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1. Introduction 

 

Functionally Graded Materials (FGM) are a new class of 

composite materials whose microstructure and composition 

gradually and continuously vary with position to optimize 

the mechanical and thermal performance of the structure. 

They are considered intelligent materials whose desired 

functions are integrated, from the design stage, into the very 

heart of the material. At each interface, the material is 

chosen according to specific applications and environmental 

loads. These materials have multiple advantages that can 

make them attractive from the point of view of their 

application potential. It can be improved rigidity, fatigue 

strength, corrosion resistance or thermal conductivity in 

addition to having a gradation of properties to increase or 

modulate performance such as reducing local stresses or 

improving heat transfer. This new concept marks the 

beginning of a revolution in the fields of materials science 

and mechanics. The reason for the increasing use of FGMs 

in a variety of aerospace, automotive, civil engineering, and 

mechanical engineering structures is that their material 

properties can be tailored to different applications and 

working environments (Qian and Batra 2005, Yaghoobi et 

al. 2011, Bachir Bouiadjra et al. 2013, Bouderba et al. 

2013, Yaghoobi and Torabi 2013a, Tounsi et al. 2013, 
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Yaghoobi and Fereidoon 2014, Yaghoobi et al. 2014, 

Yaghoobi et al. 2015, Attia et al. 2015, Hamidi et al. 2015, 

Larbi Chaht et al. 2015, Darılmaz 2015, Ebrahimi and 

Dashti 2015, Bouguenina et al. 2015, Akbaş 2015, Arefi 

2015, Pradhan and Chakraverty 2015, Kar and Panda 

2015ab, Beldjelili et al. 2016, Ebrahimi and Habibi 2016, 

Hadji et al. 2016, Moradi-Dastjerdi 2016, Laoufi et al. 

2016, Bousahla et al. 2016, Ebrahimi and Salari 2016, Trinh 

et al. 2016, Kar and Panda 2016, El-Haina et al. 2017, Kar 

and Panda 2017, Attia et al. 2018, Karami et al. 2019a,b). 

 Numerous research studies have dealt with the 

mechanical behavior of the plates functionally graduated, 

the demonstration of the effect of the transverse shear and 

normal deformation in the study of the vibration behavior of 

the FGM plates makes it possible to describe with a good 

precision the field‟s stresses and deformations induced 

through their thickness. Reissner (1945), Cranch and Adler 

(1956), Ambartsumyan (1969), Bresse (1859) were the 

pioneer investigators in studying the different behavior of 

structures made with isotropic materials under different 

stresses. With the development of the FGM concept, many 

works have been studied in literature. Reddy (2000) is one 

of the first to analyzed the static behavior of FGM 

rectangular plates based on his plate theory. Cheng and 

Batra (2000) have found correspondence between eigen 

values of membranes and functionally graded simply 

supported polygonal plate. The same membrane analogy 

was later applied to FGM plate and shell analysis based on 

a third order theory of plates by Reddy (2002). Vel and 

Batra (2004) has come closer to real behavior of structure 
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by studying free vibration of FGM rectangular plates with 

three-dimensional solution. Zenkour (2006) presented a 

generalized shear deformation theory in which function 

across the thickness. Woo et al. (2006) studied the non-

linear free vibration behavior of plates made of FGMs using 

the Von Karman theory for large transverse deflection. Ait 

atmane et al. (2010) proposed a new model of shear 

deformation to analyze the free vibration of FGM plates 

rested on elastic foundation. Also, Arefi and Rahimi (2011) 

investigated the nonlinear response of a FG square plate 

with two smart layers as a sensor and actuator under 

pressure. Arefi (2013) analyzed the nonlinear thermo-elastic 

behavior of thick-walled functionally graded piezoelectric 

cylinder. Sobhy (2013) studied the vibration and buckling 

behavior of exponentially graded material sandwich plate 

resting on elastic foundations under various boundary 

conditions. The first-order shear deformation theory 

(FSDT), including the effects of transverse shear 

deformation, was employed by some researches to analyze 

buckling behavior of moderately thick FGM plates 

(Yaghoobi and Yaghoobi 2013, Bouazza et al. 2010). By 

using an efficient and simple refined theory, Ait Amar 

Meziane et al. (2014) studied the buckling and free 

vibration of exponentially graded sandwich plates under 

various boundary conditions. Hebali et al. (2014) proposed 

a new quasi-3D hyperbolic shear deformation theory for the 

static and free vibration analysis of FG plates. Bousahla et 

al. (2014) presented a novel higher order shear and normal 

deformation theory based on neutral surface position for 

bending analysis of advanced composite plates. Zidi et al. 

