗  〉

3

2. (7) 

The damping constant 𝜁ℎ𝑑  is expressed by the 

nonlinear spring stiffness  𝑘ℎ, the coefficient of restitution 

𝑒 and the relative velocity of the two collision points 

𝜁ℎ𝑑 =  
3 𝑘ℎ (1−𝑒

2)

4 (�̇�(1)− �̇�(2))
 . (8) 

The coefficient of restitution 𝑒 is chosen to be 0.7. 

This agrees well with the studies of Anagnostopoulos 
(Anagnostopoulos and Spiliopoulos 1992), who proposes 

values between 0.5 and 0.75. 

Regarding Jankowski's formulation (Jankowski 2005), 

energy dissipation takes place mainly during the approach 

 

 

time period, i.e., �̇� > 0. A nonlinear dashpot element is 

added in parallel with the nonlinear Hertz spring, which is 

only active during the approach time period. In the 

rightmost subplot of Fig. 3, a possible rheological model of 

the nonlinear viscoelastic element is depicted. In this figure, 

the nonlinear dashpot is color-coded in gray, as it is only 

active during the approach time period. The collision force 

is defined as 

𝐹𝑐 = 𝛽 〈𝑔𝑛
∗  〉

3

2 + 𝑐(𝑡) 〈�̇�𝑛
∗ 〉 . (9) 

Herein, the magnitude 𝛽 is the impact stiffness 

parameter. For steel to steel pounding, impact stiffness 

𝛽 = 1.03 ·  1010[𝑁/𝑚1.5]  is chosen according to the 

experimental study of Jankowski (Jankowski 2005). The 

magnitude 𝑐(𝑡)  is the impact damping coefficient, which 

is obtained within every integration time step by the 

formula 

𝑐(𝑡) = 2𝜉√ 𝛽 √〈𝑔𝑛
∗  〉

𝑚(1)𝑚(2)

𝑚(1)+𝑚(2)
  . (10) 

The pounding force is also dependent on the two 

discrete masses 𝑚(1)  and 𝑚(2) . Regarding the node-to-

surface formulation adapted to structural pounding, the 

mass 𝑚(1)  refers to the nodal lumped mass of the 

corresponding slave node. The lumped mass 𝑚(2)  is 

evaluated by interpolation functions of the nodal masses of 

the corresponding master element 

𝑚(2)(𝜉∗) = (1 − 𝜉∗) 𝑚1
(2) + 𝜉∗ 𝑚2

(2)
. (11) 

As presented in this equation, a linear interpolation 

function is assumed. Applying this new formulation, the 

time dependent discrete mass 𝑚(2)  is introduced. This 

fictive mass is depicted in the left and the right subplot of 

Fig. 2. The magnitude 𝜉 denotes a damping ratio related to 

the given coefficient of restitution, 𝑒. The relation between 

𝜉 and 𝑒 for the nonlinear viscoelastic model is given by 

the equation (Jankowski 2006) 

𝜉 =
9√5

2
 

1−𝑒2

𝑒(𝑒(9𝜋−16)+16) 
. (12) 

This impact element shows good agreements with 

experiments about steel to steel pounding (Jankowski 

2006). 

Having defined the node-to-surface impact 

formulations, a non-conform discretization of two frame 

systems is possible.  

 
 
4. Efficient treatment of the pounding problem using 
a hierarchical substructure formulation 
 

4.1 The full system-numerical barrier 

 
Fig. 3 Four different impact elements (from left to right: linear elastic, Hertz-

nonlinear, Hertzdamp and nonlinear viscoelastic element) 

104



 

A substructure formulation for the earthquake-induced nonlinear structural pounding problem 

 

Inserting the constitutive pounding laws, proposed in the 

previous subsection, into the finite element formulation, 

leads to the set of equations of motion for the discretized 

dynamic system 

𝐌�̈� + 𝐂�̇�  + 𝐊𝐮 + 𝐅𝐜(𝐮, �̇�) = −𝐌𝐟�̈�𝑔. (13) 

In this equation, 𝐌, 𝐂 and 𝐊  are the global mass, 

damping and stiffness matrices, respectively (Wriggers 

2006, Bathe 2006, Anagnostopoulos and Spiliopoulos 1992, 

Laursen 2003). If energy-conserving pounding models are 

applied, the contact force 𝐅𝐜  is directly expressed as a 

function of the displacement field. In case of the Hertzdamp 

or the nonlinear viscoelastic impact element, the contact 

force is also dependent on the velocity field. The contact 

force is active during the collisions. Within these time 

periods, it couples the two frame systems following the 

phenomenological collision rules. The right-hand side of 

Eq. (13) refers to the excitation term due to ground 

acceleration �̈�𝑔 (Chopra 2007), introducing the influence 

vector 𝐟. Regarding the upcoming parts of the paper, this 

inertia term is abbreviated by the equivalent force 𝐅(𝑡). In 

case of earthquake induced ground acceleration, the initial 

conditions are assumed to be zero for both the 

displacements and velocities. 

