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1. Introduction 
 

In the last century, commercial areas especially in city 

centers are very prevalent, so adjacent structures are 

frequently preferred. These structures are usually 

constructed without any structural connections. Non-phase 

response of neighbor structures gives rise to pounding or 

hammering phenomena during strong earthquakes or winds. 

Dissimilarity between dynamic parameters of structures 

such as height, stiffness, mass and damping bring about 

out-of-phase oscillation. The nature of pounding is very 

complicated and it reveals a civil engineering issue that is 

uneasy to solve. Collision of adjacent buildings with huge 

masses provides high stroke effects that can be unpredicted. 

Pounding or collision at adjacent structures results in the 

critical damage and partially or completely collapse of the 

structure in many strong earthquakes (Chouw and Hao 

2012, Schexnayder et al. 2014). 

The simplest way to avoid from pounding is to build one 

away from the other. In order to prevent the collision, 

different design codes in different countries in the world 

have identified sufficient gap amounts and design principles 

between two adjacent structures (Rajaram and Kumar 

2015).  

These gaps between the buildings may not be sufficient 

                                                             
Corresponding author, Associate Professor 

E-mail: eaydin@ohu.edu.tr 
aAssociate Professor 

E-mail: turankarabork@gmail.com 

 

 

during severe earthquakes, especially in the case of 

out-of-phase vibrations of structures. The optimal 

conditions were provided based on an energy concept in 

order to solve the gap between adjacent structures under 

lateral forces (Stavroulakis and Abdalla 1991). Jeng et al. 

(1992) investigated the “Spectral Difference Method and 

Double Difference Combination” rule based on random 

vibration theory to calculate the demand gap and avoiding 

collision. Damage reports has published that collision 

appeared in approximately 330 structural failure or heavily 

damaged building; just about 15% of adjacent buildings, 

collision was the first cause of the failure and heavy damage 

(Anagnostopoulos 1995). An investigation on building 

failure in terms of collision of neighbor buildings has been 

presented (Penzien 1997). The minimum earthquake gap 

was calculated and proposed a method based on the pseudo 

energy radius to prevent collision (Valles-Mattox 1996). A 

statistical approximation to calculate proper gap of adjacent 

structures in terms of random vibration theory to avoid 

collision was presented by Lin (1997). Lin and Weng 

(2001) examined pounding phenomena at the top floor of a 

low-rise building and evaluated the collision possibilities of 

neighbor structures kept apart by a specific distance to 

avoid collision. Vibration experiments were performed to 

study the collision problem between two steel towers with 

different periods and damping ratios, expose to different 

values of separation gap and earthquake effects (Chau et al. 

2003). In the studies by Hong et al. (2003), the separation 

distance between adjacent structures was investigated by 

considering the structural properties. Three-dimensional 

collision of two adjacent buildings was investigated under 
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earthquake effects with arranged rigid lateral diaphragm for 

structural behavior with respect to linearity of material 

(Mouzakis and Papadrakakis 2004). Tubaldi et al. (2012) 

investigated a statistical method for evaluation of the 

seismic collision risk between neighbor structures. The 

adjacent concrete structures were examined for different 

total height and different floor height for collision 

conditions conditions (Karayannis and Favvata 2005). The 

demonstrativeness of different impact models was 

investigated in covering the earthquake collision behavior 

of neighbor buildings (Muthukumar and DesRoches 2006). 

The effect of stroke was examined using contact force 

models for various gaps and validated with nominal impact 

model without collision phenomena (Raheem 2006). 

