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1. Introduction 
 

Damage detection has drawn researchers’ attention 

through recent decades, since damages influence optimal 

performance of structures and may cause human disasters. 

Structural damages occur due to several factors such as 

erosion, cracks or holes. Local stiffness or mass of a 

structure can be affected by damages. Dynamic 

characteristics such as natural frequencies are dependent on 

distribution of the mass and stiffness; Therefore they are 

used in damage detection. Damage detection techniques 

based on modal properties such as natural frequencies, 

mode shapes, mode shape curvature, strain energy, mode 

flexibility, and Modal Assurance Criterion (MAC) have 

received a great deal of consideration in present-day 

literature of this field (Zare Hosseinzadeh et al. 2017, Yang 

and Wang 2010). Natural frequencies were used for 

structural damage detection because of their simple and fast 

acquisition. Additionally, measurement of mode shapes is 

more difficult than that of frequencies, needing more 

sensors (Wang et al. 2015a, Humar et al. 2006). 

Some of the earliest articles are compiled on application 

of natural frequencies in structural damage detection 

(Hassiotis 2000, Wang et al. 2000, Patil and Maiti 2003, 

Choubey et al. 2006).  

Xu et al. (2007) presented an iterative algorithm used to 
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detect locations and severity of damages in beam-like 

structures, using only changes in a number of their first 

natural frequencies. The proposed method is validated by 

experimental and numerical examples of cantilever beams 

with several damage cases. Vakil-Baghmisheh et al. (2008) 

utilized a Binary Genetic Algorithm (BGA), a Continuous 

Genetic Algorithm (CGA) and objective function based on 

differences between measured and calculated natural 

frequencies for crack detection and depth identification in 

cantilever beams. Average of errors made in predicted 

location and depth (BGA) were 1.02% and 1.98%, 

respectively. When CGA was used, error rates were 

changed to 0.73% and 1.11%. The average rates of errors 

for experimental predicted location and depth (BGA) were 

10.57% and 11.19%, respectively. When CGA was 

implemented, error rates were changed to 10.21% and 

10.39%. Majumdar et al. (2012) presented a damage 

assessment method for truss structures using changes in a 

number of first natural frequencies and Ant Colony 

optimization. Esfandiari et al. (2013) investigated natural 

frequency-based structural damage detection method using 

experimental and numerical examples. Their results showed 

that natural frequency-based methods are not efficient 

enough to find accurate solutions, making other types of 

modal properties necessary to be applied in order to obtain 

suitable results. Kaveh and Zolghadr (2015) utilized 

improved Charged System Search optimization algorithm 

for damage detection in truss structures. Two objective 

functions were used in their study. The first objective 

function involved changes in natural frequencies. The 

second one involved changes in natural frequencies and 
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mode shapes. Dahak et al. (2017) proposed a simple 

method to locate single damages in cantilever beams. In 

their study, cantilever beams were discretized into several 

zones, and damaged zone was located only by classifying 

normalized frequencies of the beams. Moreover, the 

proposed method was validated using experimental 

measurements of cantilever beams. Zhu et al. (2017) 

proposed a structural damage detection approach based on a 

new optimization algorithm called Bird Mating. The 

method was proposed in time-frequency domain, where a 

hybrid objective function is presented through minimizing 

the differences between measured and calculated natural 

frequencies. An efficient study for Finite Element Model 

(FEM) updating in large-scale steel truss bridge using 

Particle Swarm Optimization (PSO) and Genetic Algorithm 

(GA) was conducted by Tran-Ngoc et al. (2018). Tiachacht 

et al. (2018) have presented a new damage detection 

approach for planar truss and 3D frame structures, using GA 

and Modified Cornwell Indicator (MCI). MCI is thereby 

used as an objective function to compare between measured 

and calculated indicators. Khatir et al. (2019) performed a 

two-stage method for damage assessment in beam-like 

structures using two-dimensional Isogeometric Analysis, 

newly developed damage indicator based on normalized 

Modal Strain Energy, and Teaching-Learning-Based 

optimization algorithm. Nobahari et al. (2019) developed a 

new and fast strategy relying on an evolutionary algorithm 

and an objective function based on residual force vector, as 

well as an efficient approach based on Truss Element 

Damage Index. The proposed method includes a two-step 

procedure.  Firstly, they locate possible damaged elements. 

