
Earthquakes and Structures, Vol. 17, No. 1 (2019) 31-37 

DOI: https://doi.org/10.12989/eas.2019.17.1.031                                                                   31 

Copyright ©  2019 Techno-Press, Ltd. 
http://www.techno-press.com/journals/eas&subpage=7                                      ISSN: 2092-7614 (Print), 2092-7622 (Online) 

 
1. Introduction 
 

A new class of materials known as „„functionally graded 

materials‟‟ (FGMs) has attracted much attention as 

advanced structural materials in many structural members 

used in situations where large temperature gradients are 

encountered. FGMs are designed so that material properties 

vary smoothly and continuously through the thickness from 

the surface of a ceramic exposed to high temperature to that 

of a metal on the other surface. The composition of the 

material changes gradually throughout the thickness 

direction. The FGMs are widely used in mechanical, 

aerospace, nuclear, and civil engineering. Consequently, 

studies devoted to understand the dynamic behavior of 

FGM beams and plates have being paid more and more 

attentions in recent years. Thai and Vo (2012) obtained 

Navier-type analytical solution for bending and vibration of 

functionally graded beams based on various higher order 

shear deformation beam theories. Tounsi et al. (2013) use a 

refined trigonometric shear deformation theory for 

thermoelastic bending of functionally graded sandwich 

plates. Li and Batra (2013) derived analytical relations 

between the critical buckling load of a functionally graded 

Timoshenko beam and Euler-Bernoulli for various 

boundary conditions. Nguyen et al. (2013) applied the first-

order shear deformation theory for the static and free 

vibration analysis of functionally graded beams and 

obtained an analytical solution according to Navier solution 
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procedure. Ansari et al. (2013) studied the size-dependent 

bending, buckling and free vibration of functionally graded 

Timoshenko microbeams based on the most general strain 

gradient theory. Pradhan et al. (2013) analyze the free 

vibration of Euler and Timoshenko functionally graded 

beams by Rayleigh-Ritz method. Xu et al. (2014) presented 

the twodimensional elasticity solutions of functionally 

graded beams with varying thickness. Bourada et al. (2015) 

used a new simple shear and normal deformations theory 

for functionally graded beams. Bennai et al. (2015) used a 

new higher-order shear and normal deformation theory for 

functionally graded sandwich beams. Akbaş (2015) 

investigated the wave propagation of a functionally graded 

beam in thermal environments. Bounouara et al. (2016) 

used a nonlocal zeroth-order shear deformation theory for 

free vibration of functionally graded nanoscale plates 

resting on elastic foundation. Recently, Sayyad and Ghugal 

(2017) reviewed of all those numerical and analytical 

methods available in the literature for the analysis of 

composite beams and plates. Ghumare and Sayyad (2017) 

have developed a new fifth-order shear and normal 

deformation theory for the bending and free vibration 

analysis of functionally graded beams. Kahya and Turan 

(2017) have developed finite-element formulation for the 

buckling and vibration analysis of functionally graded 

beams based on the first-order shear deformation theory. 

Akbaş (2017a) studied the thermal effects on the vibration 

of functionally graded deep beams with porosity. Akbaş 

(2017b) developed the free vibration of edge cracked 

functionally graded microscale beams based on the 

modified couple stress theory. Akbaş (2018a) analyze the 

forced vibration of cracked functionally graded 

microbeams. Akbaş (2018b) analyze the forced vibration of 
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functionally graded porous deep beams”, Composite 

Structures, 186, 293-302. El-Haina et al. (2017) used a 

simple analytical approach for thermal buckling of thick 

functionally graded sandwich plates. Menasria et al. (2017) 

used a new and simple HSDT for thermal stability analysis 

of FG sandwich plates. Recently, Tounsi and his co-workers 

(Fourn et al. 2018, Chikh et al. 2017, Abdelaziz et al. 2017, 

Attia et al. 2018, Bellifa et al. 2017, Mokhtar et al. 2018,        

Bouhadra et al. 2018, Khiloun et al. 2019) developed new 

shear deformation plates theories involving only four 

unknown functions. Mahmoud et al. (2017) used a new 

shear deformation plate theory with stretching effect for 

buckling analysis of functionally graded sandwich plates. 

Zouatnia et al. (2017) developed an analytical solution for 

bending and vibration responses of functionally graded 

beams with porosities. Younsi et al. (2018) used a novel 

quasi-3D and 2D shear deformation theories for bending 

and free vibration analysis of FGM plates. Ould Larbi et al. 

(2018) investigated an analytical solution for free vibration 

of functionally graded beam using a simple first-order shear 

deformation theory. Zouatnia et al. (2019) studied the effect 

of the micromechanical models on the bending of FGM 

beam using a new hyperbolic shear deformation theory. 