Mahmoud et al. (2008) aimed comparison between the 

nonlinear viscoelastic model and Hertz-damp model 

considering as Hertz contact rule force-based models in 

related with non-linear damper. Jankowski (2008) presented 

a detailed investigation was presented on 

pounding-involved response of two equal height buildings 

with substantially different dynamic properties to model the 

non-linear effects taking place during impact as well as 

observed in the structural response as the result of 

earthquake vibrations. A Double Difference Combination 

(DDC) rule was developed in predicting the separation 

necessary to prevent seismic pounding between linear 

structural systems by Garcia and Soong (2009). Soil effects 

were also examined on the seismic pounding of adjacent 

building structure under seismic excitations (Shakya and 

Wijeyewickrema 2009). Khatiwada et al. (2014) suggested 

the Hunt-Crossley model which a general model with a 

linear or nonlinear force-deformation relationship of 

building hammerings. Only the earthquake induced 

structural pounding with all the details identified the models 

shown and the necessary gaps and necessary 

recommendations have been given by Jankowski and 

Mahmoud (2015). A new general spectral difference method 

(GSDM) was proposed to calculate the minimum safety 

distances by Yu et al. (2017). This pseudo-excitation 

method was used to derive the relative displacement with 

respect to random expression of adjacent buildings during 

earthquakes. 

Designing the gap between buildings only will not 

provide a satisfactory solution in the event of the collapse of 

anybody and the impact on the other. For this reason, new 

solutions are needed to improve the dynamic characteristics 

of the structures and to provide them to behave together. Xu 

and Zhang (2002), Aldemir and Aydin (2005) also proposed 

an active control algorithm for adjacent structures. Zhu et 

al. (2001) studied three types control strategies indicating 

semi-active, active and passive control to avoiding 

collision. A stochastic optimal coupling-control method for 

adjacent building structures was presented by Ying et al. 

(2003). Cundumi and Suarez (2008) examined a new 

control device as a coupling element, which was termed a 

variable damping semi-active device, consists of two 

dampers with constant parameters. A structural vibration 

control strategy has been improved for seismic protection of 

multi-structure systems that combines inter-structure 

passive damping elements with local feed-back control 

systems, which are independently designed and operated, 

and use semi-active devices with limited actuation capacity 

as force actuators (Quinonero et al. 2012). Quinonero et al. 

(2014) designed a local velocity-feedback energy-peak 

controller for the seismic protection of a two-building 

system. An optimal hybrid control approach of two similar 

adjacent buildings for seismic performance improvement 

was described for which the passive dampers were used as 

link members between the two parallel buildings and the 

active control devices were added as tendon-type devices 

between two sequential stories in the buildings (Park and 

Ok 2015). 

The effectiveness of MR (Magnetoreological) damper 

was examined in order to reduce the seismic response of the 

adjacent multi-storey buildings, including the passive-off, 

passive and semi-active control strategies by Bharti et al. 

(2010). Uz and Hadi (2014) optimized MR dampers at 

adjacent structures using integrated fuzzy logic and 

multi-objective genetic algorithm to avoid the impact 

damage. Using the fuzzy logic control method by 

Abdeddaim et al. (2016), the acceleration and displacement 

response of structures were minimized by adding a MR 

damper placed at the top storey of the building. The optimal 

design of supplemental dampers allocated uniformly 

between two adjacent buildings by minimizing the 

amplitude of a top displacement function of a tall building 

was estimated to prevent pounding by Luco and De Barros 

(1998). Xu et al. (1999) a parametric study was performed 

to find optimum damping properties in adjacent buildings 

with different stiffness ratios and building heights. The 

results showed that the use of viscous dampers in adjacent 

buildings of different fundamental frequencies could 

effectively reduce the earthquake-induced responses of a 

building. The structure with two different heights was 

modeled experimentally by connecting with a fluid damper 

by Yang et al. (2003). Zhu and Xu (2005) reported 

analytical formulas to obtain the most appropriate 

parameters of the Maxwell model, which describes the fluid 

dampers used to connect two adjacent structures. Basili and 

Angelis (2007) studied the optimal passive control of 

adjacent structures interconnected by nonlinear hysteretic 

devices. Their study presented that the number of dampers, 

location and connection type changed the structure behavior 

positively. Patel and Jangid (2010) deal with the application 

of viscous damper for response control of seismically 

excited dynamically similar adjacent coupled structures. 

Some structural responses such as displacement, 

accelerations and base shear force were also examined in 

terms of the reduction of the connected adjacent structures. 

