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1. Introduction 

 

Passive energy dissipation devices are widely used in 

building structures to reduce the dynamic response of 

structures and avoid serious damage. In the previous study 

of energy dissipation systems, dampers were usually 

arranged uniformly. As the number of structural layers and 

the number of dampers increase, conventional distribution 

methods cannot meet the safety and economic requirements. 

In order to reduce the cost of energy dissipation system and 

improve energy consumption efficiency, how to allocate the 

number of dampers between different layers of structures to 

achieve the best control effect under certain economic 

conditions has become an important issue to be considered 

in arranging dampers. Under certain numbers of dampers, 

the global optimal solution of objective functions can only 

be obtained by exhaustive means. Considering the 

increasing number of structural layers and the number of 

dampers, it is impractical to exhaust many of these 

situations.  

During the last decades, many researchers have made 

efforts to study on the optimal distribution of dampers. An 

optimal damper distribution using sequential optimization 

procedure based on the concept of controllability was 

proposed (Zhang and Soong 1992). Worst-Out-In (WOI) 

and Exhaustive Single Point Substitution method (ESPS) 
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were used to locally optimize the position of the exciter 

(Haftka and Adelman 1985). A distribution of dampers at 

the position which can maximize the damping ratio of the 

basic vibration mode was advised (Ashour and Hanson 

1987). A topology optimization method to study the 

position optimization of dampers came up (Natke and soong 

1993). The simulated annealing method was used to search 

for the optimal position of dampers (Milman and Chu 

1994). A method based on steepest directions search 

algorithm was used to obtain the optimal distribution of 

dampers that minimizes the system transfer function 

(Takewaki et al. 1999). A method was proposed to 

determine the required additional damping ratio (Kim et al. 

2003 and 2006). With the wide application of genetic 

algorithms, researchers have introduced genetic algorithms 

into the field of structural control, and have done a lot of 

optimization research work (Takewaki 1997, Wu et al. 

1997). Furuya et al. (1998) considered economic issues and 

determined a suitable damper distribution for vibration 

control of 40-storey buildings subject to various seismic 

excitations. Singh and Moreschi (2002) determined the 

optimal number and optimal distribution of dampers for 

seismic response control of a 10-storey linear building 

structure. Problems of optimally arranging the dampers 

under different optimization objectives and evaluation 

criteria have been proposed (Qu and Li 2008, Li and Qu 

2010). It was shown that once the building frames and 

energy dissipation systems are modeled appropriately, the 

optimal quantity and placement of passive control and 

energy dissipation systems can be determined automatically 

and simultaneously (Takewaki 2009). A gradient-based 

evolutionary optimization methodology was presented for 

finding the optimal design of both dampers and their 
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supporting members to minimize an objective function of a 

linear multi-storey structure subjected to the critical ground 

acceleration (Fujita et al. 2010). An application was 

presented to use a robustness function for the design and 

evaluation of passive damper systems (Fujita and Takewaki 

2012). Optimal tuned mass damper was designed for 

nonlinear frames by distributed genetic algorithms in 2012 

(Mohebbi and Joghataie 2012). Semi-active fuzzy control of 

MR damper was proposed based on genetic algorithm 

(Huang et al. 2009). Hybrid genetic algorithm for optimal 

placement of transmission tower dampers was proposed 

(Guo et al. 2009). Adachi et al. proposed a nonlinear 

optimal oil damper design method in a multi-storey building 

frame (2013). Yan et al. (2014) proposed an optimal 

distribution of high-rise structural viscous dampers based 

on relative fitness genetic algorithm. The optimal design 

problem was solved through a numerical approach to a 

constrained optimization problem by minimizing some 

performance criteria that are representative measures of the 

system response (Domenico et al. 2019). A new method for 

optimal viscous damper placement was proposed for 

elastic-plastic multi-degree-of-freedom (MDOF) structures 

subjected to the critical double impulse as a representative 

of near-fault ground motions. (Akehashi and Takewaki 

2019). 

Recently machine learning methods are attracting 

widespread interest in the fields of civil engineering. Many 

researchers have conducted extensive and in-depth research 

in the fields of damage identification, pattern recognition, 

response prediction, image processing, reliability 

evaluation, program optimization and cost estimation. In 

this paper, Support Vector Machine (SVM) and Multilayer 

Perceptron (MLP) are used to predict the optimization 

scheme based on genetic algorithm, and quickly obtain 

optimization results for a large number of different 

structures under different objective functions in a short 

time, which greatly improves optimization efficiency. The 

method can solve the following problems: when studying 

the optimization of damper distribution, the objective 

functions proposed by many scholars may be different so 

that the obtained optimization results are also different, 

which may not give a generalized reference results for other 

structures. Moreover, in practical applications genetic 

algorithms are prone to premature convergence (Li et al. 