Secondly, they detected damaged locations and severities. 

Khatir et al. (2018b) utilized a new fast method for crack 

detection in Carbon Fibre Reinforced Polymer composite 

structures using proper orthogonal decomposition method, 

radial basis function, and Cuckoo search algorithm.   

Some other efficient studies on damage detection and 

severity identification are also conducted (Ghodrati Amiri et 

al. 2013, Hosseinzadeh et al. 2014, Hosseinzadeh et al. 

2016a, Hosseinzadeh et al. 2016b, Rasouli et al. 2015, 

Khatir et al. 2018a, Zenzen et al. 2018, Khatir and Wahab 

2019). What the said studies have in common is that they 

have used optimization algorithms and static/dynamic 

measurements in objective functions.  
Amezquita-Sanchez presented a comprehensive study of 

vibration-based signal processing techniques for civil 
structures such as bridges and buildings (Amezquita-
Sanchez and Adeli 2016). As a comparative study of signal 
processing methods for structural health monitoring, the 
article includes four non-parametric and five parametric 
signal processing techniques. Non-parametric techniques 
include Fourier transform, periodogram estimation of power 
spectral density, wavelet transform, and empirical mode 
decomposition using Hilbert-Huang transform. Parametric 
techniques, on the other hand, include pseudo spectrum 
estimation using multiple signal categorization, empirical 
wavelet transform, approximate Prony method, matrix 
pencil method, and estimation of signal parameters by 
rotational invariance technique (Qarib and Adeli 2016). 

Noori et al. (2018) utilized a wavelet packet transform-

based method of damage detection in steel bridges. Strain 

data were collected by strain sensors and were transformed 

into modified wavelet packet energy to detect location and 

severity of the damage. The proposed method was robust to 

noise. Therefore, the location of the damage could be 

detected with a noise level of up to 30%. Rahami et al. 

(2018) utilized a signal processing approach for damage 

assessment in multi-story shear frames. The proposed 

method uses integration of wavelet transform and fast 

Fourier transform as means of signal processing, and 

Hilbert transform in order to estimate final modal 

parameters, aiming to characterize location and severity of 

damages. There are a number of more recent papers on 

damage detection using wavelet (Parrany 2019, Zhu et al. 

2019, He et al. 2019).  

There are numerous Degrees Of Freedom (DOFs) in 

large-scale structures, while measurement of responses at 

all DOFs is impossible (Kourehli et al. 2013). Therefore 

some researchers developed damage detection methods 

using incomplete modal data. Lin et al. (2014) introduced a 

damage identification method for seismically excited 

buildings (with focus on shear buildings) which used 

incomplete measurements. Sun and Büyüköztürk (2016) 

investigated a probabilistic approach for updating Bayesian 

model using incomplete modal data. Ghannadi and Kourehli 

(2018) studied different FEM reduction techniques. 

Application of model reduction methods for structural 

connections can be also mentioned (Yin et al. 2017). As 

another solution to overcome measurement limitations, 

DeVore et al. (2015) have introduced substructure 

identification as a methodology of direct recognition of 

local stiffness changes by measured responses, in order to 

improve damage detection process. Structural damage 

detection techniques based on statistical moments of 

dynamic responses have been recently developed. The said 

method is robust to noise. An experimental investigation of 

this approach was performed by Xu et al. (2009). Their 

results were compared with analytical values and found to 

be satisfactory.  

Wang et al. (2018) developed a damage detection 

strategy based on Laplace Transform-based Spectral 

Element Method (LTSEM) and strain statistical moment. 

The dynamic measurements of the structure were analyzed 

by LTSEM. Then, the strain statistical moment was 

employed as a failure indicator. Yang et al. (2019) have 

introduced damage detection techniques based on statistical 

moment by incorporating the fourth-order displacement 

statistical moments with the eighth-order acceleration 

statistical moments. This fusion of statistical moment was 

found to be highly accurate with anti-noise properties. 