The main purpose of Bigdeli et al. (2012) was to find the 

optimal placement of a limited number of fluid dampers 

minimizing interstorey drift. Mazanoglu and Mazanoglu 

(2017) studied have made the optimization of amount and 

location of the viscous damper arranged to prevent the 

collision of the adjacent structures.  

The effects of viscoelastic dampers were also 

investigated for preventing collision of adjacent structures 

(Zhang and Xu 1999, Patel and Jangid 2014). A complex 

modal superposition method was used for improving 

dynamic characteristics of these structures. The inelastic 
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behavior of adjacent structures connected with viscoelastic 

dampers from the top was investigated as named 

building-sky-bridge connections (Kim et al. 2006). The 

design parameters of the connection viscoelastic dampers 

between two adjacent twin tower structures were optimized 

by theoretical analyses (Zhu et al. 2011). Two optimization 

criteria were selected in order to minimize the vibration 

energy of the primary structure and both structures. The 

results of an experimental study showed that the application 

of polymer elements placed between the colliding members 

could mitigate earthquake-induced pounding between 

adjacent steel structures (Soltysik et al. 2017). Abdullah et 

al. (2001) researched the use of shared tuned mass dampers 

to reduce collision impact on adjacent structures. Shared 

tuned mass damper's rigidity and damping constants were 

used as design parameters. An optimally tuned mass damper 

(TMD) has been proposed for a slender structure 

surrounded by two more rigid structures than it. A control 

performance of a pounding tuned mass damper (PTMD) 

was investigated for reducing the dynamic response of an 

offshore jacket-type platform structure by (Bekdas and 

Nigdeli 2012). Some techniques carried out for reducing 

collision effects of adjacent structures by using shear wall, 

bracing system and friction dampers (Bhaskararao and 

Jangid 2006, Hameed et al. (2012). In adjacent structures 

with base isolation systems, the collision is a serious 

engineering problem. A number of scientific studies have 

been carried out to solve this problem (Matsagar and Jangid 

2005, Komodromos 2008, Polycarpou and Komodromos 

2010, Murase et al. 2013). 

In this study, the optimal designs of the viscous dampers 

to be placed between adjacent structures having equal 

height and different dynamic characteristics of structures 

such as stiffness and mass, which are modeled as shear 

frames under the effect of earthquake, are investigated to 

prevent the structural pounding. The relative displacement 

between the two adjacent structures is defined and included 

into the proposed algorithm. The drawn relative 

displacement spectra indicate the risky period ratio under 

the design earthquake. While minimizing the sum of the 

damping coefficients of the dampers, it is aimed to reduce 

the relative displacement defined below the target value. 

The variations on the period ratio of structures, the upper 

limit of the damping coefficient of dampers at each storey, 

the connection type of damper, the vibration mode of 

structures and the constraint of relative displacement are 

also investigated in structural models. 

 

 

2. Generation of the relative displacement spectrum 

 
Spectrum approaches have an important place in building 

design and are widely used for practical applications in 
earthquake regulations. A response spectrum is a plot of the 
peak or steady state response of a series of variable natural 
period forced to act with the same basic vibration. In the 
problem of collision of neighbor buildings during 
earthquake, developing a spectral approach can be important 
for engineering applications. In the collision problem, 
relative displacement can reveal risky period ratios for 
collision under a design earthquake. The period ratio is  

 

Fig. 1 Mechanical reduced model of adjacent structures 

 

 

defined as the rate of periods of adjacent structures to each 

other. In adjacent structures, relative displacement spectra 

can be created for design earthquakes and the band of the 

most dangerous period ratios can be observed. This will be 

an important as a design tool for engineers to prevent 

collision. 

The mechanical model of adjacent structures can be 

shown in Fig. 1 to each with a single degree of freedom. In 

the left and right structure is shown as named A and B in Fig. 

