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Abstract.

In this work, a new analytical approach using a theory of a high order hyperbolic shear deformation theory (HSDT)

has been developed to study the free vibration of plates of functionally graduated material (FGM). This theory takes into account
the effect of stretching the thickness. In contrast to other conventional shear deformation theories, the present work includes a
new displacement field that introduces indeterminate integral variables. During the manufacturing process of these plates defects
can appear as porosity. The latter can question and modify the global behavior of such plates. The materials constituting the plate
are assumed to be gradually variable in the direction of height according to a simple power law distribution in terms of the
volume fractions of the constituents. The motion equations are derived by the Hamilton principle. Analytical solutions for free
vibration analysis are obtained for simply supported plates. The effects of stretching, the porosity parameter, the power law index
and the length / thickness ratio on the fundamental frequencies of the FGM plates are studied in detail.
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1. Introduction

Functionally Graded Materials (FGM) are a new class of
composite materials whose microstructure and composition
gradually and continuously vary with position to optimize
the mechanical and thermal performance of the structure.
They are considered intelligent materials whose desired
functions are integrated, from the design stage, into the very
heart of the material. At each interface, the material is
chosen according to specific applications and environmental
loads. These materials have multiple advantages that can
make them attractive from the point of view of their
application potential. It can be improved rigidity, fatigue
strength, corrosion resistance or thermal conductivity in
addition to having a gradation of properties to increase or
modulate performance such as reducing local stresses or
improving heat transfer. This new concept marks the
beginning of a revolution in the fields of materials science
and mechanics. The reason for the increasing use of FGMs
in a variety of aerospace, automotive, civil engineering, and
mechanical engineering structures is that their material
properties can be tailored to different applications and
working environments (Qian and Batra 2005, Yaghoobi et
al. 2011, Bachir Bouiadjra et al. 2013, Bouderba et al.
2013, Yaghoobi and Torabi 2013a, Tounsi et al. 2013,
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Yaghoobi and Fereidoon 2014, Yaghoobi et al. 2014,
Yaghoobi et al. 2015, Attia et al. 2015, Hamidi et al. 2015,
Larbi Chaht et al. 2015, Darilmaz 2015, Ebrahimi and
Dashti 2015, Bouguenina et al. 2015, Akbas 2015, Arefi
2015, Pradhan and Chakraverty 2015, Kar and Panda
2015ab, Beldjelili et al. 2016, Ebrahimi and Habibi 2016,
Hadji et al. 2016, Moradi-Dastjerdi 2016, Laoufi et al.
2016, Bousahla et al. 2016, Ebrahimi and Salari 2016, Trinh
et al. 2016, Kar and Panda 2016, El-Haina et al. 2017, Kar
and Panda 2017, Attia et al. 2018, Karami et al. 2019a,b).
Numerous research studies have dealt with the
mechanical behavior of the plates functionally graduated,
the demonstration of the effect of the transverse shear and
normal deformation in the study of the vibration behavior of
the FGM plates makes it possible to describe with a good
precision the field’s stresses and deformations induced
through their thickness. Reissner (1945), Cranch and Adler
(1956), Ambartsumyan (1969), Bresse (1859) were the
pioneer investigators in studying the different behavior of
structures made with isotropic materials under different
stresses. With the development of the FGM concept, many
works have been studied in literature. Reddy (2000) is one
of the first to analyzed the static behavior of FGM
rectangular plates based on his plate theory. Cheng and
Batra (2000) have found correspondence between eigen
values of membranes and functionally graded simply
supported polygonal plate. The same membrane analogy
was later applied to FGM plate and shell analysis based on
a third order theory of plates by Reddy (2002). Vel and
Batra (2004) has come closer to real behavior of structure

ISSN: 2092-7614 (Print), 2092-7622 (Online)