2010). With the increase of the number of building layers 

and the number of dampers, in order to avoid falling into 

the local optimum problem, the number of initial 

populations cannot be selected below a certain standard, 

which leads to an upper limit on the optimization efficiency. 

Therefore, it is difficult to optimally arrange a large number 

of different structures efficiently. Using machine learning 

methods, a large number of damper optimization 

distributions obtained by different structures under different 

optimization targets can be used as training samples to train 

a learning model in advance. Then the trained model can 

quickly and efficiently generate a large number of feasible 

optimization schemes for different structures and target 

conditions according to input structural features and 

optimization target features, which will greatly improve 

optimization efficiency and achieve good results. 

Considering the problem as a discrete optimal damper 

distribution problem, this paper makes multi-class 

prediction and multi-output regression prediction separately. 

Genetic algorithm is selected as the optimization method 

and the corresponding optimization results are used as 

samples. In the first example, classifiers are built using 

SVM and MLP, respectively. For a three-layer structure, the 

category of damper distribution is predicted by changing the 

weighting index of objective function. In the second 

example, MLP is used to establish a regression model. For 

different structures, the number of dampers in each layer is 

analyzed under different cases, which is regarded as a 

multi-output regression problem. The paper is organized as 

follows: Part 2 simplifies engineering problems into 

mathematical models; Part 3 introduces sample 

optimization methods, optimization objective functions, and 

optimization models for making sample sets; Part 4 is a 

brief introduction to the principles of SVM and MLP; Part 5 

introduces numerical simulation and analysis of the 

proposed method; Part 6 is conclusions of this paper. 

 

 

2. Mathematical model 
 

Considering the damping force of dampers, the equation 

of motion of structure can be expressed as Eq. (1) 

[ ][ ( )] ([ ] [ ])[ ( )] [ ][ ( )] [ ][ ] ( )d gM u t C C u t K u t M I u t      (1) 

where [M], [C], [K] represent the mass matrix, damping 

matrix, and stiffness matrix of the structure, respectively; 

[ü(t)], [ ( )]u t , [u(t)] are the acceleration vectors, velocity 

vectors, and displacement vectors of the structure, 

respectively; üg(t) is the ground acceleration; [Cd] is an 

additional damping matrix for the dampers. The equation 

will be solved by Newmark-β
 
method in this paper. 

 

 

3. Optimization process 
 

3.1 Damper optimization objective functions 
 

The objective function considering the maximal storey 

drift angle, the maximal acceleration and the maximal 

displacement of each layer was proposed (Qu and Li 2008) 

as Eq. (2). Using a damper-controlled structure under 

seismic load, the structural vibration control target can be 

satisfied in terms of safety and comfort by the linear 

combination of the maximum value of the storey drift angle, 

the maximum value of the absolute acceleration and the 

maximum value of the absolute displacement with and 

without control. 

0, 0, 0,

( )max max max

max max max

a u
Z min

a u


  


    (2) 

where θ, α, u represent the storey drift angle, absolute 

acceleration, and absolute displacement of structure under 

ground motion; subscript max indicates the maximum value 

of controlled structure response; subscript 0,max indicates 

the maximum value of uncontrolled structural response. α,  
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Fig. 1 Flow chart for genetic algorithm 

 

 

β, γ are weighting factors whose sum is 1. Different 

combinations of coefficients are given depending on 

different requirements for safety and comfort in engineering 

applications. 

 

3.2 Optimization model 
 

The mathematical expression of the damper optimal 

distribution problem in the structure can be written as Eq. 

(3) 

min ( , )Z X t  

1 2[ , , ]T

nX x x x ……  

jx N  

s.t. : {0,1,2, }jx N …… , ( 1,2,j n …… ) 

(3) 

where n is the number of structural layers; N is the upper 

limit of total dampers number. The upper limit of dampers 

number per layer is consistent with the upper limit of total 

dampers number. X is a vector representing damper 

distribution; xj is the integer number of dampers on the floor 

j; Z is the objective function of the optimization problem. 