The solution of Eq. (13) is derived using the explicit 

second-order central difference integration scheme. The 

approximations of velocity and acceleration are defined by 

the second-order forward and backward Taylor expansion 

�̇�𝑘 = 
𝐮𝑘+1− 𝐮𝑘−1

2Δ𝑡
 , �̈�𝑘 = 

𝐮𝑘−1− 2 𝐮𝑘 + 𝐮𝑘+1

Δ𝑡2
 . (14) 

Inserting the approximations in Eq. (14) into the 

equation of motion Eq. (13), leads to the explicit iteration 

representation of the displacement field at time instant 𝑡𝑘+1 

(
1

𝛥𝑡2
𝐌+

1

2Δ𝑡
𝐂) 𝐮𝑘+1 

= 𝐅𝑘 − (𝐊 −
2

𝛥𝑡2
𝐌)𝐮𝑘 

−(
1

𝛥𝑡2
𝐌+

1

2Δ𝑡
𝐂)𝐮𝑘−1 + 𝐅𝑘

𝑐  . 

(15) 

The central difference integration scheme is 

conditionally stable. If the chosen integration time step is 

larger than a critical value, the algorithm becomes unstable 

and the solution grows exponentially to infinity. The critical 

time step depends on the highest natural frequency 𝜔max 
of the pounding system 

Δ𝑡 ≤  𝑡crit = 
2

𝜔max
 . (16) 

In case of high-dimensional systems, considerably 

small-time steps are required, as the highest eigenfrequency 

of the fine system is large. This effect reduces the 

computation speed significantly. A physically-motivated 

reduction of the degrees of freedom can enlarge the critical 

time step. Thus, a new model order reduction strategy, using 

the Craig-Bampton technique, adapted to complex 

pounding formulations, is introduced in the upcoming 

subsection. 

 

4.2 The reduced system-an efficient hierarchical 
substructure formulation 

 

Fig. 4 Substructures of the pounding system 

 

 

In this subsection, a substructure method, applied to 

structural pounding problems, using the Craig-Bampton 

method, is introduced. In order to present the general idea 

of the new strategy, two bodies are introduced, which 

collide potentially (cf. Fig. 4). The general objective of 

model order reduction is to significantly lower the 

computational effort by preserving a sufficiently accurate 

representation of the dynamic system. Regarding the new 

strategy, the focus is to provide an accurate representation 

of the dynamic system within areas of great interest and less 

accurate descriptions relatively far away from these areas. 

Concerning pounding problems, the areas of great interest 

are the potential collision surfaces, as they have a 

significant influence on the overall dynamic behavior of the 

system. 

We arbitrarily define the left body as the slave and the 

right body as the master. Both the slave and the master 

bodies are independently divided into substructures, as 

shown in Fig. 4, so that the collision area is described as 

detailed as possible. 

The substructure technique combined with the Craig-

Bampton method is exemplarily introduced for the slave 

side, as the method is analogously applied to the master 

side. For the whole slave body, the set of equations of 

motion can be written as 

𝐌(1)�̈�(1) + 𝐂(1)�̇�(1) + 𝐊(1)𝐮(1) + 𝐅𝐜(1)(𝐮, �̇�) 
= 𝐅(1)(𝑡). 

(17) 

Considering the i
th

 substructure Si
(1)

 (i=1,2,...,r, 

regarding the demonstrated example r=6), the set of 

equations of motion is written as 

𝐌𝑖
(1)
 �̈�𝑖
(1)
+ 𝐂𝑖

(1)
�̇�𝑖
(1)
+ 𝐊𝑖

(1)
𝐮𝑖
(1)
+ 𝐅𝑖

𝒄(1)(𝐮, �̇�) 

= 𝐅𝑖
(1)(𝑡) + 𝐆𝑖

(1)(𝑡) , 
(18) 

where the additional term 𝐆𝑖
(1)(𝑡) refers to the connection 

force of the i
th

 substructure with one or more neighbor 

substructures. For each substructure Si
(1)

, the degrees of 

freedom 𝐮𝑖
(1)

 are decomposed into two groups, the 

interface degrees of freedom 𝐮𝑖,𝑅
(1)

 and the internal degrees 

of freedom 𝐮𝑖,𝐼
(1)

: 

𝐮𝑖
(1)
= [

𝐮𝑖,𝑅
(1)

𝐮𝑖,𝐼
(1)
] . (19) 
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Inserting this decomposition (19) into Eq. (18), the set 

of equations of motion for the i
th

 substructure is 

reformulated as 

[
𝐌𝑖,𝑅𝑅
(1)

𝐌𝑖,𝑅𝐼
(1)

𝐌𝑖,𝐼𝑅
(1)