Some other efficient studies in this field have been 

presented by Wang et al. (2014) and Xiang et al. (2014).  

The present paper proposes a new damage detection 
approach. This method consists of FEM updating and 
damage detection procedures. A new objective function 
based on changes in natural frequencies and Natural 
Frequency Vector Assurance Criterion (NFVAC) was 
developed. Moreover, in order to minimize the objective 
function, a new bio-inspired optimization algorithm called 
Salp Swarm was employed. Moreover, the performance of 
Salp Swarm Algorithm (SSA) was compared with PSO. The 
proposed method was applied to three experimental shear  
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Fig. 1 (left) salp, (right) salps chain (Mirjalili et al. 2017) 

 

 

frames with different damage severity and locations. 

 

 
2. Salp Swarm algorithm  
 

Salps are species of Salpidae family with a transparent 

barrel-shaped body (Mirjalili et al. 2017). Their body tissue 

and movement mechanism is similar to jelly fish, such that 

water is pumped through the body to generate propulsion as 

a movement force forward.  

One of the most significant behaviors of salps inspiring 

optimization studies is swarming. Salps live in deep ocean 

waters and usually form a swarm called salp chain. Salps 

and their chain are demonstrated in Fig. 1. The logic behind 

this behavior is not obviously known, but some researchers 

believe that it is an attempt to achieve better movement in 

water and higher chance of foraging, through rapid orderly 

changes in their movements. 

 

2.1 Mathematical model inspired by moving salp 
chains 

 
To obtain a mathematical model of salp chains, their 

population is classified into two groups:  

a) leaders  b) followers. 

The leader is a salp at the front end of the chain, 

whereas the rest of them are followers. The leader guides 

the swarm and the followers follow the one in front of them. 

Similar to other swarm-based algorithms, the position of 

salps is determined in an n-dimensional search space, where 

n is the number of variables of a given problem. 

Consequently, the positions of all salps are collected in a 

two-dimensional matrix called x. It is often assumed that 

there is a food source called F in the search space as the 

swarm’s target. To update the position of the leader, the 

following equation is used 

  
  = {

     ((       )      )        

     ((       )      )           
 (1) 

where x indicates the position of the first lead in the jth 

dimension, Fj is the food source location in the jth 

dimension, ubj represents the upper bound of jth dimension, 

lbj indicates the lower bound of jth dimension, and c1, c2, 

and c3 are random numbers. Eq. (1) indicates that the leader 

 

Fig. 2 The pseudo code of SSA (Mirjalili et al. 2017) 

 

 

only updates its position with respect to food source.  

c1 coefficient is a significant parameter in SSA, since it 

balances exploration and exploitation determined as follows 

2
4

1 2

l

Lc e

 
 
   (2) 

where l and L represent the current iteration and maximum 

number of iterations. c2 and c3 parameters indicate 

uniformly random numbers generated in the interval [0,1]. 

To update the position of the followers, the following 

equation is used 

2

0

1

2

i

jx at v t   (3) 

where        
  is the position of ith following salp at jth 

dimension. t and v represent time and initial speed, 

respectively. Also in Eq. (3), 
0

finalv
a

v
  where 0x x

v
t


 . 

Time interval in optimization is iteration, and the 

discrepancy between iterations is equal to 1 while 

substituting v0=0, Eq. (3) is hence rewritten as follows 

11
( )

2

i i i

j j jx x x    (4) 

where        
  represents the position of ith followingsalp 

at jth dimension. Fig. 2 illustrates the pseudo codeof SSA. 

 

 
3. Particle Swarm optimization 
 

PSO is a population-based optimization algorithm 

formulated by Eberhart and Kennedy (1995). 

The PSO algorithm was based on swarm intelligence 

and has been employed widely in recent years. The PSO 

algorithm is based on two equations. Eq. (5) updates the 

position of a particle and Eq. (6) updates the velocity of a 

particle (Tran-Ngoc et al. 2018). 