Different objective functions can be combined according to 

different weight coefficients; t is the time of dynamic load. 
 

3.3 Genetic algorithm 

 

Genetic algorithm is a parallel random search 

optimization method developed by Professor Holland of the 

University of Michigan in 1962 with simulating the natural 

genetic mechanism and biological evolution theory. The 

genetic algorithm first encodes the optimization problem 

and generates the initial population. For the damper 

optimization problem, each individual in the population 

uses integer coding, which represents the damper 

distribution. Through the calculation of the evaluation 

function of each generation, the selection, hybridization and 

variation of the population are carried out. Then the better 

individuals in the current generation are selected to generate 

new populations. After multiple generations of calculations, 

the algorithm finally converges to the optimal solution 

individual, where the optimal solution represents the 

damper distribution that optimizes the objective function. 

The following Fig. 1 shows the flow chart of genetic 

algorithm: 

 

 
4. Methodology of machine learning 
 

4.1 Classification and regression 
 

For the damper distribution scheme with low building 

structures and few optimization schemes, it can be regarded 

as a classification problem. Through the existing training 

samples that are the known data and its corresponding 

outputs, it is trained to obtain a satisfying classifier model 

which maps all the inputs to the corresponding outputs and 

makes a simple judgment on the output to achieve the 

purpose of classification. The classifier has the ability to 

classify unknown data. However, for the case of more 

structural layers and more dampers, it is not easy to classify 

the damper distribution scheme. In this case, such problem 

is treated as regression problems and each regression model 

have multiple outputs. After data processing, each 

multidimensional output represents the number of dampers 

required for the corresponding number of layers. Unlike 

classification, regression problems map all inputs to 

corresponding outputs that are continuous variables. On the 

other hand, classification is a prediction problem that the 

output variable is a finite number of discrete variables. 

 

4.2 Support vector machine 
 

Support Vector Machine (SVM) was originally proposed 

by Vapnik (1963, 1964) and Chervonenkis (1964). SVM 

can be used for pattern classification and regression, which 

is considered to be the most successful algorithm before 

machine learning. The main idea of SVM is to map input 

vectors to higher dimensional space through non-linear 

transformation for non-linear separable samples to make 

them linear separable. A classification hyperplane is created 

as a decision surface in this high dimensional space making 

the isolated margin between the positive and negative 

examples maximized.   

A simple two-dimensional vector model is shown in Fig. 

2. The separation hyperplane is defined as Eq. (4) 

 

 

 

Fig. 2 Optimal hyperplane in the case of linear separability 
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0Tw x b   (4) 

where x represents data points, w is an adjustable weight 

vector, b is a bias that represent offset of the hyperplane 

relative to the origin. T represents the transpose of a vector. 

The model of SVM is to keep all points to the hyperplane at 

a certain distance (the function distance=1 in the Fig. 2). 

Then all the classification points should be on both sides of 

the support vector of respective category. Positive examples 

above the hyperplane is defined with labels y=1, while 

negative examples below the hyperplane is defined with 

labels y=-1. Obviously there is more than one hyperplane 

that satisfies this condition. It is designed to find the one 

with the strongest generalization ability, so that the sum of 

the distances of all classified points to the hyperplane is the 

smallest. It has been shown that in this model, the geometric 

distance is the true distance from the point to the 

hyperplane. After mathematical derivation, maximizing the 

separation edge between the two classes is equivalent to 

minimizing the Euclidean norm of the weight vector w. The 

optimization model can be expressed as Eq. (5). Because it 

is a convex function, according to the convex optimization 

problem theory, the maximum marginal hyperplane can be 

obtained by using the Karush-Kuhn-Tucher (KKT) 

condition and the Lagrange multiplier. Supposing there are 

a total of m points, it can be written as Eq. (5) 

22 1
max min

2
w

w
  

s.t. ( ) 1T

i iy w x b   (i=1,2,…m) 

(5) 

In the previous discussion, it is assumed that the data set 

is linearly separable. However, for actual application, there 

may not be the hyperplane that perfectly separates the data 

sets. In this case, the original space can be mapped to a 

high-dimensional space. If the data set in the high-

dimensional space is linearly separable, then the problem 

can be solved. In this way, the hyperplane becomes as Eq. 

(6): 

( ) 0Tw x b    (6) 

where ϕ(x) represents the nonlinear mapping of raw data 

from low-dimensional space to high-dimensional space. 