(2014) employed a four variable refined plate theory for 

bending analysis of FG plates under hygro-thermo-

mechanical loading. A new simple shear and normal 

deformations theory was developed by Bourada et al. 

(2015) for the analysis of the behavior of functionally 

graded beams. Yahia et al. (2015) studied the wave 

propagation in functionally graded plates with porosities 

using various higher-order shear deformation plate theories. 

Belabed et al. (2014) used a hyperbolic function based 

higher-order shear deformation theory to analysis the 

vibration characteristics of FGM plate. Bennai et al. (2015) 

proposed a novel higher-order shear and normal 

deformation theory for the study of vibration and stability 

for FG sandwich beams. Mahi et al. (2015) developed a 

novel hyperbolic shear deformation model for static and 

dynamic analysis of isotropic, functionally graded, 

sandwich and laminated composite plates. Belkorissat et al. 

(2015) studied the dynamic properties of FG nanoscale 

plates using a novel nonlocal refined four variable theory. 

Recently, Tounsi et al. (2016) proposed a new 3-unknowns 

non-polynomial plate theory for buckling and vibration of 

FG sandwich plate. Bouderba et al. (2016) studied the 

thermal stability of FG sandwich plates using a simple shear 

deformation theory. Bellifa et al. (2016) presented static 

bending and dynamic analysis of FG plates using a simple 

shear deformation theory and the concept the neutral 

surface position. Houari et al. (2016) presented a new 

simple three-unknown sinusoidal shear deformation theory 

for FG plates. Draiche et al. (2016) used a refined theory 

with stretching effect for the flexure analysis of laminated 

composite plates. Bennoun et al. (2016) studied the  

 

Fig. 1 coordinates and geometry of functionally graded 

plate 

 

 

vibration response of FG sandwich plates using a novel five 

variable refined plate theory. Using higher-order equivalent 

single-layer theory, Katariya et al. (2017) studied the 

nonlinear Eigen frequency of laminated curved sandwich 

structure. Bellifa et al. (2017a) proposed a nonlocal zeroth-

order shear deformation theory for nonlinear postbuckling 

of nanobeams. Katariya et al. (2018) used HSDT, FEM to 

study the bending, and vibration of skew sandwich plate. A 

study of the dynamic response of functionally graduated 

plates based on elastic foundations by a high order theory 

was realized by Nebab et al. (2019). Other works on shear 

deformation theories such as HSDT and FSDT can be 

documented in references (Kar and Panda 2013, Panda and 

Katariya 2015, Abdelaziz et al. 2017, Zidi et al. 2017, 

Bouafia et al. 2017, Sekkal et al. 2017a, b, Karami et al. 

2017, Katariya and Panda 2018, Zine et al. 2018, Mehar et 

al. 2018, Abualnour et al. 2018, Dash et al. 2018, Mokhtar 

et al. 2018, Karami et al. 2018abce, Bouadi et al. 2018, 

Yazid et al. 2018, Kadari et al. 2018, Sahoo et al. 2018, 

Karami et al. 2019c, Bourada et al. 2019, Boukhlif et al. 

2019).  

In the literature, studies of the porosity effect in the FG 

structures are as follows; Wattanasakulpong and 

Ungbhakorn (2014) examined dynamics of porous 

functionally graded beams. Ait Atmane et al. (2015) 

examined dynamics of FG porous beams with different 

beams theories. Jahwari and Naguib (2016) investigated FG 

porous plates with different plate theories and cellular 

distribution model. Recently, Mouaici et al. (2016) 

proposed an analytical solution for the vibration of FGM 

plates with porosities. Ait Atmane et al. (2017) is study the 

effect of stretching the thickness and porosity on the 

mechanical response of a FG beam resting on elastic 

foundations. Akbas SD (2017) studied the thermal effects 

on the vibratory behavior of FG beams with porosity. Yousfi 

et al. (2018) used a shear deformation theory with four 

variables for the analysis of the vibratory behavior of 

porous FGM plates. 