Hadji et al. (2019) developed an analytical solution for 

bending and free vibration responses of functionally graded 

beams with porosities: Effect of the micromechanical 

models. 

In the present paper, the free vibration analysis of FG 

beams is investigated. The proposed theory has only three 

unknowns and three governing equations, but it satisfies the 

stress free boundary conditions on the top and bottom 

surfaces of the beam without requiring any shear correction 

factors. The mechanical properties of the plates are 

supposed to vary in the thickness direction according to a 

power law distribution in terms of the volume fractions of 

the constituents. The interesting beam equations of motion 

for the free vibration analysis are determined through the 

Hamilton‟s principle. These equations are then solved using 

Navier‟s procedure. The accuracy of the results of this 

theory is verified by comparing with other HSDBTs 

available in the literature. 

 

 
2. Kinematics 
 

Consider a functionally graded beam with length L and 

rectangular cross section b×h, with b being the width and h 

being the height. The x, y
 
and z coordinates are taken along 

the length, width, and height of the beam, respectively, as 

shown in Fig. 1. 

The formulation is limited to linear elastic material 

behavior. The displacement field of present original shear 

deformation beam theorie is chosen based on following 

assumptions: 

- The axial and transverse displacements are partitioned 

into bending and shear components; 

- The bending component of axial displacement is 

similar to that given by the CBT; 
- The shear component of axial displacement gives rise 

to the higher-order variation of shear strain and hence to 
shear stress through the depth of the beam in such a way  

 

Fig. 1 Geometry and coordinate of a FG beam 

 

 

that shear stress vanishes on the top and bottom surfaces. 

Based on these assumptions, the displacement fields of 

the present original shear deformation beam theory is given 

in a general form as 
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Where u0 is the axial displacement of a point on the 

midplane of the beam; wb and ws are the bending and shear 

components of transverse displacement of a point on the 

midplane of the beam; and f(z) is a shape function 

determining the distribution of the transverse shear strain 

and shear stress through the depth of the beam. The shape 

functions f(z) is chosen to satisfy the stress-free boundary 

conditions on the top and bottom surfaces of the beam, thus 

a shear correction factor is not required. In this work, the 

present original HSDBT is obtained by setting  
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The strains associated with the displacements in Eq. (1) 

are 

s

x

b

xxx kzfkz  )( 0                (3a) 

s

xzxz zg   )(                   (3b) 

where 

x

u
x




 00 ,

2

2

x

w
k bb

x



 ,

2

2

x

w
k ss

x



 ,

x

wss

xz



      (3c) 

      )('1)( zfzg   and 
dz

zdf
zf

)(
)('         (3d) 

The state of stress in the beam is given by the 

generalized Hooke‟s law as follows 
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3. Material variation laws 
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Table 1 Material properties used in the FG beam 

Properties 

Metal Ceramic 

Aluminum 

(Al) 

Alumina 

(Al2O3) 

Alumina 

(ZrO2) 

Silicon nitride 

(Si3N4) 

E (GPa) 70 380 200 322.2 

ρ (kg/m3) 2702 3800 5700 2370 

 

 

The material properties of FG beam such as the Young‟s 

modulus E and the mass density ρ
 
are considered to vary 

continuously within the thickness of the beam according to 

the power law variation as follows (Benahmed et al. 2017, 

Bouafia et al. 2017) 
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Where (Ec, ρc) and (Em, ρm) are the corresponding 

properties of the ceramic and metal, respectively, and p1, p2 

are constants. The Poisson‟s ratio v is considered to be 

constant and equal to 0.3 throughout the analyses (Zidi et 

al. 2017, Menasria et al. 2017). The value of p

 

(p1

 

or p2) 

equal to zero represents a fully ceramic beam and infinite p, 

a fully metallic beam. The distribution of the composition 

of ceramics and metal is linear for p=1. Typical values for 

metal and ceramics used in the FG beam are listed in Table 

1. 

 
 
3. Equations of motion 
 

Hamilton‟s principle is used herein to derive the 

equations of motion. The principle can be stated in 

analytical form as (Reddy 2002) 
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where t is the time; t1 and t2 are the initial and end time, 

respectively; δU is the virtual variation of the strain energy; 

and δT is the virtual variation of the kinetic energy. The 

variation of the strain energy of the beam can be stated as 
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where Nx, Mb, Ms and Qxz are the stress resultants defined as 
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The variation of the kinetic energy can be expressed as 
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(9) 

where dot-superscript convention indicates the differentiation 

with respect to the time variable t; ρ(z) is the mass density; 

and (I1, I2, I3, I4, I5, I6) are the mass inertias defined as 
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Substituting the expressions for δU, and δT from Eqs. 