548 Riadh Bennai, Hassen Ait Atmane, Belgassim Ayache, Abdelouahed Tounsi, E.A. Adda Bedia and Mohammed A. Al-Osta

by studying free vibration of FGM rectangular plates with
three-dimensional solution. Zenkour (2006) presented a
generalized shear deformation theory in which function
across the thickness. Woo et al. (2006) studied the non-
linear free vibration behavior of plates made of FGMs using
the Von Karman theory for large transverse deflection. Ait
atmane et al. (2010) proposed a new model of shear
deformation to analyze the free vibration of FGM plates
rested on elastic foundation. Also, Arefi and Rahimi (2011)
investigated the nonlinear response of a FG square plate
with two smart layers as a sensor and actuator under
pressure. Arefi (2013) analyzed the nonlinear thermo-elastic
behavior of thick-walled functionally graded piezoelectric
cylinder. Sobhy (2013) studied the vibration and buckling
behavior of exponentially graded material sandwich plate
resting on elastic foundations under various boundary
conditions. The first-order shear deformation theory
(FSDT), including the effects of transverse shear
deformation, was employed by some researches to analyze
buckling behavior of moderately thick FGM plates
(‘Yaghoobi and Yaghoobi 2013, Bouazza et al. 2010). By
using an efficient and simple refined theory, Ait Amar
Meziane et al. (2014) studied the buckling and free
vibration of exponentially graded sandwich plates under
various boundary conditions. Hebali et al. (2014) proposed
a new quasi-3D hyperbolic shear deformation theory for the
static and free vibration analysis of FG plates. Bousahla et
al. (2014) presented a novel higher order shear and normal
deformation theory based on neutral surface position for
bending analysis of advanced composite plates. Zidi et al.
(2014) employed a four variable refined plate theory for
bending analysis of FG plates under hygro-thermo-
mechanical loading. A new simple shear and normal
deformations theory was developed by Bourada et al.
(2015) for the analysis of the behavior of functionally
graded beams. Yahia et al. (2015) studied the wave
propagation in functionally graded plates with porosities
using various higher-order shear deformation plate theories.
Belabed et al. (2014) used a hyperbolic function based
higher-order shear deformation theory to analysis the
vibration characteristics of FGM plate. Bennai et al. (2015)
proposed a novel higher-order shear and normal
deformation theory for the study of vibration and stability
for FG sandwich beams. Mahi et al. (2015) developed a
novel hyperbolic shear deformation model for static and
dynamic analysis of isotropic, functionally graded,
sandwich and laminated composite plates. Belkorissat et al.
(2015) studied the dynamic properties of FG nanoscale
plates using a novel nonlocal refined four variable theory.
Recently, Tounsi et al. (2016) proposed a new 3-unknowns
non-polynomial plate theory for buckling and vibration of
FG sandwich plate. Bouderba et al. (2016) studied the
thermal stability of FG sandwich plates using a simple shear
deformation theory. Bellifa et al. (2016) presented static
bending and dynamic analysis of FG plates using a simple
shear deformation theory and the concept the neutral
surface position. Houari et al. (2016) presented a new
simple three-unknown sinusoidal shear deformation theory
for FG plates. Draiche et al. (2016) used a refined theory
with stretching effect for the flexure analysis of laminated
composite plates. Bennoun et al. (2016) studied the

Fig. 1 coordinates and geometry of functionally graded
plate

vibration response of FG sandwich plates using a novel five
variable refined plate theory. Using higher-order equivalent
single-layer theory, Katariya et al. (2017) studied the
nonlinear Eigen frequency of laminated curved sandwich
structure. Bellifa et al. (2017a) proposed a nonlocal zeroth-
order shear deformation theory for nonlinear postbuckling
of nanobeams. Katariya et al. (2018) used HSDT, FEM to
study the bending, and vibration of skew sandwich plate. A
study of the dynamic response of functionally graduated
plates based on elastic foundations by a high order theory
was realized by Nebab et al. (2019). Other works on shear
deformation theories such as HSDT and FSDT can be
documented in references (Kar and Panda 2013, Panda and
Katariya 2015, Abdelaziz et al. 2017, Zidi et al. 2017,
Bouafia et al. 2017, Sekkal et al. 2017a, b, Karami et al.
2017, Katariya and Panda 2018, Zine et al. 2018, Mehar et
al. 2018, Abualnour et al. 2018, Dash et al. 2018, Mokhtar
et al. 2018, Karami et al. 2018abce, Bouadi et al. 2018,
Yazid et al. 2018, Kadari et al. 2018, Sahoo et al. 2018,
Karami et al. 2019c, Bourada et al. 2019, Boukhlif et al.
2019).

In the literature, studies of the porosity effect in the FG
structures are as follows; Wattanasakulpong and
Ungbhakorn (2014) examined dynamics of porous
functionally graded beams. Ait Atmane et al. (2015)
examined dynamics of FG porous beams with different
beams theories. Jahwari and Naguib (2016) investigated FG
porous plates with different plate theories and cellular
distribution model. Recently, Mouaici et al. (2016)
proposed an analytical solution for the vibration of FGM
plates with porosities. Ait Atmane et al. (2017) is study the
effect of stretching the thickness and porosity on the
mechanical response of a FG beam resting on elastic
foundations. Akbas SD (2017) studied the thermal effects
on the vibratory behavior of FG beams with porosity. Yousfi
et al. (2018) used a shear deformation theory with four
variables for the analysis of the vibratory behavior of
porous FGM plates.

The objective of this study is to develop a theory of high
order hyperbolic shear strain (HSDT) to study the effect of
normal deformation and porosity on the vibratory behavior
of FG plates. Current theory has a displacement field that
introduces indeterminate integral variables. The free
vibration motion equations in the FG plate are obtained
using the Hamilton principle, whose effects of shear
deformation and inertia rotation are taken into account. To
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solve the problem, the Navier solution is also used. In the
end, the numerical results of the current theory are
compared to those predicted by the theory used by Mouaici
et al. (2016), and the theory proposed by Belabed et al.
(2014). The influence of the stretching effect, volume
fraction index and porosity on the free vibration of
functionally graduated plates is clearly discussed.