( 1) ( ) ( 1)i i ix t x t v t     (5) 
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1 1 2 2( 1) ( ( ) ( )) ( ( ))i i i i i

bestv t wv C r p t x t C r G x t       (6) 

Where xi (t), and xi (t+1) indicate the position vectors of 

particle i at time t and t+1, respectively. v is the velocity 

vector of particle, w represents the inertia weight parameter. 

C1, C2 indicate the cognition learning factor and the social 

learning factor, respectively, r1 and r2 are random numbers 

in the range of (0,1), pi (t) is the best position of each 

particle, and Gbest is the best position of all particles. When 

the objective function is minimum, the Gbest is achieved. 

 

 
4. FEM updating and damage detection methodology 
 

In this paper, the damage detection method is 

apportioned into two parts. Firstly, the initial FEM of 

structures is updated by experimental measurements. This 

means that stiffness matrix is calibrated with experimental 

models. Second, severity and location of the damage is 

determined by updated FEM from the first part. 

 

4.1 FEM updating 
 

Objective function for FEM updating is as follows 
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 (7) 

In Eq. (7),   
  ,   

   represent experimental and 

numerical natural frequencies of the ith mode, respectively. 

n is the total number of DOFs. Similar to the definition of 

MAC, NFVAC was defined as follows 
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(8) 

where {Fex} is the Natural Frequency Vector (NFV) of the 

experimental measurement and {Fnu} is NFV of 

thenumerical calculation (Yang and Wang 2010). Also, 

NFV was defined as follows 

1
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(9) 

In order to minimize Eq. (7), a vector of stories sizes 

should be found in the interval of 0 and 1, which are shown 

in Eq. (10) and Eq. (11). 

 1: ,...,
T

nstFind x d d
 

(10) 

: 0 1uBound d 
 (11) 

By substituting the values from Eq. (10) in Eq. (12), 

updated stiffness matrix was obtained. 

1

(1 )
nst

up u u

u

K d k

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(12) 

where du is update parameter for each story which is 

between zero and one. Kup and ku represent stiffness matrix  

 

Fig. 3 Flowchart of the damage detection approach 

 

 

of updated structure and story stiffness before updating, 

respectively. nst is the total number of stories. The 

eigenvalue equation was solved by Kup, therefore f up was 

obtained. up superscript represents updated natural 

frequencies. 

 

4.2 Damage detection 
 

The objective function for damage detection is as 

follows 
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In Eq. (13),   
  ,   

  
 represent experimental natural 

frequencies with known damage state and updated natural 

frequencies of the structure to be investigated. Also, Fex and 

Fup indicate NFV of structure with known damage state and 

updated NFV of the structure to be investigated. The 

flowchart of the proposed method can be briefly shown in 

Fig. 3. 

 
 
5. Experimental validation 
 

Competence of the method proposed here is validated 

through three experimental examples. The first one relates 

to a three-story shear frame with two single damage cases in 

the first story. The second relates to a five-story shear frame 

with single and multiple damage cases in the first and third 

stories. The last example relates to a large-scale eight-story  
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(a) Experimental configuration of shear frame 

 
(b) Dimensions of front view 

 
(c) Dimensions of top view 

Fig. 4 Experimental configuration and dimensions of three-

story shear frame (Wang et al. 2015b, Chen et al. 2014) 

 

 

shear frame with minor damage case in the first and third 

stories. Additionally, the parameters of SSA, the number of 

iterations and the number of search agents, are 1000 and 

170. 

 
5.1 Three-story shear frame 

 

A three-story shear frame is assembled using three steel 

plates (850 mm×500 mm×25 mm) and four steel columns 

(75 mm×9.5 mm) as shown in Fig. 4 (Wang et al. 2015b). 

Total dimensions of this frame in height, length and width 

are 1450 mm, 850 mm and 500 mm, respectively. The 

plates and columns are connected by welding providing 

rigid connections. Thickness of the plates is greater than the 

height of the columns cross-section. Thus, the floors will 

not rotate when the story drifts and that is the reason why 

the frame can be considered as a shear frame. The feet of 

columns are welded to the base plate with 20 mm thickness, 

attached to a 3×3 m2 shaking table with eight bolts to 

provide rigid connection between the frame and the ground. 