This method is called “kernel method” which is realized by 

kernel functions. Commonly used kernel functions are: 

linear kernel, polynomial kernel, Gaussian kernel, 

Laplacian kernel, sigmoid kernel, etc. 

 

4.3 Multilayer perceptron 
 

Multilayer Perceptron (MLP) is inspired by the 

biological nervous system and usually consists of an input 

layer, one or more hidden layers and an output layer. MLP 

can be thought of as a logistic regression classifier in which 

the input layer is transformed by non-linear transformations 

that are constantly “learned”. George Cybenko (1989) 

proposed that a single hidden layer can fit any nonlinear 

continuous function well as long as the number of nodes is 

sufficient, making MLP a universal estimator. In 2006, GE 

Hinton and RR Salakhutdinov (2006) proposed that with the 

enhancement of computer computing power and the sharp  

 

Fig. 3 Sample MLP configuration 

 

 

increase of data sets, multiple hidden layers began to be 

widely used. Multiple hidden layers are composed of 

multiple single hidden layers, compared with single hidden 

layers. The multi-hidden layer has strong generalization 

ability and high prediction accuracy, but the calculation 

amount is large and the training time is longer. The use of 

multiple hidden layers proves that multiple hidden layers 

have a greater advantage, which is called deep learning. 

Fig. 3 is a single hidden layer MLP structure, in which 

each layer consists of multiple cells (also called neural 

nodes) and one circle represents a cell. Each node in the 

hidden or output layer is fully connected to all nodes in the 

previous layer, and these connections represent a weighted 

combination with the nodes in the previous layer. The 

instance feature vector of the data set starts from being 

input into the input layer. Then the data are passed to the 

next layer. The output of each layer through a specific 

calculation is used as the input of the next layer. The output 

value of node j shown in Fig. 3 is calculated by the 

following Eqs. (7)-(8): 

( )j ij iZ w x b   (7) 

( )j jy f z  (8) 

where xi represents all inputs; wij represents the weight 

between the node i and the node j; b represents the 

deviation term; Zj represents the temporary value; yj 

represents the node j output value, which is calculated by Zj 

through the activation function f. The activation function f 

represents a nonlinear sigmoid function, enabling the 

multilayer perceptron to handle research problems in 

different fields. It has been demonstrated that MLP is 

capable of approximating any linear or nonlinear function 

by providing appropriate constraints (Wu and Jahanshahi 

2018). 

To build an MLP model, the model requires a series of 

training data to learn the relationship between input and 

output data. The MLP training usually aims to minimize the 

error between the predicted value and the true value. The 

bidirectional iterative update of the weight wij is performed 

by the standard Levenberg-Marquardt backpropagation 

algorithm.  

 

 

5. Structural model 
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Fig. 4 Three-layer structure feature diagram 

 

 

5.1 Classification prediction of damper distribution for 
3-layer structure 
 

In the first example, a 3-layer reinforced concrete frame 

structure is selected as the structural model. The structural 

characteristics are shown in Fig. 4. The damping ratio is 

0.05 and the structural period is 0.4479s. The El Centro 

seismic wave of the Imperial Valley earthquake on May 18, 

1940 is selected as the ground excitation. The damping 

coefficient of the damper is 2.1×10
3
 kN·s/m. Using Eq. (2) 

as the objective function, the optimal distribution will be 

calculated under the condition that the total number of 

dampers N is 10. 

 

 

For low-rise buildings, when the structural properties 

such as mass, stiffness, and height are determined, the 

number of dampers distribution is countable. A label can be 

added to each scheme, which is regarded as a multi-class 

problem. The feature is also just a three-dimensional vector 

representing three weight parameters. In this paper SVM 

and MLP will be used for multi-classification learning. 

Regarding the number of samples, there are basic 

quantitative requirements in the training process, because 

the computer needs to obtain the rules from a large number 

of samples to establish a function model. Too few samples 

will result in a poor prediction and meaningless results. 

Therefore, the step size of three weight parameters is 

reduced to increase the number of samples, and the 

following schemes are respectively adopted: (1) if the step 

size is 0.05, 230 optimized sample data can be obtained; (2) 

if the step size is 0.02, 1324 optimized sample data can be 

obtained. Adding an unrepeated portion of the data set with 

step size of 0.05, a total of 1488 optimized sample data is 

available; (3) if the step size is 0.01, 5146 optimized sample 

data can be obtained. 