2. Theoretical formulation
2.1 Material properties

The FG plate is composed by a mixture of ceramic and
metal components whose material characteristics change
across the plate thickness with a power law distribution of
the volume fractions of the constituents of the two materials
as (‘Yaghoobi and Torabi 2013b, Kar and Panda 2014, Zemri
et al. 2015, Ahouel et al. 2016, Bellifa et al. 2017b, Ayache
et al. 2018)

P(z)=P, +(P, - P)(; f}jp 1)

Where P denotes the effective material characteristic
such as Young’s modulus E and mass density p subscripts m
and c denote the metallic and ceramic components,
respectively; and p is the power law exponent. The value of
p equal to zero indicates a fully ceramic plate, whereas
infinite p represents a fully metallic plate. Since the
influences of the variation of Poisson's ratio » on the
behavior of FG, plates are very small (Yang et al. 2005,
Kitipornchai et al. 2006), it is supposed to be constant for
convenience Now, the total volume fraction of the metal
and ceramic is V,+V=1, and the power law of volume
fraction of the ceramic is described as

vo-(2:1) @)

h 2

The properties of the material with porosity should
follow the power law in the present study and are expressed
by the expression given by Ankit Gupta (2017)

P=P.(V, —Iog(l+/21)+Pm(\/m —Iog[1+;j (3)
‘A’ is termed as porosity volume fraction (1<1). 1=0
indicates the non-porous functionally graded plate. Thus,

the Young’s modulus (E) and material density (p) equations
of the imperfect FGM plate can be expressed as:

_ hy A 2l
E(2) = (E, - E, {“Zj —Iog(1+5)(Ec + Em)(l—hj+ E. (4)

LN (O [ (A5 PR (o IO

2.2 Constitutive equations

For elastic and isotropic FGMs, the constitutive

relations are given as follows

Ox Q;, Q, Q; 0 0 0 (e

Gy Qr Qp Qp 0 0 0 y

o, _ Qi Qp Qp 0 0 0 |e,

Ty 0 0 0 Q¢ O 0 ||7y (6)

T, 0 0 0 0 Qs 0 |7y,

| Lo 0o 0o o o Q.
Where (o- 010, Ty Typi Ty ) and

(8x,gy,gz, Y Vo ;/XZ) are the stress and strain components,

respectively. Using the material properties defined in Eq.
(1), stiffness coefficients Q; can be given as

_ E(Z) . E@®
Qll Q22 Q33 Q44 Q55 - Qee - 2(1+ V)

1E(z) )

Q12 = Q13 Q23

If &#0 (thickness stretchlng), then Q; are 3D elastic
constants, given by

A A _ @-vE(®)
Qi =Qxp =0Q; = A—2v)1+v)
0 -0 . E@
Qus =Qs5 = Qg = 2(1+V) (8)
VE(z
Q, =Qi;3=Qy = (2)

1—-2v)(1+v)

Based on the thick plate theory and including the effect
of transverse normal stress (thickness stretching effect), the
basic assumptions for the displacement field of the plate can
be described as (Bourada et al. 2016, Fahsi et al. 2017,
Khetir et al. 2017, Menasria et al. 2017, Benchohra et al.
2018, Fourn et al. 2018, Bourada et al. 2018, Younsi et al.
2018, Bouhadra et al. 2018, Zaoui et al. 2019, Bennai et al.
2019 and Meksi et al. 2019)

u(x,y,z,t) =u,(x, yt)—zagv +k, f(z)J.é)(x y,t)dx  (9a)

v(x,y,z,t)=vo<x,y,t)—z%+kzf(z)Je(x,y,t)dy (9b)

W(X,Y,Z,t) =w, (X, ¥, 1) + Wy (X, ¥,1) + 9 (2)@, (X, y,t)  (9c)

The coefficients kjand k, depends on the geometry. In
this article, the shape function is considered based on the
hyperbolic function given by Reissner (1975) as

5 5z
f(z)= 2(4_3hj (10)

It can be observed that the kinematic in Eqg. (9) uses
only five unknowns (uy; vo; wy; 8 andg,). Nonzero strains
of the five variable plate model are expressed as follows

&y &y ky ky
gy ¢ = 53 +2 k;’ +f(2)1k; ¢
7><y 7>(<)y k:y k:y
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0
{7yz} _ g(z){y)éz} and &= g'(Z)ES (11)

XZ XZ
Where
2
au, St
PN Ox ke X
20 oV, s ke o) "Wy {;
= A y (™ 2
g 8X kb 6y
Po) |ou, vy | o%w,
a ox " axoy
ks k0 ; (12)
s an
1T a 0 8
k® v Y
" klayjedx+kzaxj9dy
0 kzja dy+%
{7)/1} _ 8y '80 — ¢
0 192 z
Ve klja dx+%
OX
and
df (z
9(z )—L (13)

It can be observed from Eq. (6) that the transverse shear
strains (yx , ;) are equal to zero at the upper (z=h/2) and
lower (z=—h/2) surfaces of the plate (Fig. 1). A shear
correction coefficient is, hence, not required.