The objective of this study is to develop a theory of high 

order hyperbolic shear strain (HSDT) to study the effect of 

normal deformation and porosity on the vibratory behavior 

of FG plates. Current theory has a displacement field that 

introduces indeterminate integral variables. The free 

vibration motion equations in the FG plate are obtained 

using the Hamilton principle, whose effects of shear 

deformation and inertia rotation are taken into account. To 
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solve the problem, the Navier solution is also used. In the 

end, the numerical results of the current theory are 

compared to those predicted by the theory used by Mouaici 

et al. (2016), and the theory proposed by Belabed et al. 

(2014). The influence of the stretching effect, volume 

fraction index and porosity on the free vibration of 

functionally graduated plates is clearly discussed. 

 

 
2. Theoretical formulation 

 
2.1 Material properties 
 

The FG plate is composed by a mixture of ceramic and 

metal components whose material characteristics change 

across the plate thickness with a power law distribution of 

the volume fractions of the constituents of the two materials 

as (Yaghoobi and Torabi 2013b, Kar and Panda 2014, Zemri 

et al. 2015, Ahouel et al. 2016, Bellifa et al. 2017b, Ayache 

et al. 2018) 
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Where P denotes the effective material characteristic 

such as Young‟s modulus E and mass density ρ subscripts m 

and c denote the metallic and ceramic components, 

respectively; and p is the power law exponent. The value of 

p equal to zero indicates a fully ceramic plate, whereas 

infinite p represents a fully metallic plate. Since the 

influences of the variation of Poisson's ratio υ on the 

behavior of FG, plates are very small (Yang et al. 2005, 

Kitipornchai et al. 2006), it is supposed to be constant for 

convenience Now, the total volume fraction of the metal 

and ceramic is Vm+Vc=1, and the power law of volume 
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The properties of the material with porosity should 

follow the power law in the present study and are expressed 

by the expression given by Ankit Gupta (2017) 




















2
1log(

2
1log(


mmcc VPVPP

 
(3) 

„λ‟ is termed as porosity volume fraction (λ<1). λ=0 

indicates the non-porous functionally graded plate. Thus, 

the Young‟s modulus (E) and material density (ρ) equations 

of the imperfect FGM plate can be expressed as: 

    mmc

p

mc E
h

z
EE

z

h
EEzE 


































2
1

2
1log

2
1)(

  
(4) 

    mmc

p

mc
h

z

z

h
z 


 


































2
1

2
1log

2
1)(

 
(5) 

 
2.2 Constitutive equations 

 

For elastic and isotropic FGMs, the constitutive 

relations are given as follows 

 

(6) 

Where  xzyzxyzyx  ,,,,, and 

 xzyzxyzyx  ,,,,,  are the stress and strain components, 

respectively. Using the material properties defined in Eq. 

(1), stiffness coefficients Qij
 
can be given as 
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If εz≠0 (thickness stretching), then Qij are 3D elastic 

constants, given by 
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Based on the thick plate theory and including the effect 

of transverse normal stress (thickness stretching effect), the 

basic assumptions for the displacement field of the plate can 

be described as (Bourada et al. 2016, Fahsi et al. 2017, 

Khetir et al. 2017, Menasria et al. 2017, Benchohra et al. 

2018, Fourn et al. 2018, Bourada et al. 2018, Younsi et al. 

2018, Bouhadra et al. 2018, Zaoui et al. 2019, Bennai et al. 

2019 and Meksi et al. 2019) 
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The coefficients k1and k2 depends on the geometry. In 

this article, the shape function is considered based on the 

hyperbolic function given by Reissner (1975) as 
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It can be observed that the kinematic in Eq. (9) uses 

only five unknowns (𝑢0;  𝑣0;  𝑤0; 𝜃 and𝜑𝑧). Nonzero strains 

of the five variable plate model are expressed as follows 
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It can be observed from Eq. (6) that the transverse shear 

strains (γxz , γyz) are equal to zero at the upper (z=h/2) and 

lower (z=−h/2) surfaces of the plate (Fig. 1). A shear 

correction coefficient is, hence, not required. 