𝐌𝑖,𝐼𝐼
(1)
] [
�̈�𝑖,𝑅
(1)

�̈�𝑖,𝐼
(1)
] + [

𝐂𝑖,𝑅𝑅
(1)

𝐂𝑖,𝑅𝐼
(1)

𝐂𝑖,𝐼𝑅
(1)

𝐂𝑖,𝐼𝐼
(1)
] [
�̇�𝑖,𝑅
(1)

�̇�𝑖,𝐼
(1)
]  

+[
𝐊𝑖,𝑅𝑅
(1)

𝐊𝑖,𝑅𝐼
(1)

𝐊𝑖,𝐼𝑅
(1)

𝐊𝑖,𝐼𝐼
(1)
] [
𝐮𝑖,𝑅
(1)

𝐮𝑖,𝐼
(1)
] + [

𝐅𝑖,𝑅
𝒄 (1)

𝐅𝑖,𝐼
𝒄 (1)

] 

= [
𝐅𝑖,𝑅
(1)(𝑡)

𝐅𝑖,𝐼
(1)(𝑡)

] + [
𝐆𝑖,𝑅
(1)(𝑡)

𝐆𝑖,𝐼
(1)(𝑡) = 𝟎

]  . 

(20) 

Since the internal degrees of freedom are isolated from 

other substructures, the connection forces 𝐆𝑖,𝐼
(1)(𝑡) between 

the internal degrees of freedom and other substructures are 

zero. Collecting the set of all equations of motion for all 

substructures and reordering the degrees of freedom 

delivers the modified expanded set of equations of motion 

for the whole slave body 

[
 
 
 
 
 
 
 𝐌1,𝑅𝑅

(1)
  

 ⋱  

  𝐌𝑟,𝑅𝑅
(1)

𝐌1,𝐼𝑅
(1)

  

 ⋱  

  𝐌𝑟,𝐼𝑅
(1)

𝐌1,𝑅𝐼
(1)

  

 ⋱  

  𝐌𝑟,𝑅𝐼
(1)

𝐌1,𝐼𝐼
(1)

  

 ⋱  

  𝐌𝑟,𝐼𝐼
(1)
]
 
 
 
 
 
 
 

⏟                
�̃�(1)

[
 
 
 
 
 
 
 �̈�1,𝑅
(1)

⋮

�̈�𝑟,𝑅
(1)

�̈�1,𝐼
(1)

⋮

�̈�𝑟,𝐼
(1)
]
 
 
 
 
 
 
 

⏟  
�̃̈�(1)

+ �̃�(1)

[
 
 
 
 
 
 
 �̇�1,𝑅
(1)

⋮

�̇�𝑟,𝑅
(1)

�̇�1,𝐼
(1)

⋮

�̇�𝑟,𝐼
(1)
]
 
 
 
 
 
 
 

⏟  
�̃̇�(1)

+ 

�̃�(1)

[
 
 
 
 
 
 
 𝐮1,𝑅
(1)

⋮

𝐮𝑟,𝑅
(1)

𝐮1,𝐼
(1)

⋮

𝐮𝑟,𝐼
(1)
]
 
 
 
 
 
 
 

⏟  
�̃�(1)

 +  �̃�𝒄
(1)
(�̃�, �̃̇�) = �̃�(1)(𝑡) +

[
 
 
 
 
 
 𝐆1,𝑅
(1)

⋮

𝐆𝑟,𝑅
(1)

𝟎
⋮
𝟎 ]
 
 
 
 
 
 

⏟  
𝐆(1)(𝑡)

  . 

(21) 

The expanded and reordered damping �̃�(1)  and 
stiffness matrices �̃�(1)  have the same structure as the 
expanded and reordered mass matrix �̃�(1). The reordered 
expanded set of equations of motion for the slave side is 
then written as 

�̃�(1)�̃̈�(1) + �̃�(1)�̃̇�(1)  + �̃�(1)�̃�(1) + �̃�𝒄
(1)
(�̃�, �̃̇�) 

= �̃�(1)(𝑡) + 𝐆(1)(𝑡). 
(22) 

The expansion of the slave body into substructures 
results in extra degrees of freedom, as the degrees of 
freedom at the connecting nodes are counted repeatedly. In 
order to assemble the substructures, a Boolean 
transformation matrix is introduced. The Boolean 
transformation between the expanded degrees of freedom 
�̃�(1) and the reordered global degrees of freedom �̂�(1) is 
easily derived since the compatibility condition at the 
interface must be fulfilled 

[
 
 
 
 
 
 
 𝐮1,𝑅
(1)

⋮

𝐮𝑟,𝑅
(1)

𝐮1,𝐼
(1)

⋮

𝐮𝑟,𝐼
(1)
]
 
 
 
 
 
 
 

⏟  
�̃�(1)

 =

[
 
 
 
 
 𝐁1
(1)

 