The integrals used in the above equations shall be
resolved by a Navier type solution and can be written as
follows

2
%0 o oay—g 20
oxdy  ox axdy

jed —A' J'ed —B'Zi

Ie dx=ALZ "

Where the coefficients 4’ and B’ are expressed
according to the type of solution employed, in this case by
using Navier method. Therefore, A’ and B’ are expressed as
follows

A':*_Q,B=*_2,k1:’f127k2:’(22 (15)
K K,

where a and g defined in expression (28).
3.2 Equations of motion

To determine the equations of motion, we apply the
principle of Hamilton (Meziane et al. 2014, Al-Basyouni et
al. 2015, Bounouara et al. 2016, Benadouda et al. 2017,
Hachemi et al. 2017, Benahmed et al. 2017, Besseghier et
al. 2017, Mouffoki et al. 2017,Klouche et al. 2017,
Bakhadda et al. 2018, Cherif et al. 2018, Yousfi et al. 2018,
Youcef et al. 2018, Kaci et al. 2018, Tlidji et al. 2019,
Semmah et al. 2019, Khiloun et al. 2019)

ozj(au 1SV —SK)dt (16)

Where 6U is the variation of strain energy; 6V is the
variation of the external work done by external load applied
to the plate; and JK is the variation of kinetic energy.

The variation of strain energy of the plate is given by

oU :I[Uxﬁax +0,08,+0,08,+7, 07, +7,07, +rxzé';/xz]dv
\

=[N, Gl +N, Gl +N, 50 +N, 5% + MISK + M Sk 17)
A
+MP Sk +MSks +M;Sks + M3 SkS, +S5,5 7,

+sz5yxz]dA70

Where A is the top surface and the stress resultants N,
M, and S are defined by

hi2

(N, MPM?)= J'(l,z,f)aidz (i=xy,xy)
ag)
(SXZ,S ) J.g(rxz,ryz)dzand N, = Ig'(z)azdz
—h/2 -h/2

The variation of the external work can be expressed as

5V——fq5wodA+I( a(wogxgo(pz)aa(woaigowz jdA (19)

Where q and | are transverse and in-plane applied

loads, respectively.
The variation of kinetic energy of the plate can be
expressed as

K =j[u5u+v5\7+w5w] p(z)dv

j{lo(uoéu0 + VOV + WUV, ) + J o (0,0, +Vipdp,)

= lyf G

+V

08V 08y , OV o )
%)

5
+J1[ @H ] om0 202y j]

Iz( , 05 Wi, Maiywj Kz[(k1A|)[aeaaej (sz,)z[aéa&éD

+

ox ox oy oy
3 [a/v 956 aea(swoj+(k28)(mm aeaswo]]
X X oXx o oy oy oy oy
+K0( 6(01
(20)
Where dot-superscript  convention indicates the

differentiation with respect to the time variable t; p(z) is the
mass density given by Eq. (5); and (I, J;, K;) are mass
inertias expressed by

h/2
(1,z,z lo(z)dz (21a)

-h/2

hi2

= J(g f,z f)p(z)dz (21b)

-h/2

(35,31.3,)
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j *Jo(2)dz (21¢)

Substituting the expressions for 6U, 6V and 6K from
Egs. (17), (19) and (20) into Eqg. (16) and integrating by
parts and collecting the coefficients of ug; vq; Wo; @ and ¢,
the following equations of motion of the plate are obtained
as

N, .
I _Iuo—IaWJrkA'J %
ox oy ox
oN, N i j
5V, 8):“@“'0\70—'1?7“'(23'31%
2nab 0 Mb (3 Mb _ A2
§w0:aNiX+2 +q+Na(W°+2g°(pl)
X 6x6y oy? 16
ity + 3y, 41, Do Mo |y gz g [k a2l 0°6 kB'”
ox oy ox? oy’ 22)
50—k M:—k, M —(k, Ak B‘)azM:y+k PR B,as;z =
. 1 Vi 2 Vly 1 2 1 2 =
oxdy ox oy
3 ka%e e Vol k [ (A l +(k, B 22 7o),
ox @/ ox’ oy’
[k s
19)'
8Ss 0S5, —  0%(Wy+7,0,) ) .
5@1:—NZ+W+WV+NQO#: J oW, + Ko,