The integrals used in the above equations shall be 

resolved by a Navier type solution and can be written as 

follows 
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Where the coefficients A′ and B′ are expressed 

according to the type of solution employed, in this case by 

using Navier method. Therefore, A′ and B′ are expressed as 

follows 
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where α and β defined in expression (28). 

 

3.2 Equations of motion 
 

To determine the equations of motion, we apply the 

principle of Hamilton (Meziane et al. 2014, Al-Basyouni et 

al. 2015, Bounouara et al. 2016, Benadouda et al. 2017, 

Hachemi et al. 2017, Benahmed et al. 2017, Besseghier et 

al. 2017, Mouffoki et al. 2017,Klouche et al. 2017, 

Bakhadda et al. 2018, Cherif et al. 2018, Yousfi et al. 2018, 

Youcef et al. 2018, Kaci et al. 2018, Tlidji et al. 2019, 

Semmah et al. 2019, Khiloun et al. 2019) 
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Where δU is the variation of strain energy; V   is the 

variation of the external work done by external load applied 

to the plate; and δK is the variation of kinetic energy. 

The variation of strain energy of the plate is given by 
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Where A is the top surface and the stress resultants N, 

M, and S are defined by 
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The variation of the external work can be expressed as 
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Where q and N  are transverse and in-plane applied 

loads, respectively. 

The variation of kinetic energy of the plate can be 

expressed as 
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(20) 

Where dot-superscript convention indicates the 

differentiation with respect to the time variable t; ρ(z) is the 

mass density given by Eq. (5); and (It, Ji, Ki) are mass 

inertias expressed by 
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Substituting the expressions for δU, δV and δK from 

Eqs. (17), (19) and (20) into Eq. (16) and integrating by 

parts and collecting the coefficients of u0; v0; w0; θ and φz, 

the following equations of motion of the plate are obtained 

as 
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Using Eq. (11) in Eq. (6), the stress resultants of a FG 

plate can be related to the total strains by 
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and 
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Where 
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By substituting Eq. (23) into Eq. (22), the equilibrium 

equations can be expressed in terms of displacements (u0; 

v0; w0; θ and φz) as 
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Where dij, dijl and dijlm are the following differential 

operators 
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3.3 Analytical solution for simply- supported FG 

plates 
 
The equations of motion admit the Navier solutions for 

simply supported beams. The variables 

 𝑢0;  𝑣0;  𝑤0; 𝜃 and𝜑𝑧  can be written by assuming the 

following variations 
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Where 1i , ω is the natural frequency, and (Umn, 

Vmn, Wmn, Xmn and φmn) are the unknown maximum 

displacement coefficients. 

With 

am /   and bn /   (28) 
 

Substituting Eq. (23) into Eq. (22), the following 
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problem is obtained 
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and  
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4. Results and discussion 
 

In this part, several numerical examples are presented 

and discussed to verify the accuracy of the theory presented 

in this work in the prediction of free vibration responses of 

simply supported FGM plates by comparing the analytical 

solution to those of other results available in the literature. 

In addition, the influences of the power law index 

“parameter, thickness ratio” and the stretching of the  

 
 
 

 
 

Table 1 Comparison of fundamental frequency parameter   of square plates
 

a/h 
Mode 

(m,n) 
Theory 

Stretching 

effect 

p
 

0 0.5 1 4 10 

5 

(1 , 1) 

Belabed et al. (2014) Ɛz≠0 0.2121 0.1819 0.1640 0.1383 0.1306 

Present Ɛz≠0 0.2122 0.1825 0.1659 0.1409 0.1318 

Mouaici et al. (2016) Ɛz=0 / 0.1807 0.1631 0.1379 0.1301 

Present Ɛz=0 0.2113 0.1807 0.1631 0.1378 0.1301 

(1 , 2) 

Belabed et al. (2014) Ɛz≠0 0.4659 0.4041 0.3676 0.3047 0.2811 

Present Ɛz≠0 0.4661 0.4042 0.3677 0.3047 0.2812 

Mouaici et al. (2016) Ɛz=0 / 0.3988 0.3606 0.2982 0.2772 

Present Ɛz=0 0.4623 0.3989 0.3607 0.2980 0.2771 

(2 , 2) 