The above cases are optimized using GA. Individuals in 
the initial population consist of integers. Each individual 
represents a structural distribution scheme and each integer 
in individual represents the number of the dampers of 
corresponding layer. The population size is 100, the number 
of elites is 10, and the proportion of cross-generations is 
0.75. The optimization is completed to obtain the damper 
distribution scheme, and it is found that there are only five  

 

 

 
(a) Maximum acceleration envelope curve 

 
(b) Storey drift angle envelope curve 

 
(c) Maximum displacement envelope curve 

Fig. 5 Seismic response of a three-layer structure 
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Table 1 Damper distribution scheme 

Combination 

Number of 

dampers on 

1st floor 

Number of 

dampers on 

2nd floor 

Number of 

dampers on 

3rd floor 

Label 

1 4 6 0 1 

2 4 5 1 2 

3 4 4 2 3 

4 5 4 1 4 

5 5 5 0 5 

 

Table 2 Prediction accuracy of SVM classifier 

Sample 

number 

Number 

of 

samples 

Accuracy 

of test 1 

(%) 

Accuracy 

of test 2 

(%) 

Accuracy 

of test 3 

(%) 

Accuracy 

of test 4 

(%) 

Accuracy 

of test 5 

(%) 

1 230 94.2029 95.6522 94.2029 97.1014 89.8551 

2 1488 98.2103 97.9866 98.434 97.5391 97.9866 

3 5146 98.7047 98.5751 98.7694 98.899 98.9637 

 

 

distribution schemes under the combination of all 

parameters, as shown in Table 1. Fig. 5 shows the seismic 

response of the above three-layer structure obtained in the 

uncontrolled case, uniform distribution case which is 4-3-3 

and optimized cases. 

 

5.1.1 Support vector machine classifier 
Regarding the SVM classifier used in this paper, the 

kernel function type uses a linear kernel function and the 

allowable termination threshold is 0.001. For the sample 

schemes of three sizes, after the mixed operation, 70% is 

taken as the training set, and the other 30% is used as the 

test set. 5 trainings and tests are performed. The test results 

after the training are shown in Table 2. Every trained SVM 

model can perform a good classification. As the number of 

samples increases, SVM becomes more stable. 

 

5.1.2 Multilayer perceptron classifier 
Regarding the MLP classifier used in this paper, two 

hidden layers are selected and the number of hidden layer 

nodes is [20 5]. The activation functions of the two hidden 

layers are linear function and logarithmic sigmoid function. 

For the three-scale sample sets, in order to accelerate the 

learning process and obtain good learning effects before 

training, the feature vector is usually standardized before it 

is passed into the input layer, so that the value is between [-

1,1]. After the mixed operation, 70% is taken as the training 

set, and the other 30% is used as the test set. 5 trainings and 

tests are performed. The test results after training are as 

shown in Table 3. 

It can be seen that with the increase of the number of 

samples, the prediction accuracy of MLP model is more and 

more stable. Both MLP and the SVM can accurately and 

efficiently identify the damper distribution. 

 

5.2 Regression prediction of damper distribution for 
3/5/10-layer structure 
 

In the following example, except for the weights of the 

objective function, structural properties are also used as the 

training feature. These structural properties could include 

Table 3 Prediction accuracy of MLP classifier 

Sample 

number 

Number 

of 

samples 

Accuracy 

of test 1 

(%) 

Accuracy 

of test 2 

(%) 

Accuracy 

of test 3 

(%) 

Accuracy 

of test 4 

(%) 

Accuracy 

of test 5 

(%) 

1 230 94.2029 95.6522 98.5507 94.2029 100.000 

2 1488 98.6547 97.5336 97.5336 97.0852 98.2063 

3 5146 98.5094 98.9631 98.6390 99.2871 98.5094 

 

 

Fig. 6 Layout plan (the number b of spans=[3,4,5]) 

 