⋮  

𝐁𝑟
(1)

 

  
  
  

   𝐈
  
  

  

⋱     
 𝐈 ]

 
 
 
 
 

 

⏟          
𝐁(1)

  

[
 
 
 
 𝐮𝑅
(1)

𝐮1,I
(1)

⋮

𝐮r,I
(1)
]
 
 
 
 

⏟  
�̂�(1)

  . 
(23) 

In other words, the Boolean matrix 𝐁𝑖
(1)

of the i
th

 

substructure transfers the interface degrees of freedom of 

the whole slave body 𝐮𝑅
(1)

 to the substructure interface 

degrees of freedom 𝐮𝑖,𝑅
(1)

. The interface forces of all 

substructures vanish by inserting Eq. (23) into the expanded 

equations of motion Eq. (22) and left multiplication of the 

transpose of 𝐁(1). This operation leads to 

𝐁(1)
T
�̃�(1)𝐁(1)⏟        
�̂�(1)

�̂̈�(1) + 𝐁(1)
T
�̃�(1)𝐁(1)⏟        
�̂�(1)

�̂̇�(1) 

+𝐁(1)
T
�̃�(1)𝐁(1)⏟        
�̂�(1)

�̂�(1)  + 𝐁(1)
T
�̃�𝒄
(1)
(�̂�, �̂̇�)⏟          

�̂�𝒄
(1)
(�̂�,�̂̇�)

  

= 𝐁(1)
T
�̃�(1)(𝑡)⏟        

�̂�(1)(𝑡)

 +  𝐁(1)
T
𝐆(1)⏟       
𝟎

 . 

(24) 

Eq. (24) is then rewritten as 

�̂�(1)�̂̈�(1) + �̂�(1)�̂̇�(1)  + �̂�(1)�̂�(1) + �̂�𝒄
(1)
(�̂�, �̂̇�) 

= �̂�(1)(𝑡) . 
(25) 

The above decomposition of the degrees of freedom in 

Eq. (19) gives the possibility to truncate the target-oriented 

degrees of freedom. The main idea of the method in this 

paper is to truncate the internal degrees of freedom, which 

are separated from the interface degrees of freedom 

[𝐊𝑖,𝐼𝐼
(1)
− 𝜔(1)𝑖,𝐼𝐼,𝑚

2
𝐌𝑖,𝐼𝐼
(1)
] 𝝋 𝑖,𝐼𝐼,𝑚

(1)
=  𝟎  . (26) 

Only a small number of the lower internal modes are 

considered, whereas the higher modes are truncated. The 

reduced modal degrees of freedom are defined as 𝒛𝑖
(1)

. The 

Craig-Bampton transformation into the reduced space 

regarding one substructure is written as 

𝐮𝑖
(1)
= [

𝐮𝑖,𝑅
(1)

𝐮𝑖,𝐼
(1)
] = [

𝐈 𝟎

𝚽𝑖,𝐶𝐵
(1)

𝚽𝑖
(1)] [

𝐮𝑖,𝑅
(1)

𝐳𝑖
(1)
] . (27) 

The objective is that the dimension of 𝐳𝑖
(1)

 should be 

significantly smaller than the dimension of the unreduced 

internal degrees of freedom 𝐮𝑖,𝐼
(1)

. This truncation process is 

carried out for the internal degrees of freedom of all 

substructures 

[
 
 
 
 
 
 𝐮𝑅
(1)

𝐮1,𝐼
(1)

𝐮2,𝐼
(1)

⋮

𝐮𝑟,𝐼
(1)
]
 
 
 
 
 
 

⏟  
�̂�(1)

= 

[
 
 
 
 
 
𝐈            

𝚽1,𝐶𝐵
(1)

𝚽1
(1)

   

𝚽2,𝐶𝐵
(1)

 𝚽2
(1)

  

⋮         ⋱  

𝚽𝑟,𝐶𝐵
(1)

   𝚽𝑟
(1)
]
 
 
 
 
 

⏟              
𝜷(1)

[
 
 
 
 
 𝐮𝑅
(1)

𝐳1
(1)

𝐳2
(1)

⋮

𝐳𝑟
(1)
]
 
 
 
 
 

⏟  
�̂�(1)

  . 
(28) 

This equation shows the clear relation between the 

reordered global degrees of freedom �̂�(1), which is given in 

Eq. (25), and the reduced degrees of freedom �̂�(1) of the 

slave body. The global Craig-Bampton transformation 

matrix for the slave side is defined as 𝜷(1). 
As mentioned above, the same reduction technique is 

also carried out for the master side (in total 𝑠 substructures 

regarding the demonstrated example𝑠 = 5). The expanded 

equations of motion for the master side can be written as 
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�̂�(2)�̂̈�(2) + �̂�(2)�̂̇�(2)  + �̂�(2)�̂�(2) + �̂�𝒄
(2)
(�̂�, �̂̇�) 