All floors are equipped with a B&K 4370 accelerometer to 

 

Fig. 5 Columns used in three-story shear frame: (a) 

undamaged case, (b) first damaged case, (c) second 

damaged case (Wang et al. 2015b) 

 

 
(a) Damage detection before FEM updating 

 
(b) Damage detection after FEM updating 

Fig. 6 Results of damage detection for three-story shear 

frame - first damaged case 

 

 

Table 1 Experimental natural frequencies (Hz) of three-

story shear frame (Wang et al. 2015b) 

Second damaged 

case 

First damaged 

case 

Undamaged 

case 
Mode 

31..3 31259 31369 1 

913.2 91485 917.4 2 

.41.36 .412.9 .41282 3 

 

 

acquire frame acceleration response data in x-direction. 

Additional blocks of 135 kg mass are distributed on each 

story as lumped mass. Theoretical stiffness of the first, 

second and third stories are 4.84×105 N/m, 5.74×105 N/m 

and 5.95×105 N/m, respectively. 

Ground excitation is exerted to simulate white noise 

acceleration time history. Frequency range of this band 

limited white noise is 1-30 Hz. The peak acceleration value 

is limited to 0.05g, duration of excitation is approximately 

180 s, and sampling frequency is 300 Hz. Two different  
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(a) Damage detection before FEM updating 

 
(b) Damage detection after FEM updating 

Fig. 7 Results of damage detection for three-story shear 

frame-second damaged case 

 

Table 2 Natural frequencies (Hz) of three-story shear frame 

before and after FEM updating (undamaged case) 

Updated 

FEM 

Initial 

FEM 

Experimental 

(Wang et al. 2015b) 
Mode 

31369 414.7 31369 1 

917.4 .21693 917.4 2 

.41282 .8168. .41282 3 

 

 

damage cases are examined during this test. In the first case, 

the width of the first story columns was decreased to 51.30 

mm within the height of 60 mm from the feet.  In the 

second case, the width of the columns was decreased to 

37.46 mm within the height of 60 mm from the feet, which 

represents the first and second damage cases. Fig. 5 (a), (b) 

and (c) show the columns of experimental shear frame in 

undamaged, first and second damaged cases, respectively.  

Figs. 6 and 7 illustrate the detected and actual damage 

cases. To show the sensitivity analysis and FEM updating 

performance, damage detection results are presented before 

and after FEM updating. It is visible that damage detection 

procedure is more effective using the proposed FEM 

updating. 

The three natural frequencies (including undamaged and 

damaged cases) are listed in Table 1. Updated natural 

frequencies for undamaged case are presented in Table 2. 

Tables 3 and 4 also represent detected and actual values 

for the first and second damaged cases, respectively. 

Average errors between results of SSA and actual values 

are 0.290% and 0.876% for the first and second damaged 

cases, respectively. When PSO was implemented, average 

errors were changed to 4.367% and 4.200%, respectively.  

Table 3 Comparison between detected and actual results 

from three-story shear frame-first damaged case 

3 2 . Story 

0% 0% ..16% Actual 

0.8% 

0.8% 

0% 

0% 

11.53% 

-0.07% 

SSA 

Error 

5% 

5% 

4.5% 

4.5% 

8% 

-3.6% 

PSO 

Error 

%. 

0% 

0% 

0% 

.312% 

1.6% 

Wang et al. (2015b) 

Error 

 

Table 4 Comparison between detected and actual results of 

three-story shear frame-second damaged case 

3 2 . Story 

%. 0% 2111% Actual 

1.19% 

1.19% 

0% 

0% 

22.54% 

1.44% 

SSA 

Error 

4% 

4% 

6% 

6% 

18.5% 

2.6%- 

PSO 

Error 

0.5% 

0.5% 

0% 

0% 

2319% 

2.8% 

Wang et al. (2015b) 

Error 

 

 

Fig. 8 Experimental configuration of a five-story shear 

frame (Koo et al. 2011) 

 

 

These values were calculated as 0.533% and 1.100% by 

Wang et al. (2015b). 