1. Here, kA, kB, cA, cB, mA and mB denote the stiffness 

coefficients, structural damping coefficients and masses of A 

and B structures, respectively. The uncoupled equations of 

the models exposed to ground motion are written as follows 

   ̈     ̇           ̈          (1) 

   ̈     ̇           ̈         (2) 

Where   ,  ̇ ,  ̈  denote the displacement, the velocity 

and the acceleration of the structure A. This definition is 

similar for the structure B. The parameter  ̈  is the 

horizontal acceleration of the ground motion. Eqs. (1)-(2) in 

the matrix-vector form can be rewritten again as follows 

[
   
   

] {
 ̈ 
 ̈ 
}  [

   
   

] {
 ̇ 
 ̇ 
}  [

   
   

] {
  
  
} 

  [
   
   

] {
 
 
}  ̈              (3) 

Relative displacement between adjacent buildings can be 

expressed as the difference between the displacements of 

structures A and B as follows (Ying et al. 2003)  

                        (4) 

The behavior of adjacent structures exposed to ground 

motion usually occurs in four different types as seen in Fig. 

2. Structures display either phase-out or phase-in behavior 

during an earthquake. If the vibration characteristics of 

adjacent structures are similar, a structural response as seen 

in Figs. 2(a)-(b) occurs at any time t. Because the dynamic 

responses of the structures are compatible with each other, 

the risk of pounding will decrease. However, if the structures 

have different dynamic characteristics, the vibrations of the 

structures will be out of phase. They will either move away 

from each other or close to each other at any time of the 

earthquake, as in Figs. 2(c)-(d). As shown in Fig 2(d), the 

relative displacement expressed by the Eq. (4), which is 

positive, increases the risk of collision. Therefore, in order to 

prevent collision between structures, the relative  
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Fig. 2 Vibration behavior scenarios of adjacent structures (a) 

Compatible vibration-left (b) Compatible vibration-right (c) 

Out of phase vibration (no pounding risk) (d) In phase 

vibration (pounding risk) 

 

 

displacement given in Eq. (4) can be defined as a control 

parameter. If the relative displacement (  ) defined in Eq. 

(4) is inserted into the Eq. (3) and rewritten as 

[
   
    

] {
 ̈ 
  ̈
}  [

   
    

] {
 ̇ 
  ̇
}  [

   
    

] {
  
  
} 

  [
   
   

] {
 
 
}  ̈               (5) 

The structural vibration parameters of the primary 

structure (A) can be kept constant and the stiffness of the 

secondary structure (B) can be changed with small 

increments. The changes in the relative displacement can be 

calculated as a result of the analysis made in the time domain 

in each change. The maximum values of the relative 

displacement in the positive region can be selected. For any 

damping ratio, as a result of the time history analyses under 

the selected design earthquake, the maximum relative 

displacements with respect to the period ratio of neighbor 

buildings can be plotted as a response spectrum. These 

spectrum graphs drawn under the selected design earthquake 

will give information about the period at which the collision 

risk will occur. Using the proposed relative displacement 

spectra, the gap between the structures can be appropriately 

adjusted, and the structure to be built next to an existing 

structure can be designed to prevent collision. 

 

2.1 Relative displacement spectra for El Centro (NS) 
earthquake record 
 

A sample design earthquake is used in order to determine 

the period ratios with a high risk of collision. In this section, 

a sample study is performed for the relative displacement 

spectrum graphs mentioned in the previous section using El 

Centro earthquake acceleration record (NS). The findings 

will be used in the numerical sample section of this study 

during the implementation of the proposed damper 

optimization method. The mechanical model of the single 

degree of freedom adjacent structures discussed in the study 

is shown in Fig. 1. The structural characteristics of the 

 
(a) 

 
(b) 

 
(c) 

Fig. 3 Relative displacement spectrums (a) TA=0.5 sec (b) 

TA=1.0 sec (c) TA=2.0 sec 

 

 

selected building models are shown in Table 1. The vibration 

period of the structure (A) is assumed to be constant and the 

stiffness of the other structure is changed over a wide band to 

increase the vibration period of the structure (B) in small 

amounts. In each increment, the period ratios of the two 

structures are changed and time history analyses are 

performed by using El Centro earthquake acceleration record 

(NS). The maximum (positive sign) values of relative 

displacement between the structures are calculated and are 

plotted according to the variation of period ratio. 