= �̂�(2)(𝑡) . 
(29) 

An analogous relation between the reordered global 

degrees of freedom �̂�(2)  and the reduced degrees of 

freedom �̂�(2) of the master body is established 

[
 
 
 
 
 
 𝐮𝑅
(2)

𝐮1,𝐼
(2)

𝐮2,𝐼
(2)

⋮

𝐮𝑠,𝐼
(2)
]
 
 
 
 
 
 

⏟  
�̂�(2)

= 

[
 
 
 
 
 
𝐈            

𝚽1,𝐶𝐵
(2)

𝚽1
(2)

   

𝚽2,𝐶𝐵
(2)

 𝚽2
(2)

  

⋮         ⋱  

𝚽𝑠,𝐶𝐵
(2)

   𝚽𝑠
(2)
]
 
 
 
 
 

⏟              
𝜷(2)

[
 
 
 
 
 𝐮𝑅
(2)

𝐳1
(2)

𝐳2
(2)

⋮

𝐳𝑠
(2)
]
 
 
 
 
 

⏟  
�̂�(2)

  . 
(30) 

The global Craig-Bampton transformation matrix for the 

master side is defined as 𝜷(2). The sorted unreduced set of 

equations of motion for the whole system is generated by 

assembling Eqs. (25) and (29) 

�̂��̂̈� + �̂��̂̇�  + �̂��̂� +  �̂� 𝐜(�̂�, �̂̇�) = �̂�(𝑡) , (31) 

with �̂� = [�̂�
(1) 𝟎
𝟎 �̂�(2)

] , �̂� = [�̂�
(1) 𝟎
𝟎 �̂�(2)

] , �̂� =

[�̂�
(1) 𝟎
𝟎 �̂�(2)

] , �̂� 𝐜(�̂�, �̂̇�) = [
�̂�𝒄
(1)
(�̂�, �̂̇�)

�̂�𝒄
(2)
(�̂�, �̂̇�)

] , �̂�(𝑡) = [
�̂�(1)(𝑡)

�̂�(2)(𝑡)
] 

and �̂� =  [�̂�
(1)

�̂�(2)
]. 

The global Craig-Bampton transformation matrix for the 

whole system is then defined as 

𝜷 = [
�̂�(1)

�̂�(2)
] . (32) 

Finally, applying the global Craig-Bampton 

transformation matrix to the global sorted unreduced 

equations of motion and left multiplication with the 

transpose of 𝜷 leads to the reduced set of equations of 

motion for the whole system 

𝜷T�̂�𝜷⏟  
�̂�

�̂̈� + 𝜷T�̂�𝜷⏟  
�̂�

�̂̇� + 𝜷T�̂�𝜷⏟  
�̂�

�̂� + 𝜷T�̂� 𝐜(�̂�, �̂̇�)⏟      
𝐟𝒄

 

= 𝜷T�̂�(𝑡)⏟    
𝐟(𝑡)

 . 
(33) 

 

 

The total degrees of freedom of the low-order system �̂� 

can be significantly reduced through this transformation. 

Thereby, the computational efficiency is improved, on the 

one hand, by a smaller equations system and, on the other 

hand, by the fact that the critical time step is considerably 

enlarged.  

Notice that the contact force within the full space must 

be updated for each time integration step. This means that 

the reduced solution �̂� must be transformed back into the 

global coordinates �̂� and its time derivatives for each time 

step. Since the static modes and the modes of vibration are 

time-invariant, the mass, the stiffness and the damping 

matrices are determined and resorted only once apriori to 

the whole-time integration process. 

 
 
5. Numerical demonstration 
 

In this section, the numerical demonstrations of the in 
Section 3 presented node-to-surface pounding formulations 
are presented. The dynamical pounding problems are solved 
using the new hierarchical substructure technique. 

 

5.1 Hierarchical definition of the substructures 
 

Both the slave (left frame) and the master (right frame) 

bodies are divided into frame subsystems coupled by the 

contact formulation. The frame subsystems are again 

subdivided into substructures. Hereby, it is drawn attention 

to ensure a higher resolution of the substructures within the 

contact area and a lower resolution of substructures 

considerably far away from the potential collision area. Fig. 