Belabed et al. (2014) Ɛz≠0 0.6757 0.5890 0.5362 0.4381 0.4008 

Present Ɛz≠0 0.6760 0.5893 0.5365 0.4381 0.4009 

Mouaici et al. (2016) Ɛz=0 / 0.5801 0.5253 0.4288 0.3950 

Present Ɛz=0 0.6688 0.5803 0.0525 0.4284 0.3948 

10 

(1 , 1) 

Belabed et al. (2014) Ɛz≠0 0.0578 0.0494 0.0449 0.0389 0.0368 

Present Ɛz≠0 0.0578 0.0494 0.0449 0.0389 0.0368 

Mouaici et al. (2016) Ɛz=0 / 0.0490 0.0441 0.0380 0.0363 

Present Ɛz=0 0.0577 0.0490 0.0422 0.0381 0.0364 

(1 , 2) 

Belabed et al. (2014) Ɛz≠0 0.1381 0.1184 0.1077 0.0923 0.0868 

Present Ɛz≠0 0.1381 0.1184 0.1077 0.0923 0.0868 

Mouaici et al. (2016) Ɛz=0 / 0.1173 0.1059 0.0902 0.0856 

Present Ɛz=0 0.1376 0.1174 0.1059 0.0903 0.0856 

(2 , 2) 

Belabed et al. (2014) Ɛz≠0 0.2121 0.1825 0.1659 0.1409 0.1318 

Present Ɛz≠0 0.2122 0.1825 0.1659 0.1409 0.1318 

Mouaici et al. (2016) Ɛz=0 / 0.1807 0.1631 0.1379 0.1301 

Present Ɛz=0 0.2113 0.1807 0.1631 0.1378 0.1301 

20 (1 , 1) 

Belabed et al. (2014) Ɛz≠0 0.0148 0.0126 0.0115 0.0100 0.0095 

Present Ɛz≠0 0.0148 0.0126 0.0115 0.0100 0.0095 

Present Ɛz=0 0.0148 0.0125 0.0113 0.0098 0.0094 
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thickness on the vibratory behavior of the plates FGM are 

studied. 

The FG plate is taken to be made of Metal and Ceramic 

with the following material properties: 

Ceramic (Alumina, Al2O3) Ec=380 GPa, ν=0.3, and 

ρc=3800 kg/m
3
. 

Metal (Aluminium, Al) Em=70 GPa, ν=0.3, and ρm=2702 

kg/ m
3
. 

For simplicity, the following non dimensional natural 

frequency parameter is used in the numerical examples. 

m

m

E
whw


  

First, we try to verify the accuracy of the present theory 

by comparing the results of the non-dimensional 

 

 

 

frequencies obtained with those of the literature. For this, 

various numerical examples are described, discussed and 

compared with other existing theories such as the theory of 

hyperbolic shear deformation presented by Mouaici et al. 

(2016), and the theory proposed by Belabed et al. (2014). 

The non-dimensional fundamental frequencies for 

square plates simply supported with different thickness 

values (2; 5; 10 and 20) and a material parameter p varied 

from 0 to 10 are presented in Table 1. 

The results obtained by the model object of this study 

are compared by those predicted by Belabed et al. (2014) 

and by Mouaici et al. (2016) for both cases (with the effect 

of stretching) and (without the effect of stretching). 