Using Eq. (11) in Eq. (6), the stress resultants of a FG
plate can be related to the total strains by

au,
X
. . Ny
N, A, A, O B, B, 0 B B 0 Xy oy
s s o
Ny A, A, 0 B, B, 0 B, B 0 Xy ﬂ.;.%
N xé 0 0 A, O 0 B 0S 0S Bes 0 3i’ aZWOX
My B, B, 0 D, D, 0 Dj D 0 Y, EXZU
M: — B, B, 0 D, D, 0 Dj D 0 Y —62W0
M 0 0 By, 0O 0 D, 0 0 D, O o
M: B151 Blsz D151 D152 0 H151 H152 0 Ylsa —32W0
M; Bisz stz 0 Disz Dzsz 0 Hfz stz 0 stz oxoy
M, 0 0 By, 0O 0 Dj 0O 0 H& © k0
Nz Xm X23 0 Y13 Yza 0 Y153 Y253 0 233_ k29
P,
(23)
and
,00 a¢z
s:) [a, 0])%B%
vz | _ 44 6y 6y (23b)
s 0 A o0 , op
Xz ASS k A— z
8x OX
Where
s s
(Aij7AiJ’B|J7D|JlB|]lDl]'Hlj):
h/2
1,92 2 f f f2(2))d (242)
Q;(L.9%(2).2,2°, f(2), 2 (2), f°(2))dz
-h/2
h/2
s ' '
(X, Y3, i Zyy) = jQij(lvzi f(2),9'(2))9'(2)dz (24b)
-h/2

By substituting Eqg. (23) into Eq. (22), the equilibrium
equations can be expressed in terms of displacements (Uo;
Vo; Wo; @ and ¢,) as
Alld 11u0 + A66 d22u0 +(AJ.Z + A66)d12V0 - Blld 111W0 7(812 +2Bé}ﬁ)dlZZWO

+(B(§B (kl Al+k2 BI)) d1229+(8151k1 + BISZ kZ) d19+ xladlwz = (258)
dy — 1, d, W, +J, A'k,d, 6,

AZZ dZZVO + %6 d11V0 + (A12 + %6) d12u0 - BZZ d222WO
7(812 + 2866) dy 3, Wo 7L(Bese (klA'+k2 B'))d1129+ (Bzzkz + B].SZkl) d,o (25b)
+ X a0, = 15, — 1, d,W, +J, B'k, d, 8,

Bll d111u0 + (BlZ + 2868)d122u0 + (BIZ + ZBGB)dﬂZVO + BZZ d222\10

= Dyy0y3 Wy — 2(Dy, +2D45 ) dy1p,Wo — Dy oWy + (D5 K, + D5y k, )y, 0
+ 2 ( DGSG (kl Al+k2 B') ) d11226 + (Dls2k1 + DZSZkZ ) dzze +

NS d11W0 +2 Ngy dlZWO + NS dzzwo +(Y13d11 +Y13d11)‘/7z (25C)
+ q = IOWO + Il (d1uo +d2 VO)_ IZ (dnwo +dZZWO)+

3, (kA d,,d+k, B d,,6)

— (B, + B3k, Jd,u, — (B (k, Ark,B)d 00, — (Bg (k, A+, BY) dyyov,
~(Bik, + B3k, Jd,vy + (Diik, + Dk, )y wy +2 (DG (ky A+, B))d W,
+(D1Szk1 + Dzszkz)dzzwo —H; ki 6-Hj, k7 6-2H;, k k,60-
((, A+, B HE, 00 + AL (kB dyy0+ A (, A 0
—(YS+Y5)e, — (A, + AL)p, ==, (k, Ad,ti; +k, B'd,V,) +

3, (K, A,y + K, Bd i )— K, (kA 0y, + (k, B d,,0)

(25d)

- X13d1u0 - Xzadzvo + (Y13d11 +stdzz)Wo + (A4:sz'd22 +A5;k1/-\'d11

s s s s 25e
7Y13k1 7Y23k2)‘9+(A55d11+A44d22 - ( )

Z33)p, = oWy + Ky + 6,
Where d;, dij and din are the following differential
operators
2 3 4
di': 0 ’dllz 0 'dllm:ai
Pooaxox, T oxoxgox, T ax,0x,0x,0%,

(26)

o . .
=—(, j,I,m=12).
ox @i,] )

and d

3.3 Analytical solution for simply- supported FG
plates

The equations of motion admit the Navier solutions for
simply supported beams. The variables
Ug; Vo; Wo; 6 andp, can be written by assuming the
following variations

U, U,.e"" cos(a x)sin( S y)

v, | Va e“”t sin(a x)cos(B y)

Wy =20, AW, e sin(a x)sin( 4 y) 27)
0| ™ IX, e sin(ax)sin(Sy)

@ ., sin( & x)sin( B y)

Where +i =-1,  is the natural frequency, and (Ugn,
Vi Wi, Xmn @and @) are the unknown maximum
displacement coefficients.