 

structural layer numbers, structural mass and structural 

stiffness. In addition, the number of dampers is taken into 

account as an indicator of economic factors. The mass and 

stiffness of each layer can be changed by adjusting the span 

and height of structure. Considering that the first natural 

frequency of structure can partly reflect the relationship 

between the mass matrix [M] and the stiffness matrix [K], 

three features which are structure span, layer height and the 

first natural frequency are used to reflect the characteristics 

of structural properties. Considering the other two 

characteristics-the number of structural layers and the 

number of dampers, it can be seen that with the different 

requirements of the number of structural layers and the 

number of dampers, the distribution of dampers could have 

more optimized results. Therefore, the problem must be 

regarded as a multi-output regression problem instead of a 

classification problem. The input vector has eight 

dimensions: the number of structural layers n, the total 

number of dampers N, the number of spans b, the layer 

height h, the first weight coefficient of the objective 

function α, the second weight coefficient of the objective 

function β, the third weight coefficient of the objective 

function γ, the first natural frequency of structure ω. In this 

example, total number of dampers will be 10, 20, and 30, 

respectively. The number of structure layers will be 3, 5, 

and 10, respectively. The number of spans will be taken as 

3, 4, and 5, respectively. The layer heights will be taken to 

be 3 m. 3.3 m and 3.6 m, respectively. The output vector 

sets have ten dimensions and each dimension represents the 

number of dampers required for the corresponding layer. 

For the 3-layer structure, the last 7 dimensions of the output 

vector are set to 0. Similarly, for the 5-layer structure, the 

last 5 dimensions of the output vector are set to 0. For a 10-

layer structure, each dimension may not be 0, which means 

that layer may be assigned to a damper. In order to 

eliminate the influence of other factors, the values for other 

parameters of the structure are shown in Fig. 6 and Fig. 7.  
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Table 4 10 sample inputs from the training set 

Sample 

number 

Number 

of layers 

Total 

number 

of 

dampers 

number 

of spans 

layer 

height 
α β γ ω 

1 5 20 3 3.3 0.3 0.5 0.2 9.562 

2 3 10 4 3.3 0 1 0 15.588 

3 10 10 5 3 0.4 0.5 0.1 5.408 

4 3 10 3 3.3 0.4 0.4 0.2 15.696 

5 3 30 4 3.3 0.3 0.7 0 15.588 

6 5 10 4 3.3 0 0.3 0.7 9.528 

7 3 20 3 3.6 0.4 0.6 0 14.028 

8 5 10 4 3 0.6 0 0.4 10.729 

9 10 30 5 3.6 0.1 0.3 0.6 4.325 

10 10 30 5 3.3 0.1 0.6 0.3 4.814 

 

 

Concrete material density is 2700 kg/m
3
. Column 

concrete elastic modulus is 3.5×10
10 

Pa. Beam concrete 

elastic modulus is 3.0×10
10 

Pa and the damping ratio is 

0.05. The El Centro seismic wave of the Imperial Valley 

earthquake on May 18, 1940 is selected as the ground 

excitation. The damping coefficient of the damper is 

2.1×10
3
 kN·s/m. Firstly, genetic algorithm is used to obtain 

the optimized samples. The population size is 200, the 

number of elites is 20, and the ratio of cross-generation is 

0.75. Considering all possibilities and combinations, totally 

5346 dampers are selected. After obtaining the optimized 

sample and performing the mixed operation, 80% is taken 

as the training set and the other 20% is used as the test set. 

10 sample inputs from the training set is selected in Table 4. 

The sample outputs corresponding to the inputs in training 

set are shown in Table 5. The underlined zeros “0” indicate 

that there is no corresponding damper in that floor. Fig. 8 

shows the objective function values of different cases.  

 

Table 5 10 sample outputs from the training set  

Sample 

number 
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

1 5 8 5 2 0 0 0 0 0 0 

2 4 6 0 0 0 0 0 0 0 0 

3 0 4 1 0 1 1 1 2 0 0 

4 4 6 0 0 0 0 0 0 0 0 

5 14 11 5 0 0 0 0 0 0 0 

6 1 5 3 1 0 0 0 0 0 0 

7 10 8 2 0 0 0 0 0 0 0 

8 0 9 1 0 0 0 0 0 0 0 

9 4 11 5 2 1 3 4 0 0 0 

10 0 7 0 0 4 0 6 7 6 0 

 

Table 6 Sample inputs from the test set 

Sample 

number 

Number 

of layers 

Total 

number 

of 

dampers 

number 

of spans 

layer 

height 
α β γ ω 

1 5 10 4 3.6 0.1 0.4 0.5 8.541 

2 10 30 5 3 0.4 0.2 0.4 5.408 

3 3 10 4 3.6 0.3 0.5 0.2 13.930 

4 3 30 3 3.6 0.1 0.6 0.3 14.028 

5 10 30 4 3 0.1 0.8 0.1 5.411 

6 5 20 3 3.3 0.3 0.3 0.4 9.562 

 