It can be seen that, in general, the results of the current 

model are in excellent agreement with the other models. We  

Table 2 Non-dimensional fundamental frequency of different rectangular plates 

a/h 
Mode 

(m,n) 
Theory 

stretching 

effect 

p  

0 0,5 1 4 10 

2 

(1 , 1) 
Present Ɛz≠0 0,6638 0,5785 0,5266 0,4304 0,3940 

Present Ɛz=0 0,6568 0,5697 0,5158 0,4208 0,3880 

(1 , 2) 
Present Ɛz≠0 0,9420 0,8253 0,7521 0,6057 0,5497 

Present Ɛz=0 0,9297 0,8110 0,7356 0,5924 0,5412 

(2 , 2) 
Present Ɛz≠0 1,7534 1,5515 1,4180 1,1156 0,9970 

Present Ɛz=0 1,7233 1,5192 1,3844 1,0919 0,9807 

5 

(1 , 1) 
Present Ɛz≠0 0,1381 0,1184 0,1077 0,0923 0,0868 

Present Ɛz=0 0,1376 0,1174 0,1059 0,0903 0,0856 

(1 , 2) 
Present Ɛz≠0 0,2122 0,1825 0,1659 0,1409 0,1318 

Present Ɛz=0 0,2113 0,1807 0,1631 0,1378 0,1301 

(2 , 2) 
Present Ɛz≠0 0,4661 0,4042 0,3677 0,3047 0,2812 

Present Ɛz=0 0,4623 0,3989 0,3607 0,2980 0,2771 

10 

(1 , 1) 
Present Ɛz≠0 0,0365 0,0312 0,0284 0,0247 0,0234 

Present Ɛz=0 0,0365 0,0310 0,0279 0,0241 0,0231 

(1 , 2) 
Present Ɛz≠0 0,0578 0,0494 0,0449 0,0389 0,0368 

Present Ɛz=0 0,0577 0,0490 0,0442 0,0381 0,0364 

(2 , 2) 
Present Ɛz≠0 0,1381 0,1184 0,1077 0,0923 0,0868 

Present Ɛz=0 0,1376 0,1174 0,1059 0,0903 0,0856 

20 

(1 , 1) 
Present Ɛz≠0 0,0093 0,0079 0,0072 0,0063 0,0060 

Present Ɛz=0 0,0093 0,0079 0,0071 0,0062 0,0059 

(1 , 2) 
Present Ɛz≠0 0,0148 0,0126 0,0115 0,0100 0,0095 

Present Ɛz=0 0,0148 0,0125 0,0113 0,0098 0,0094 

(2 , 2) 
Present Ɛz≠0 0,0365 0,0312 0,0284 0,0247 0,0234 

Present Ɛz=0 0,0365 0,0310 0,0279 0,0241 0,0231 
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Fig. 2 Variation Non-dimensional fundamental frequency of square perfect FGM plate according to the material power index 

(a/h=2) 
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rectangular perfect FGM plate according to the material 

power index (a/h=10) 

 

 

can also observe the influence of the effect of the normal 

strain on the fundamental frequency (the effect of stretching 

ɛz increases the frequency; this increase becomes more 

 

 

remarkable in the case of a ratio of thickness equal to 5). 

That is, the effect of normal deformation “εz” becomes more 

sensitive in the case of thick plates, is shear affects thick 

structures and amplifies the effect of normal deformation. 

In Table 2, the results of non-dimensional fundamental 

frequency obtained for FGM rectangular plates for the two 

cases: with or without stretching effect thereto, have 

summers present. The same influence of this effect was 

noticed from these results except that this latter becomes 

more remarkable in the case of a thickness ratio equal to 2. 

Figs. 2, 3 and 4 show the variation of the non-

dimensional fundamental frequency of a square perfect 

FGM plate as a function of the power index for a thickness 

ratio equal to 2, 5 and 10, respectively, for the three modes. 

In addition, the effect of normal deformation is presented in 

this figure. From these curves it can be seen that increasing 

the power index values results in a reduction of the 

frequency. This reduction is quite significant for power 

values below 6 for the three modes; from this value, the 

deviation becomes practically constant. 

It can also be seen that the fundamental frequencies of a 

plate without the effect of normal deformation (εz=0) are 

underestimated compared to those of a plate with the effect 

of normal deformation (εz≠0), especially for the frequencies 

of the third mode. 

In Figs. 5 and 6, the variation of the non-dimensional  

 

 

0 4 8 12 16 20

0,0

0,2

0,4

0,6

0,8

1,0
 diff 0       

 =0

p=4

p=10fr
eq

u
en

cy
  


a/h

p=0

2 3 4 5
0,0

0,2

0,4

0,6

0,8



a/h

 

Fig. 5 variation of the non-dimensional fundamental 

frequency of different square perfect FGM plates according 

to the length to thickness ratio (a/h) 
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Fig. 6 variation of the non-dimensional fundamental 

frequency of different rectangular perfect FGM plates 

according to the length to thickness ratio (a/h) 
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Fig. 7 Variation Non-dimensional fundamental frequency of 

the rectangular perfect FGM plates (b=2a) according to 

side-to-thickness ratio a/h. (a) εz≠0 (b) εz=0 

 

 

fundamental frequency of different square and rectangular 

perfect FGM plates, respectively, is presented as a function 

of the length / thickness ratio (a/h). 