 

5.2 Five-story shear frame 
 

A five-story shear frame was tested on a shaking table to 

validate competence of the proposed methods, as shown in 

Fig. 8 (Ghodrati Amiri et al. 2013, Koo et al. 2011). The 

structure with a random load was excited by the shaking 

table for 900 s. Five accelerometers were used in this 

experiment. Sampling frequency for this experiment was 20 

Hz. This measurement was repeated eight times for each 

undamaged and damaged cases to evaluate uncertainty of 

the modal data. Theoretical values of mass and stiffness for 

each story were 16.09 kg and 11.89 kN/m, respectively.  
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(a) undamaged case       (b) damaged case 

Fig. 9 Columns used in five-story shear frame 

(Hosseinzadeh et al. 2014) 

 

Table 5 Experimental natural frequencies (Hz) of five-story 

shear frame (Koo et al. 2011) 

Second damaged 

case 

First damaged 

case 

Undamaged 

case 
Mode 

.12.. .12.4 .1245 1 

316.2 31634 317.6 2 

5177 5184 519.2 3 

7154 7158 7162. 4 

 

Table 6 Natural frequencies (Hz) of five-story shear frame 

before and after FEM updating (undamaged case) 

Updated FEM 
Initial 

FEM 

Experimental 

(Koo et al. 2011) 
Mode 

.1245 .123. .1245 1 

317.6 31595 317.6 2 

519.2 51666 519.2 3 

7162. 71279 7162. 4 

 

Table 7 Comparison between detected and actual results 

from five-story shear frame-first damaged case 

5 4 3 2 . Story 

0% 0% 0% 0% ..% Actual 

0% 

0% 

0% 

0% 

0.005% 

0.005% 

0% 

0% 

11.63% 

1.63% 

SSA 

Error 

4% 

4% 

2.5% 

2.5% 

2% 

2% 

%. 

%. 

8.9% 

-1.1% 

PSO 

Error 

 

 

Two damaged cases were considered for this structure 

as follows: 

a) Damage in the first story with a 10% decrease in story 

stiffness 

b) Damages in the first and third stories with a 10% 

decrease in stories stiffness 

Fig. 9 illustrates columns of the five-story shear frame 

before and after the damages. 

The four natural frequencies (including undamaged and 

damaged cases) are listed in Table 5. Updated natural 

frequencies are presented in Table 6. 

Tables 7 and 8 represent detected and actual damage 

severity values for first and second damaged cases, 

respectively. The average errors between the results of SSA 

and actual values are 0.327% and 1.208% for the first and 

second damage cases, respectively. When PSO was 

implemented, average errors were changed to 1.920% and 

4.296%, respectively. 

 
(a) Damage detection before FEM updating 

 
(b) Damage detection after FEM updating 

Fig. 10 Results of damage detection for five-story shear 

frame-first damaged case 

 

 
(a) Damage detection before FEM updating 

 
(b) Damage detection after FEM updating 

Fig. 11 Results of damage detection for five-story shear 

frame-second damaged case 

 

 

Figs. 10 and 11 illustrate detected and actual damage 

cases. Results show the importance of FEM updating 

procedure in structural damage detection. 

 

5.3 Eight-story shear frame 
 

An eight-story shear frame (see Fig. 12) was excited by  
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Table 8 Comparison between detected and actual results 

from five-story shear frame-second damaged case 

5 4 3 2 . Story 

0% 0% %10 0% ..% Actual 

0% 

0% 

0% 

0% 

7.18% 

-2.82% 

0% 

0% 

13.22% 

3.22% 

SSA 

Error 

4.75% 

4.75% 

2.78% 

2.78% 

13.2% 

3.2% 

%3145 

%3145 

17.3% 

7.3% 

PSO 

Error 

 

Table 9 Experimental natural frequencies (Hz) of eight-

story shear frame (Su et al. 2017) 

Damaged case Undamaged case Mode 

.1..7 .1.52 1 

31.57 31..2 2 

51.89 51.79 3 

6198. 71.23 4 

81825 8192. 5 

..14.7 ..1469 6 

..1572 ..1725 7 

.2144. .215.2 8 

 

 

Fig. 12 Eight-story shear frame in the laboratory (Su et al. 