 

Before training, in order to speed up the learning 

process and obtain good learning results, the input vector 

and output vector are usually normalized first so that the 

value is between [-1,1]. Then MLP is used to establish the 

regression model. Before training, some parameters are 

defined. The number of hidden layers is 2, the number of 

nodes is [40 30]. 6 sample inputs for the test are selected  

 

Fig. 7 Vertical Plan (layer height h=[3 m, 3.3 m, 3.6 m]; number of structural layers n=[3,5,10]) 
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Fig. 8 Objective function value of the ten samples of 

different cases 

 

Table 7 Outputs predicted by MLP 

Sample 

number 
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

1 2.81 3.77 2.21 1.25 0.05 0.02 -0.04 0.01 -0.01 0.00 

2 1.21 12.42 6.55 3.84 3.01 1.58 0.78 0.37 -0.17 0.00 

3 4.35 5.80 -0.06 0.08 0.02 0.02 0.03 -0.02 0.00 0.00 

4 14.56 11.57 3.74 0.15 -0.22 -0.01 -0.05 0.00 0.16 0.00 

5 2.34 6.06 4.49 4.82 4.03 2.77 2.24 2.30 0.81 0.00 

6 4.86 8.45 5.11 1.57 0.07 0.02 0.03 -0.03 0.00 0.00 

 

 

from the test set as shown in Table 6. The output of the 

corresponding prediction is shown in Table 7. The 

underlined numbers indicate that the corresponding floor 

does not have dampers. 

The values obtained by rounding the prediction values 

of MLP and the corresponding genetic algorithm 

optimization values are compared as in Table 8. All damper 

distributions predicted by MLP in the following are the 

corresponding results after rounding. 

It can be observed that for the results of MLP regression 

prediction, the total number of dampers in some distribution 

schemes is not exactly the same as the actual number of 

optimizations. Some post-processing is performed by 

reducing the number of dampers in the floors which have 

excessive dampers and increase the number of dampers in 

the floors which have less dampers than the required 

quantity. For schemes where the number of predictions is 

more than the number of optimizations of genetic 

algorithm, the number of dampers is reduced, because it 

will make the optimization objective function larger. 

Therefore, the principle is to reduce the number of dampers 

of the floors that have less influence on the objective 

function. For schemes where the number of predictions is  

 

 

Table 8 Damper distribution optimized by genetic algorithm 

and damper distribution by MLP prediction 

Sample 

number 

Damper 

Distribution 
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th sum 

function 

value 

1 
GA 3 4 2 1 0 — — — — — 10 0.7567 

MLP 3 4 2 1 0 — — — — — 10 0.7567 

2 
GA 1 12 6 4 3 2 1 1 0 0 30 0.7440 

MLP 1 12 7 4 3 2 1 0 0 0 30 0.7443 

3 
GA 4 6 0 — — — — — — — 10 0.4856 

MLP 4 6 0 — — — — — — — 10 0.4856 

4 
GA 15 11 4 — — — — — — — 30 0.2722 

MLP 15 12 4 — — — — — — — 31 0.2687 

5 
GA 3 5 4 5 4 3 2 2 2 0 30 0.6828 

MLP 2 6 4 5 4 3 2 2 1 0 29 0.6891 

6 
GA 5 8 5 2 0 — — — — — 20 0.5435 

MLP 5 8 5 2 0 — — — — — 20 0.5435 

 

Table 9 Damper distribution comparison of genetic 

algorithm, MLP and post-processing 

Sample 

number 

Damper 

Distribution 
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th sum 

function 

value 

4 

GA 15 11 4 — — — — — — — 30 0.2722 

MLP 15 12 4 — — — — — — — 31 0.2687 

Post-

process 
15 12 3 — — — — — — — 30 0.2727 

5 

GA 3 5 4 5 4 3 2 2 2 0 30 0.6828 

MLP 2 6 4 5 4 3 2 2 1 0 29 0.6891 

Post-

process 
2 6 4 5 4 4 2 2 1 0 30 0.6841 

 

 

less than the number of optimizations of genetic algorithm, 

the number of dampers is increased. By the similar analysis, 

the principle is to increase the number of dampers of the 

floors that have a greater influence on the objective 

function. In this way, a comparison between the prediction 

scheme and the genetic algorithm optimization scheme is 

obtained when the total number of dampers is consistent. 