From the curves shown in these two figures, it can be 

seen that the frequency decreases with increasing of the 

thickness ratio (a/h). It can also be observed that, more the 

index of power law decreasing (increase of rigidity), the 

frequency increases; while when the power law index 

increase (decrease of rigidity) the frequencies decrease. 
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Fig. 8 Variation Non-dimensional fundamental frequency of 

square perfect FGM plate according to the material power 

index (a) εz≠0 (b) εz=0 

 

 

Figs. 7 and 8 show the variation of the fundamental 

frequency of a rectangular and square FGM plate, 

respectively, as a function of the ratio a/h.  
In addition, the effect of normal deformation is shown in 

figures (a) and (b). From these figures, it can be seen that 

increasing the values of the ratio a/h leads to a reduction of 

the fundamental frequency. This reduction is quite 

significant for values of a/h less than 10. From this value, 

the fundamental frequency becomes practically constant. 

It may also be noted that the introduction of the “ɛz” 

stretching effect leads to an increase in the fundamental 

frequency, and that more than the rigidity of the plate 

increases, the frequency increases; while when the rigidity 

of the FGM plate decreased, the frequency decreases. 

Fig. 9 illustrate the variation of the non-dimensional 

frequency with respect to the power law index for a 

thickness ratio and different porosity values. From the 

curves presented in this figure, we can see that the 

parameter of the natural frequency of the FGM plates has an 

inverse relationship with the power law index, and that this 

parameter and decreased with the increase of the porosity. 

In Fig. 10, we have tried to clarify the influence of the 

porosity index on the non-dimensional fundamental 

frequency of the different plates in FGM with a thickness 

ratio of 2 and 10, respectively. The power law index is taken 

equal to 0, 1, 2, 4 and 10. From these curves, it can be  
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Fig. 9 the effect of porosity on the non-dimensional 

fundamental frequency of FGM plates (ɛz≠0, a/h=2) 

 

 

observed that there is a diversity in the influence of the 

porosity on the fundamental frequency of the plates FG for 

each case of power law index. 

For a p equal to 10, 4 and 2, the increase of the porosity 

for the two cases of the ratio length / thickness (a/h=2 and 

10) also leads to a decrease of the frequency and which is 

more visible in the FG plate with p=10. 

For a p equal to 1, the increase in porosity for both cases 

of the length / thickness ratio (a/h=2 and 10) has no 

influence on the fundamental frequency of the plate FG. 

On the contrary, for p=0, the increase of the porosity for 

the two cases of the ratio length / thickness (a/h=2 and 10) 

leads to an increase in the fundamental frequency of the 

plate FG. 

 
 

5. Conclusions 
 

The aim of this research was to contribute to the study 

of the free vibration of functionally graduated porous plates 

by taking into account the effect of normal deformation. We 

proposed a new analytical model based on a five-variable 

high-order theory and a new displacement field that 

introduces indeterminate integral variables. The properties 

of the material are assumed to vary in the direction of the 

thickness of the plate according to the rule of the mixture, 

which is reformulated to evaluate the characteristics of the 

material with the porosity. The motion equations governing 

the porous plate FG were derived using the Hamilton 

principle. The basic equations are easily solved using 

Navier solutions. To validate this model, we compared it 

with others from the literature. All comparative studies 

demonstrated that fundamental frequencies obtained using 

this theory and those proposed by Mouaici et al. (2016) and 

Belabed et al. (2014) are almost identical. The influence of 

normal deformation, porosity and power law index on the 

natural frequency of this plate was examined. In conclusion, 

it can be said that the proposed theory is accurate and 

simple to solve problems of free vibration of FG plates. 
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Fig. 10 Variation of the non-dimensional fundamental 

frequency FGM plates according to the porosity index 

(ɛz≠0), (a) a/h=2 and (b) a/h=10 
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