With

a=mrla and B=nx/b (28)

Substituting Eq. (23) into Eg. (22), the following
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problem is obtained

-
=2

s

IS

w n n nu n
o

»w »w v v w»w
5

w n n nu on
5

»w »n »n v wnm
5

w »w »nw v wm

where

Siu= _(Anaz + Aseﬂz)’
S, =—apf (A12 + A66) '
Si5 =a(Ba? + By, B +2Bg?),

Sy = Ol(kl B +k,B, — (klA""kz B')Bgeﬂz )'

Sis=aX ;s

Sy = _(A&saz + Azzﬂz)l
Sa :ﬂ(Bzzﬂz +Bpa’ + 28660‘2)'

Su = :B(kz B2, + kB, — (klA'+sz')B§6a2 )’
S25 = pX 237

Sy = _(D11a4 +2(D,, + 2D66)a2ﬂ2 + D22ﬂ4)'
S, = —k, (D5a? + DS, 87 )+ 2(k, A+k,B') D50’ B

-k, (Dzszﬁz + Dlszaz)

Table 1 Comparison of fundamental frequency parameter

Sgs = _O‘ZYls -B 2Y23

Su =Kk, (H nk; +H3k, )_ (ky A'+k, B')Z Hessazﬁz -
kz (HlSZkl + stzkz)_(klA‘)z Asssaz _(szl)z A:4ﬁ2 (30)
Sis = —K\Yi3 —K, Yo _a2k1A| A _ﬁzsz'A:4
855:_052A555_:BZAE4_233_
and

My ==lgy Mg=aly, My =-JikAa, my=-I,,

Mg =f 1 My =—k,B' I Mgz =—ly - |2(O‘2 +ﬂ2)
My, =3, [k, Aa? +k, B 52), (31)

My, =—K, ((kl AV a? +(k, B')Zﬂz)' My =—Jg
mgs =—K,

4. Results and discussion

In this part, several numerical examples are presented
and discussed to verify the accuracy of the theory presented
in this work in the prediction of free vibration responses of
simply supported FGM plates by comparing the analytical
solution to those of other results available in the literature.

In addition, the influences of the power law index
“parameter, thickness ratio” and the stretching of the

@ of square plates

Mode Stretchin
alh (m,n) Theory effect ’ 0 05 pl 4 10
Belabed et al. (2014) EF0 0.2121 0.1819 0.1640 0.1383 0.1306
.1 Present EF0 0.2122 0.1825 0.1659 0.1409 0.1318
' Mouaici et al. (2016) £=0 / 0.1807 0.1631 0.1379 0.1301
Present £=0 0.2113 0.1807 0.1631 0.1378 0.1301
Belabed et al. (2014) 70 0.4659 0.4041 0.3676 0.3047 0.2811
. 1.2 _P_resent EF0 0.4661 0.4042 0.3677 0.3047 0.2812
' Mouaici et al. (2016) £=0 / 0.3988 0.3606 0.2982 0.2772
Present £=0 0.4623 0.3989 0.3607 0.2980 0.2771
Belabed et al. (2014) EF0 0.6757 0.5890 0.5362 0.4381 0.4008
2.2 Present 0 0.6760 0.5893 0.5365 0.4381 0.4009
' Mouaici et al. (2016) £=0 / 0.5801 0.5253 0.4288 0.3950
Present £=0 0.6688 0.5803 0.0525 0.4284 0.3948
Belabed et al. (2014) EF0 0.0578 0.0494 0.0449 0.0389 0.0368
@1 Present EF0 0.0578 0.0494 0.0449 0.0389 0.0368
' Mouaici et al. (2016) £=0 / 0.0490 0.0441 0.0380 0.0363
Present £=0 0.0577 0.0490 0.0422 0.0381 0.0364
Belabed et al. (2014) 0 0.1381 0.1184 0.1077 0.0923 0.0868
10 1.2 Present 0 0.1381 0.1184 0.1077 0.0923 0.0868
' Mouaici et al. (2016) £=0 / 0.1173 0.1059 0.0902 0.0856
Present £=0 0.1376 0.1174 0.1059 0.0903 0.0856
Belabed et al. (2014) EF0 0.2121 0.1825 0.1659 0.1409 0.1318
2.2 Present EF0 0.2122 0.1825 0.1659 0.1409 0.1318
’ Mouaici et al. (2016) £=0 / 0.1807 0.1631 0.1379 0.1301
Present £=0 0.2113 0.1807 0.1631 0.1378 0.1301
Belabed et al. (2014) 0 0.0148 0.0126 0.0115 0.0100 0.0095
20 1,1 Present 0 0.0148 0.0126 0.0115 0.0100 0.0095
Present £=0 0.0148 0.0125 0.0113 0.0098 0.0094




Free vibration response of functionally graded Porous plates using a higher-order Shear and normal deformation theory

Table 2 Non-dimensional fundamental frequency of different rectangular plates
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Mode stretchin p