5 shows the definition of the interface nodes (R-nodes), 

separating the substructures, and internal nodes (I-nodes) 

inside each substructure. As mentioned above and shown in 

Fig. 5, the subdivisions show a more accurate representation 

within the pounding area and less accuracy in the regions of 

lower interest. About the hierarchical formulation, contact 

forces couple the frames subsystems, whereas the interface 

nodes combine the substructures within one frame 

subsystem. Each interface node has three degrees of 

freedom; each of them produces three interface modes. The  

 
Fig. 5 Division of the substructures; definition of the interface nodes (R-

nodes) in black and the internal nodes (I-nodes) in orange; coupling of impact elements (IE) in gray 
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first interface mode is the static response to a unit 

displacement in horizontal direction, whereas the degrees of 

freedom of all other R-nodes are fixed. The second and the 

third interface modes correspond to the vertical and 

rotational directions, respectively. Regarding substructures 

𝑆1
(1)

 to 𝑆4
(1)

 on the slave side and 𝑆1
(2)

 to 𝑆4
(2)

 on the 

master side, four internal modes are considered. Regarding 

substructures 𝑆5
(1)

 and 𝑆5
(2)

, six internal modes are 

considered. Thus, the full system with 796 degrees of 

freedom is reduced to a low-order system, containing only 

68 degrees of freedom. 

The impact elements, introduced in Section 3, are 

examined for the Craig-Bampton substructure technique for 

the demonstrated academic model in the upcoming 

subsections. 

 

5.2 System response for different impact elements 
under transient excitation 

 

The Bam earthquake record (2003) is selected for the 

numerical demonstrations. The earthquake time record has 

duration of 𝑇 = 19.95𝑠 with 𝑛 = 400 measurement time 

steps. The accelerogram is presented in Fig. 6. 

The response of the adjacent frames is evaluated in 

terms of the displacements, the velocities, the accelerations, 

the gap-functions and the contact forces of the 

representative node, depicted in Fig. 1. Analyses are 

performed, applying the above-introduced four pounding 

models. The solutions of the classical modal truncation  

 

 

 

Fig. 7 Linear impact element: displacement (top), velocity 

(middle), acceleration (bottom) of the representative node 

 

 

technique (MT) and the hierarchical substructure technique 

using the Craig-Bampton method (CB) are compared with 

the full reference solution (FS). In order to make a fair 

comparison, the same reduced number of degrees of 

freedom regarding the two reduction methods is chosen. 

Special attention is drawn to the comparison of the contact 

forces. 

The displacements, velocities and accelerations are 

presented within the first 15 seconds of the whole excitation 

time history (cf. Figs. 7, 9, 11 and 13). Collisions are 

observed approximately between second 0 and second 10 of 

the whole time history concerning all impact elements, thus, 

the contact forces are plotted in this time period (cf. Figs. 8, 

10, 12 and 14). The black lines represent the results of the 

full system (FS), the red dotted lines represent the results of 

the hierarchical Craig-Bampton method (CB) and the blue 

dotted lines represent the results of the modal truncation 

technique (MT). 

For the energy-conserving linear elastic impact element, 

all the two reduction methods deliver good results regarding 

the displacements and velocities compared to the full 

response. However, the modal truncation technique  

 

 

 

Fig. 6 Acceleration time history of the Bam earthquake 

excitation 

 
Fig. 8 Linear impact element: peak contact force (top), zoom in on the collisions (middle), gap-force relation (bottom) 
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Fig. 9 Hertz-nonlinear impact element: displacement (top), 

velocity (middle), acceleration (bottom) of the 

representative node 

 

 

produces a relatively large error regarding the acceleration 

response; see the right subplot of Fig. 7, whereas the 

hierarchical Craig-Bampton substructure technique 

approximates the accelerations well. The enlarged collision 

functions show that the contact force is overestimated using 

the modal truncation technique. 

On the contrary, the hierarchical Craig-Bampton 

substructure technique shows a significantly better 

agreement with the full system force responses, as depicted 

in the second row of subplots of Fig. 8. Regarding the 

collisions two to four, the peak values of the contact forces, 

evaluated by the Craig-Bampton method, show a slight 

phase drift. It is clearly visible that the penetration of the 

modal truncation technique is much larger than of the full 

system, which leads to a significant overestimation of the 

contact force, as shown in the third row of Fig. 8. 

The results, applying the energy-conserving Hertz-

nonlinear impact element, are presented in Fig. 9.  

Both the modal truncation and the hierarchical Craig-

Bampton substructure technique can approximate the full  

 

 

solution with regard to displacements and velocities, 

whereas the modal truncation technique is inaccurate 

concerning accelerations as well as contact forces. The 

collision force using the classical modal truncation is 

overestimated by about five-fold, as shown in the last row 

of Fig. 10. Applying the hierarchical substructure technique, 

the contact force is again well approximated. The contact 

force of the first collision accords perfectly with the full 

solution. The peak values of the subsequent four collisions 

are still accurate, but a slight phase shift is obtained. The 

gap-force diagrams show the same trend as explained 

above. 

The results of the full and reduced calculations applying 

the Hertzdamp model are presented in Fig. 11. The 

displacement and velocity response are approximated well. 

However, the modal truncated low-order model fails to 

describe the acceleration response, whereas the hierarchical 

Craig-Bampton technique succeeds. The peak contact force 

of the modal truncation technique is about twice as large as 

that of the full system regarding the first collisions. The 

corresponding gap-force diagrams are presented in the third 

row of Fig. 12. 