(6), and (8) into Eq. (5) and integrating by parts versus both 

space and time variables, and collecting the coefficients of 

δu0, δwb, and δws, the following equations of motion of the 

functionally graded beam are obtained 
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By substituting the stress resultants in Eq. (8) into Eq. 

(11), the equations of motion can be expressed in terms of 

displacements (u0, wb, ws) as 
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where A11, D11, etc., are the beam stiffness, defined by 
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4. Analytical solution 
 

The equations of motion admit the Navier solutions for 

simply supported beams. The variables u0, wb, ws can be 

written by assuming the following variations 




 
































1    

   

   

0

 ) sin(

 ) sin(

 ) cos(

m ti

sm

ti

bm

ti

m

s

b

exW

exW

exU

w

w

u












        (14) 

where Um, Wbm, and Wsm are arbitrary parameters to be 

determined, ω is the eigenfrequency associated with m th 

eigenmode, 1i  and λ=mπ/L.  

Substituting the expansions of u0, wb, ws from Eqs. (14) 

into the equations of motion Eq. (12), the analytical 

solutions can be obtained from the following equations           
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5. Results and discussion 

 

In this section, various numerical examples are 

presented and discussed to verify the accuracy of the 

present theory in predicting the bending and free vibration 

of simply supported FG beams. 

In this section, various numerical examples are 

presented and discussed for checking the accuracy of the 

present HSDBT in predicting the dynamic behaviors of 

simply supported FG beams. For the verification purpose, 

the results obtained by the proposed HSDBT are compared 

with the existing data in the literature and discussed for 

checking the accuracy of the present HSDBT in predicting 

the dynamic behaviors of simply supported FG beams. For 

the verification purpose, the results obtained by the 

proposed HSDT are compared with the existing data in the 

literature. 

Table 2 shows the nondimensional fundamental 

frequencies   of the simply supported Al/Al2O3 beams 

for different values span-to-depth ratio L/h
 
with p1=p2=p=0, 

0,5, 1, 2, 5, 10. The calculated frequencies are compared 
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Fig. 2 Variation of first three nondimensional frequencies 

  with  respect  to power  law index p (L/h=5) 

 

Table 2 Nondimensional fundamental frequency   of FG 

beams 

L/h Theory 
k 

0 0.5 1 2 5 10 

5 

Present 5.1534 4.4112 3.9909 3.6265 3.3997 3.2815 

TBT 5.1527 4.4107 3.9904 3.6264 3.4012 3.2816 

SBT 5.1531 4.4110 3.9907 3.6263 3.3998 3.2811 

HBT 5.1527 4.4107 3.9904 3.6265 3.4014 3.2817 

EBT 5.1542 4.4118 3.9914 3.6267 3.3991 3.2814 

CPT 5.3953 4.5931 4.1484 3.7793 3.5949 3.4921 

20 

Present 5.4603 4.6511 4.2051 3.8361 3.6484 3.5389 

TBT 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390 

SBT 5.4603 4.6511 4.2051 3.8361 3.6484 3.5389 

HBT 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390 

EBT 5.4604 4.6512 4.2051 3.8361 3.6483 3.5390 

CPT 5.4777 4.6641 4.2163 3.8472 3.6628 3.5547 

 

 

with those given by Tai et al. (2012) using various beam 

theories. An excellent agreement between the present 

solutions and results of Tai et al. (2012) is found. The first 

three nondimensional frequencies   of FG beams 

predicted by the present theory are presented in Table 3 for 

different values of power law index p and span-to depth 

ratio L/h. The obtained results are compared with those of 

Tai et al. (2012) using various beam theories. It can be seen 

that the present theory and all shear deformation beam 

theories of Tai et al. (2012) give the same frequencies, 

whereas the CBT overestimates them for all cases 

considered. The difference between the frequencies of CBT 

and shear deformation beam theories is significant for 

higher modes and for small span-to-depth ratios L/h.  

The effect power law index p on the first three 

frequencies of FG beams is shown in Fig. 2. It is observed 

that an increase in the value of the power law index p leads 

to a reduction of frequency. The highest frequency values 

are obtained for full ceramic beams (p=0) while the lowest 

frequency values are obtained for full metal beams (p→∞). 

This is due to the fact that an increase in the value of the  
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Fig. 3 Variation of frequency parameter with L/h ratio and 

p1 index (p2=1) 
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Fig. 4 Variation of frequency parameter with L/h ratio and 

p2 index (p1=1) 

 

 

power law index results in a decrease in the value of 

elasticity modulus.  