A (mn) Theory effect 0 0,5 1 4 10
.1 Present EF0 0,6638 0,5785 0,5266 0,4304 0,3940
' Present &=0 0,6568 0,5697 0,5158 0,4208 0,3880
5 1.2 Present EF0 0,9420 0,8253 0,7521 0,6057 0,5497
' Present &=0 0,9297 0,8110 0,7356 0,5924 0,5412
2.2 Present EF0 1,7534 1,5515 1,4180 1,1156 0,9970
' Present &=0 1,7233 1,5192 1,3844 1,0919 0,9807
.1 Present EF0 0,1381 0,1184 0,1077 0,0923 0,0868
' Present &=0 0,1376 0,1174 0,1059 0,0903 0,0856
5 1.2 Present EF0 0,2122 0,1825 0,1659 0,1409 0,1318
' Present &=0 0,2113 0,1807 0,1631 0,1378 0,1301
2.2 Present EF0 0,4661 0,4042 0,3677 0,3047 0,2812
' Present &=0 0,4623 0,3989 0,3607 0,2980 0,2771
.1 Present EF0 0,0365 0,0312 0,0284 0,0247 0,0234
' Present &=0 0,0365 0,0310 0,0279 0,0241 0,0231
10 1,2) Present EF0 0,0578 0,0494 0,0449 0,0389 0,0368
' Present &=0 0,0577 0,0490 0,0442 0,0381 0,0364
2.2 Present &F0 0,1381 0,1184 0,1077 0,0923 0,0868
' Present &=0 0,1376 0,1174 0,1059 0,0903 0,0856
.1 Present EF0 0,0093 0,0079 0,0072 0,0063 0,0060
' Present &=0 0,0093 0,0079 0,0071 0,0062 0,0059
20 .2 Present EF0 0,0148 0,0126 0,0115 0,0100 0,0095
' Present &=0 0,0148 0,0125 0,0113 0,0098 0,0094
2.2) Present EF0 0,0365 0,0312 0,0284 0,0247 0,0234
' Present &=0 0,0365 0,0310 0,0279 0,0241 0,0231

Model  __ present(c ) 8 Mode2  — present (e,#0) 1 Mode3  — present (e,# 0)
09 —— Present(c = 0) 1,7 —— Present (e,=0) —— Present (e,=0)

0,84

0,74

0,64

05 T T T T 1 T
0 2 4 6 8 10 0 2

material parameter "p"

material parameter "p"

material parameter "p"

Fig. 2 Variation Non-dimensional fundamental frequency of square perfect FGM plate according to the material power index

(a/h=2)

thickness on the vibratory behavior of the plates FGM are
studied.

The FG plate is taken to be made of Metal and Ceramic
with the following material properties:

Ceramic (Alumina, AlI203) E.=380 GPa, v=0.3, and
pc=3800 kg/m®.

Metal (Aluminium, Al) E,,=70 GPa, v=0.3, and p,,=2702
kg/ m°.

For simplicity, the following non dimensional natural
frequency parameter is used in the numerical examples.

w=wh |2
Em

First, we try to verify the accuracy of the present theory
by comparing the results of the non-dimensional

frequencies obtained with those of the literature. For this,
various numerical examples are described, discussed and
compared with other existing theories such as the theory of
hyperbolic shear deformation presented by Mouaici et al.
(2016), and the theory proposed by Belabed et al. (2014).

The non-dimensional fundamental frequencies for
square plates simply supported with different thickness
values (2; 5; 10 and 20) and a material parameter p varied
from 0 to 10 are presented in Table 1.

The results obtained by the model object of this study
are compared by those predicted by Belabed et al. (2014)
and by Mouaici et al. (2016) for both cases (with the effect
of stretching) and (without the effect of stretching).

It can be seen that, in general, the results of the current
model are in excellent agreement with the other models. We
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Fig. 3 Variation Non-dimensional fundamental frequency of square perfect FGM plate according to the material power index
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Fig. 4 Variation Non-dimensional fundamental frequency of
rectangular perfect FGM plate according to the material
power index (a/h=10)

can also observe the influence of the effect of the normal
strain on the fundamental frequency (the effect of stretching
&, increases the frequency; this increase becomes more

remarkable in the case of a ratio of thickness equal to 5).
That is, the effect of normal deformation “¢,” becomes more
sensitive in the case of thick plates, is shear affects thick
structures and amplifies the effect of normal deformation.

In Table 2, the results of non-dimensional fundamental
frequency obtained for FGM rectangular plates for the two
cases: with or without stretching effect thereto, have
summers present. The same influence of this effect was
noticed from these results except that this latter becomes
more remarkable in the case of a thickness ratio equal to 2.

Figs. 2, 3 and 4 show the variation of the non-
dimensional fundamental frequency of a square perfect
FGM plate as a function of the power index for a thickness
ratio equal to 2, 5 and 10, respectively, for the three modes.
In addition, the effect of normal deformation is presented in
this figure. From these curves it can be seen that increasing
the power index values results in a reduction of the
frequency. This reduction is quite significant for power
values below 6 for the three modes; from this value, the
deviation becomes practically constant.

It can also be seen that the fundamental frequencies of a
plate without the effect of normal deformation (e,=0) are
underestimated compared to those of a plate with the effect
of normal deformation (¢,70), especially for the frequencies
of the third mode.