The results, applying the nonlinear viscoelastic impact 

element, are presented in Fig. 13. Again, the modal 

truncation technique shows high accuracy with respect to 

the displacement and the velocity fields. However, it fails to 

describe the acceleration response. The peak values of all 

collisions applying the modal truncation technique are 

approximately twice as large as the peak values of the full 

system. The corresponding gap-force diagrams about all 

five collisions are illustrated in the last row of Fig. 14. 

In summary, it can be observed that the contact force is 

strongly dependent on the constitutive law. However, 

independent on the constitutive law for the pounding force, 

the modal truncation technique shows the capability to 

estimate the displacement and velocity fields in case of the 

applied linear materials, as shown in Figs. 7, 9, 11 and 13. 

Nevertheless, it shows obvious drawbacks for the 

description of the acceleration response as well as the  

 

 
 

 
Fig. 10 Hertz-nonlinear impact element: peak contact force (top), zoom in on the collisions (middle), gap-

force relation (bottom) 
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Fig. 11 Hertzdamp impact element: displacement (top), 

velocity (middle), acceleration (bottom) of the 

representative node 

 

 

collision forces. The hierarchical substructure method 

enables an accurate description of all output quantities. 

 

5.3 Local and global error estimation and numerical 
efficiency 

 

In order to verify the accuracy and efficiency of the  

 

introduced hierarchical Craig-Bampton substructure 

technique for dynamic pounding problems, the results of the 

reduced system are qualitatively compared with the results 

of the full system. A separated evaluation for the linear, the 

Hertz-nonlinear, the Hertzdamp and the nonlinear 

viscoelastic impact element is carried out. 

Concerning the representative node, the maximal 

deviation between the full and the reduced solution for all 

considered time steps is defined as 

Δ𝑢max =  max (|𝑢𝑖 − �̅�𝑖|) . (34) 

The magnitude �̅�𝑖 is the full reference solution, and 𝑢𝑖 
is the solution of the reduced system at the time step 𝑖. The 

maximal deviations of the displacement, velocity, 

acceleration and contact force for the four different impact 

elements are summarized in Table 1. Since the maximal 

deviations are strongly dependent on the constitutive laws 

of the impact elements, a direct comparison of the results 

between different impact elements is not reasonable. Thus, 

in order to provide a meaningful comparison between the 

impact elements, the normalized error for the magnitudes of 

interest is obtained by the formula 

δ𝐮 = 
‖𝐮−�̅�‖

�̅�
∙ 100% . (35) 

The vector 𝐮 is the full reference solution and �̅� is the 

reduced solution. The normalized errors about the  
 

 

 
 
 

 

Table 1 Maximum deviation of displacement  Δ𝑢max, velocity  Δ�̇�max, acceleration  Δ�̈�max, and contact force 

 ΔFmax
c  in the horizontal direction for the four impact elements using the classic modal truncation (MT) and the 

Craig-Bampton substructure (CB) technique 

Impact element Method Δ𝑢max[𝑚] Δ�̇�max [𝑚𝑠
−1] Δ�̈�max[𝑚𝑠

−2] ΔFmax
c [𝑁] 

Linear 
MT 0.026 1.100 52.463 340050 

CB 0.016 0.129 8.381 48216 

Hertz-nonlinear 
MT 0.038 0.936 60.151 523364 

CB 0.015 0.126 6.815 52319 

Hertzdamp 
MT 0.031 0.847 45.210 365930 

CB 0.016 0.143 7.493 61756 

Nonlinear 

viscoelastic 

MT 0.027 0.987 148.390 933502 

CB 0.014 0.145 6.504 57216 

 

Fig. 12 Hertzdamp impact element: peak contact force (top), zoom in on the collisions (middle), gap-force relation (bottom) 

110



 

A substructure formulation for the earthquake-induced nonlinear structural pounding problem 

 

 

 

 

Fig. 13 Nonlinear viscoelastic impact element: 

displacement (top), velocity (middle), acceleration (bottom) 

of the representative node 

 

 

representative output node are summarized in Table 2. 

The relative error of the displacement using the modal 

truncation technique is approximately between six and ten 

percent and the relative error applying the hierarchical 

substructure technique is between two and four percent. The 

accuracy reduces concerning the description of the velocity 

response. The relative errors are around 15 and four percent 

regarding the modal truncation and Craig-Bampton 

technique, respectively. Concerning the description of the 

accelerations and contact forces, the classical modal 

truncation responses overestimate the values up to about 

230 percent, whereas the Craig-Bampton technique holds 

the relative error still under 18 percent. It can also be seen 

 

 

that the modal truncation technique performs even worse 

for the Hertz-nonlinear and for the nonlinear viscoelastic 

impact elements. Interestingly, the hierarchical substructure 

method performs better for these two impact elements. 