For the above six forecasting scheme samples, 1, 2, 3, and 6 

are rounded up and the total number of dampers is equal to 

the quantity requirement, and no post-processing is 

required. Since the prediction of the 4th sample is more 

than the optimization requirement, more dampers need to be 

removed. On the other hand, the prediction of the 5
th 

sample 

is less than the optimization requirement, therefore the 

missing damper needs to be added. The post-processing 

results are shown in Table 9. The post-processing process is  

 

 

 

Fig. 9 Damper number difference of MLP and Post-processing relative to GA’s optimization 
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Fig. 10 The objective function value of different cases 

 

 

different from the exhaustive method of the damper 

scheme. It is only a small number adjustment based on the 

MLP prediction, and the required time cost can be 

neglected. Fig. 9 shows the total number of dampers 

relative to GA’s optimization of each set sample obtained by 

MLP prediction before and after post- processing. Fig. 10 

shows objective function value of the 6 samples in different 

cases. 

Figs. 11-16 show the seismic response (maximum value 

of the absolute acceleration, maximum value of the storey  

 

 

drift angle, maximum value of the absolute displacement) 

of the structure in samples 1~6 in the test set under 

earthquake excitation of different cases. In samples 1, 3 and 

6, the MLP-predicted damper distributions are consistent 

with the genetic algorithm optimization results, and the 

response curve obtained according to the genetic algorithm 

optimization scheme represents the multi-layer perceptron 

and post-processing response. In sample 2, the damper 

distribution scheme predicted by MLP is inconsistent with 

the genetic algorithm optimization result. However, the total 

number of dampers in both cases is the same. Therefore, 

there is no need to post-process the prediction results of 

MLP. The response is the same for the MLP prediction and 

post-processing. In sample 4 and sample 5, the responses 

are different in five cases.  

It can be observed that even under the requirements of 

different objective function weight values, the damper 

distributions obtained by genetic algorithm optimization 

have better control effect than the uniform distribution from 

the three indicators. After training, the MLP prediction 

scheme can approximate the results of genetic algorithm in 

three seismic responses. More importantly, the MLP 

prediction can consider different weight combinations of 

the objective function. Fig. 17 shows the objective function 

of all test set samples in different cases.  

Fig. 18 shows the relative errors between the objective  

 

 

   

Fig. 11 Structural response of sample 1 selected from test data 

 

     

Fig. 12 Structural response of sample 2 selected from test data 
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function obtained before and after the post-processing of the 

MLP prediction scheme and the results obtained by GA 

optimization. It can be seen that the relative error between 

MLP prediction results and genetic algorithm optimization 

results are very small, and the relative error of MLP model 

in this training is less than 5%. After the post-processing of 

unifying total numbers of dampers got from MLP and GA, 

the relative errors are generally reduced further and the 

objective function values are closer to the function value 

obtained by genetic algorithm optimization. In very few 

cases, the relative error of post-processing is negative, 

which should not occur, because it means that a better result 

 

 

 

 

is predicted than genetic algorithm and the optimization 

results of some samples are not global optimal solutions. 

 

 

6. Conclusions 
 

By extracting the structural properties and the weights 

of the objective function as training features, the optimal 

distribution of dampers can be predicted by machine 

learning method. This paper proves the feasibility of this 

idea. When there are fewer schemes for optimal distribution 

of dampers, it can be considered as a multi-class problem to  

   

Fig. 13 Structural response of sample 3 selected from test data 

   

Fig. 14 Structural response of sample 4 selected from test data 

   

Fig. 15 Structural response of sample 5 selected from test data 
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solve. Both SVM and MLP classifiers perform well and can 

predict the optimal results consistent with GA with very 

high accuracy. As the number of samples increases, the 

accuracy of the prediction results will become better. With 

the increase of the number of dampers and structural layers, 

it is impossible to know all distribution schemes in advance. 

In this case, it can be regarded as a multi-output regression 

problem that can be solved by using MLP to predict the 

number of dampers in each layer. Numerical results show 

that damper distribution schemes predicted by MLP are 

very similar to the optimized results obtained from GA. 

Furthermore, the error of the objective functions can be 

further reduced by post-processing of unified total damper 

numbers. From the simulation, it is shown that the relative 

errors of prediction by machine learning are rather small 

and most of them are less than 5%. Therefore, the proposed 

machine learning method can be effectively used to predict 

the optimized distribution of dampers. 
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