To make the effects of ratio and power indices more 

apparent, Figs. 3 and 4 are shown for Aluminum/lumina 

(FGM1), Aluminum/Zirconia (FGM2) and Aluminum/ 

Silicon nitride (FGM3) beams, to show the variation of the 

non-dimensional fundamental frequency with L/h ratio and 

pi (i=1,2) power indices, respectively. 

According to these results the non-dimensional 

fundamental frequency increases with increasing L/h ratio 

when .10/ hL  The non-dimensional frequency is found 

to be independent of the length-thickness ratio L/h
 

for 

.10/ hL  It is shown from Fig. 3 that the effect of p1 is to 

make the beam stiffer when this gradient index is reduced. 

However, decreasing the second power index p2, makes the 

beam soften as is presented in Fig. 4. In addition, it is 

observed that the non-dimensional fundamental frequency 

is approximately insensitive to p2 for Aluminum/Silicon 

nitride (FGM3) beam. 

Table 3 First three nondimensional frequencies   of FG 

beams 

L/h Mode Theory 
k 

0 0.5 1 2 5 10 

5 

1 

Present 5.1534 4.4112 3.9909 3.6265 3.3997 3.2815 

TBT 5.1527 4.4107 3.9904 3.6264 3.4012 3.2816 

SBT 5.1531 4.4110 3.9907 3.6263 3.3998 3.2811 

HBT 5.1527 4.4107 3.9904 3.6265 3.4014 3.2817 

EBT 5.1542 4.4118 3.9914 3.6267 3.3991 3.2814 

CPT 5.3953 4.5931 4.1484 3.7793 3.5949 3.4921 

2 

Present 17.8906 15.4659 14.0163 12.6427 11.5322 11.0257 

TBT 17.8812 15.4588 14.0100 12.6405 11.5431 11.0240 

SBT 17.8868 15.4631 14.0138 12.6411 11.5324 11.0216 

HBT 17.8810 15.4587 14.0098 12.6407 11.5444 11.0246 

EBT 17.8996 15.4728 14.0224 12.6466 11.5281 11.0264 

CPT 20.6187 17.5415 15.7982 14.3260 13.5876 13.2376 

3 

Present 34.2481 29.8675 27.1246 24.3307 21.6958 20.5715 

TBT 34.2097 29.8382 27.0979 24.3152 21.7158 20.5561 

SBT 34.2344 29.8569 27.1152 24.3237 21.6943 20.5581 

HBT 34.2085 29.8373 27.0971 24.3151 21.7187 20.5569 

EBT 34.2819 29.8929 27.1480 24.3482 21.6924 20.5815 

CPT 43.3483 36.8308 33.0278 29.7458 28.0850 27.4752 

20 

1 

Present 5.4603 4.6511 4.2051 3.8361 3.6484 3.5389 

TBT 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390 

SBT 5.4603 4.6511 4.2051 3.8361 3.6484 3.5389 

HBT 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390 

EBT 5.4604 4.6512 4.2051 3.8361 3.6483 3.5390 

CPT 5.4777 4.6641 4.2163 3.8472 3.6628 3.5547 

2 

Present 21.5740 18.3968 16.6349 15.1619 14.3726 13.9260 

TBT 21.5732 18.3962 16.6344 15.1619 14.3746 13.9263 

SBT 21.5736 18.3965 16.6347 15.1617 14.3728 13.9255 

HBT 21.5732 18.3962 16.6344 15.1619 14.3748 13.9264 

EBT 21.5748 18.3974 16.6355 15.1621 14.3718 13.9258 

CPT 21.8438 18.5987 16.8100 15.3334 14.5959 14.1676 

3 

Present 47.5967 40.6555 36.7704 33.4688 31.5694 30.5360 

TBT 47.5930 40.6526 36.7679 33.4689 31.5780 30.5369 

SBT 47.5950 40.6542 36.7692 33.4681 31.5699 30.5337 

HBT 47.5930 40.6526 36.7679 33.4691 31.5789 30.5373 

EBT 47.6008 40.6586 36.7730 33.4701 31.5655 30.5349 

CPT 48.8999 41.6328 37.6173 34.2954 32.6357 31.6883 

 

 
6. Conclusions 

 

This work presents a free vibration analysis for FG 

beams by employing an original HSDBT with only 3 

unknown variables. The equations of motion are obtained 

through the Hamilton‟s principle. These equations are 

solved via Navier‟s procedure. The results were compared 

with the solutions of several theories. It is concluded that 

the results of the proposed original HSDBT has an excellent 

agreement with the other theories used for comparison for 

free vibration problems. 
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