The error analyses above are only based on results of the 

representative node (cf. Fig. 1). In order to provide a global 

quantity, the global root-mean-square deviation (RMSD) for 

all nodes is evaluated. Since the time dependent vectorial 

magnitude of interest is arranged as a matrix 𝐔𝑛×𝑚, the 

global error quantity 𝜖(𝐮) for all nodes can be calculated 

as 

𝜖(𝐮)  ∶= √
𝑡𝑟([𝐔−�̅�][𝐔−�̅�]T)

𝑛 ∙ 𝑚
 , (36) 

where 𝑚 stands for the number of time steps and 𝑛 

for the number of global degrees of freedom.  

The global error quantity is evaluated for all response 

quantities in Table 3. The global error for the acceleration 

and the contact forces shows no significant differences 

concerning the two reduction techniques. The reason is that 

the hierarchical substructure technique guarantees high 

accuracy within the contact areas, but it cannot guarantee 

high accuracy within the areas far away from the collision 

surfaces (cf. Fig. 5). This is also one main objective of this 

study. 

The numerical efficiency of the two reduction methods 

depends firstly on the significant dimension reduction. The 

whole degrees of the full system with 𝑛 =  796 are 

reduced to �̅� = 68. Secondly, the critical integration time 

step, which is calculated in Eq. (16) is significantly 

increased. The critical time step of the full system is  

Table 2 The normalized error of the displacement δ𝐮, velocity δ�̇�, acceleration δ�̈� and contact force δFc  in the 

horizontal direction for the four impact elements using the classic modal truncation (MT) and the Craig-Bampton 

substructure (CB) technique 

Impact element Method δ𝐮[%] δ�̇�[%] δ�̈�[%] δFc  [%] 

Linear 
MT 5.91 15.25 106.37 116.66 

CB 3.46 4.24 18.73 15.84 

Hertz-nonlinear 
MT 9.39 17.79 118.28 150.59 

CB 2.25 3.35 16.30 13.97 

Hertzdamp 
MT 6.29 14.94 74.12 96.99 

CB 3.62 4.49 16.85 17.36 

Nonlinear 

viscoelastic 

MT 5.93 15.51 220.41 233.49 

CB 3.39 4.31 12.96 14.32 

 

Table 3 Global root-mean-square-deviation of displacement ϵ𝐮, velocity ϵ�̇�, acceleration ϵ�̈� and contact force 

ϵFc  in the horizontal direction for different impact elements using the classic modal truncation (MT) and the 

Craig-Bampton substructure (CB) technique 

Impact element Method ϵ𝐮[𝑚] ϵ�̇� [𝑚𝑠
−1] ϵ�̈�[𝑚𝑠

−2] ϵFc[𝑁] 

Linear 
MT 0.949 3.818 65.597 75557 

CB 0.034 0.312 57.846 13888 

Hertz-nonlinear 
MT 0.940 3.781 49.540 102118 

CB 0.027 0.342 23.225 11518 

Hertzdamp 
MT 0.937 3.744 57.934 60958 

CB 0.035 0.312 48.609 12382 

Nonlinear 

viscoelastic 

MT 0.941 3.783 75.041 159994 

CB 0.032 0.311 22.374 12233 
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6.7𝑒−5  seconds, whereas the critical time step for the 

modal truncation method and the hierarchical Craig-

Bampton method is raised to a value of 2.3𝑒−5  and 

1.2𝑒−3 seconds, respectively. 

 
 
6. Conclusions 
 

In this paper, the efficient treatment of node-to-surface 

pounding formulations is discussed. Firstly, the realization 

of a node-to-surface pounding formulation, integrating 

state-of-the-art impact models, is introduced. Secondly, an 

efficient numerical procedure, applying a hierarchical 

substructure technique, is presented. Due to the clear 

separation of interface and internal modes, the hierarchical 

substructure technique reduces the physical degrees of 

freedom and ensures high accuracy within the contact zone. 

In order to verify the accuracy of the new strategy, the low-

order response approximations are compared with the full 

reference solutions. 

The results of the hierarchical substructure technique 

show that a significant improvement of the accelerations 

and the contact forces can be achieved in comparison with 

the results of the classical modal truncation technique. This 

provides only a good approximation for the displacement 

and velocity fields but fails regarding accelerations and 

contact forces. At the same time, the numerical efficiency is 

improved significantly. It can be concluded that the 

proposed substructure pounding formulation using the 

Craig-Bampton method offers an efficient and accurate 

procedure for pounding problems. A significant reduction of 

the degrees of freedom of the system is achieved by 

preserving a required level of accuracy. 

Pounding of buildings is, in most cases, accompanied by 

damage effects caused by the high forces and stresses due to 

the impacts. This complex phenomenon was not considered 

within the introduction of the new substructure strategy in 

this paper. Future research should concentrate on the 

implementation of the substructure strategy considering  

 

 

collision-induced damage effects. 
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