2017) 

 

 

a shaking table (Su et al. 2017) to validate competence of 

the proposed method for damage detection in full-scale 

structures. Dimensions of the frame in height, length and 

width are 8.5, 1.8 and 1.2 meters, respectively. The total 

mass of the shear frame is about 4.519 tons. The damaged 

case was constructed of cutoff plates in the first and third 

stories as shown in Fig. 13. Theoretical stiffness of the first 

and third stories was reduced to 8.864% and 8.008%, 

respectively. The eight-story shear frame was subjected to 

base excitations of the 1999 Chi-Chi earthquake in Taiwan. 

The sampling rate for this experiment was 200 Hz.   

The eight natural frequencies (including undamaged and 

damaged cases) are listed in Table 9. Updated natural 

frequencies are presented in Table 10.  

Fig. 14 illustrates detected and actual damaged cases. 

Results show efficiency of the two-stage method of 

updating and damage detection. It is visible that damage 

detection procedure is more effective using the proposed 

FEM updating. 

 

Fig. 13 A damaged plate (Su et al. 2017) 

 

 
(a) Damage detection before FEM updating 

 
(b) Damage detection after FEM updating 

Fig. 14 Results of damage detection for eight-story shear 

frame-damaged case 

 

Table 10 Natural frequencies (Hz) of eight-story shear 

frame before and after FEM updating (undamaged case) 

Updated 

FEM 

Initial 

FEM 

Experimental 

(Su et al. 2017) 
Mode 

.1.5. .1236 .1.52 1 

31..2 31665 31..2 2 

51.79 5197. 51.79 3 

71.23 81.7. 71.23 4 

8192. 91897 8192. 5 

..1469 ..1387 ..1469 6 

..1725 .21488 ..1725 7 

.215.2 .31.65 .215.2 8 

 

 

Table 11 represents detected and actual values for 

damaged cases respectively. The average error between the 

result of SSA and the actual value was 1.140%. When PSO 

was implemented, average error was changed to 3.838%. 
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6. Conclusions 
 

A new optimization-based damage detection method is 

introduced by this study. This method consists of FEM 

updating and damage identification by minimizing a 

sensitive objective function. Objective function includes 

changes in natural frequencies and Natural Frequency 

Vector Assurance Criterion (NFVAC). Minimization of 

objective function was carried out using a new bio-inspired 

technique called Salp Swarm Algorithm (SSA). In the 

meantime, one of the population-based optimization 

algorithms called Particle Swarm Optimization (PSO) was 

compared with SSA.   

To validate the proposed approach, three experimental 

shear frames were investigated. Results of these 

experimental examples are as follows: 

• For a three-story shear frame, the average errors 

between the results of SSA and actual values were 

0.290% and 0.876% for the first and second damage 

cases, respectively. When PSO was implementd, 

Average errors were changed to 4.367% and 4.200%, 

respectively. In previous studies (Wang et al. 2015b), 

these values were calculated to be 0.533% and 1.100%, 

respectively. 

• For a five-story shear frame, the average errors 

between the results of SSA and actual values for the first 

and second damage cases were 0.327% and 1.208%, 

respectively. When PSO was implemented, Average 

errors were changed to 1.920% and 4.296%, 

respectively.  

• For an eight-story shear frame, the average error 

between the result of SSA and actual value is 1.140%. 

When PSO was implemented, Average error was 

changed to 3.838%. 
The results have clearly shown that the proposed 

method can detect the locations and severities of damage 

using SSA, objective function includes changes in natural 

frequencies and NFVAC, and FEM updating. Moreover, The 

results show that better accuracy is obtained using SSA than 

using PSO.   
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