In Figs. 5 and 6, the variation of the non-dimensional

1,0

L P - =g diff O
y ) gm0
0,8 i ‘
\ 0,6
\
\ / B 04
B o6 N
> \\\ \ 0,2
& R
8‘ ’{\ \ 00 3 4 5
049 p=100 Y\ ah
W
02+ s
Y. <~
SN -
Se e TN
0,0 ; ; — ey
0 4 8 12 16 20
a/h

Fig. 5 variation of the non-dimensional fundamental
frequency of different square perfect FGM plates according
to the length to thickness ratio (a/h)
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Fig. 6 variation of the non-dimensional fundamental
frequency of different rectangular perfect FGM plates
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07 Mode 1
—— p=0(Ceramic)
0,6 ---- p=0,5
8 ---- p=1
0,5 I
— p=10(Metal)

04
Bos{ \ .
0,2

0,14

0,0

0,7 - Mode 1
—— p=0(Ceramic)
0,6 4 ---- p=0,5
R p:]_
054, oop=4
s — p=10(Metal)

04
Bosd \."
02

0,1

0,0

(b)

Fig. 7 Variation Non-dimensional fundamental frequency of
the rectangular perfect FGM plates (b=2a) according to
side-to-thickness ratio a/h. (a) ,#0 (b) =0

fundamental frequency of different square and rectangular
perfect FGM plates, respectively, is presented as a function
of the length / thickness ratio (a/h).

From the curves shown in these two figures, it can be
seen that the frequency decreases with increasing of the
thickness ratio (a/h). It can also be observed that, more the
index of power law decreasing (increase of rigidity), the
frequency increases; while when the power law index
increase (decrease of rigidity) the frequencies decrease.

1,0 - Mode 1
—— p=0(Ceramic)
----p=0,5
0,8 ---- p=1
. 4
—— p=10(Metal)

(@)
1,04 Mode 1
—— p=0(Ceramic)
---- p=05
0,84, ----p=1
. oo p=4
—— p=10(Metal)

0,6
0,4

0,2

0,0 T T T T T T T T 1
2 4 6 8 10 12 14 16 18 20

a/h
(b)
Fig. 8 Variation Non-dimensional fundamental frequency of
square perfect FGM plate according to the material power
index (a) 70 (b) &=0

Figs. 7 and 8 show the variation of the fundamental
frequency of a rectangular and square FGM plate,
respectively, as a function of the ratio a/h.

In addition, the effect of normal deformation is shown in
figures (a) and (b). From these figures, it can be seen that
increasing the values of the ratio a/h leads to a reduction of
the fundamental frequency. This reduction is quite
significant for values of a/h less than 10. From this value,
the fundamental frequency becomes practically constant.

It may also be noted that the introduction of the “e,”
stretching effect leads to an increase in the fundamental
frequency, and that more than the rigidity of the plate
increases, the frequency increases; while when the rigidity
of the FGM plate decreased, the frequency decreases.

Fig. 9 illustrate the variation of the non-dimensional
frequency with respect to the power law index for a
thickness ratio and different porosity values. From the
curves presented in this figure, we can see that the
parameter of the natural frequency of the FGM plates has an
inverse relationship with the power law index, and that this
parameter and decreased with the increase of the porosity.

In Fig. 10, we have tried to clarify the influence of the
porosity index on the non-dimensional fundamental
frequency of the different plates in FGM with a thickness
ratio of 2 and 10, respectively. The power law index is taken
equal to 0, 1, 2, 4 and 10. From these curves, it can be
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Fig. 9 the effect of porosity on the non-dimensional
fundamental frequency of FGM plates (e,#0, a’/h=2)

observed that there is a diversity in the influence of the
porosity on the fundamental frequency of the plates FG for
each case of power law index.

For a p equal to 10, 4 and 2, the increase of the porosity
for the two cases of the ratio length / thickness (a/h=2 and
10) also leads to a decrease of the frequency and which is
more visible in the FG plate with p=10.

For a p equal to 1, the increase in porosity for both cases
of the length / thickness ratio (a/h=2 and 10) has no
influence on the fundamental frequency of the plate FG.

On the contrary, for p=0, the increase of the porosity for
the two cases of the ratio length / thickness (a/h=2 and 10)
leads to an increase in the fundamental frequency of the
plate FG.

5. Conclusions

The aim of this research was to contribute to the study
of the free vibration of functionally graduated porous plates
by taking into account the effect of normal deformation. We
proposed a new analytical model based on a five-variable
high-order theory and a new displacement field that
introduces indeterminate integral variables. The properties
of the material are assumed to vary in the direction of the
thickness of the plate according to the rule of the mixture,
which is reformulated to evaluate the characteristics of the
material with the porosity. The motion equations governing
the porous plate FG were derived using the Hamilton
principle. The basic equations are easily solved using
Navier solutions. To validate this model, we compared it
with others from the literature. All comparative studies
demonstrated that fundamental frequencies obtained using
this theory and those proposed by Mouaici et al. (2016) and
Belabed et al. (2014) are almost identical. The influence of
normal deformation, porosity and power law index on the
natural frequency of this plate was examined. In conclusion,
it can be said that the proposed theory is accurate and
simple to solve problems of free vibration of FG plates.
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