Firstly, the period of the primary structure (A) and 

structural damping ratio of structures were chosen as 0.5 sec 

and 0.02 respectively. It is analyzed by changing the stiffness 

of structure (B) and the relative displacement of the 

structures with respect to period ratios is shown in Fig. 3(a). 

When the period of the first structure is 0.5 s, the maximum 

relative displacement between adjacent structures is peaked 

at a critical period ratio (TB/TA=1.83). In the case where the 

period ratio of the adjacent structures is equal to 1, the 

maximum relative displacement approaches zero, in which  
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Table 1 The variation of structural properties 

Period 

TA (sec) 
0.5 1.0 2.0 

Mass 

mA (kg) 
75000 75000 75000 

Mass 

mB (kg) 
75000 75000 75000 

Stiffness 

kA (N/m) 
11843525 2960881 740220.33 

Stiffness 

kB (N/m) 
1120-8000000000 1120-8000000000 1120-8000000000 

Damping 

Ratio  
0.02 0.02 0.02 

 

  

(a) Classical Model (b) Stair Model 

 
(c) X-Diagonal Model 

Fig. 4 Adjacent model structures 

 

 

case the structures vibrate in the same phase and there is no 

risk of pounding between structures. In the case where TA is 

equal to 1.0 sec and 2 sec, the approximate period ratios 

where the collision risks of adjacent structures can occur at 

some critical period ratios (TB/TA=0.87, 0.86) as shown in 

Figs. 3(b)-(c). A specific structural damping ratio, a certain 

period ratio band and the change in design earthquake can be 

investigated. Research can be expanded for different 

structural damping ratios and different design earthquakes. 

Furthermore, the period ratios of adjacent structures can be 

examined at greater intervals. In this case, larger relative 

displacement (RD) peaks create more collision risk. 

However, the increase of period ratios means that one of the 

adjacent structures has an extremely long or short period. In 

practice, the probability of encountering this situation is very 

rare. 

 

 
3. Formulation of the problem for adjacent buildings 

Two adjacent n-storey buildings at the same level and the 

viscous damper designs to be placed between buildings to 

prevent collision are shown in Fig. 4. In the design showed in 

Fig. 4(a) and named to as the classical-model, the dampers 

connect two buildings at floor levels. In the design which is 

called as the stair-model, the dampers placed on each floor 

connect two sequential storeys (Fig. 4(b)). The damper 

design is called X-diagonal model, which is placed between 

the structures in Fig. 4(c). In the without damper case, the 

equations of motion of the structures A and B can be written 

in the uncoupled form as follows 

   ̈ ( )     ̇ ( )      ( )       ̈ ( )  (6) 

   ̈ ( )     ̇ ( )      ( )       ̈ ( )  (7) 

While   ( )  and   ( )  denote the displacement 

vectors,  ̇ ( )  and  ̇ ( )  are the velocity of A and B 

buildings in vector form. The parameters of  ̈ ( )  and 

 ̈ ( ) mean the vector of acceleration for A and B buildings 

and the ground acceleration is defined as   ̈  . The mass 

matrices are expressed with    and   ,    and    are 

structural damping matrices, the stiffness matrices for A and 

B buildings  are    and   . The parameter r is influence 

coefficient vector for a base input. In without damper case, 

the governing equation of building models can be given in 

coupled form as follows 

  ̈( )    ̇( )    ( )      ̈ ( )    (8) 

Here, the structural mass, damping, and stiffness matrices of 

coupled system are written as 

  [
   
   

]
     

  [
   
   

]
     

 

  [
   
   

]
     

              (9) 

C denotes the structural damping matrix which can be 

calculated proportionately with mass and stiffness. When 

dampers are added between structures, the equation of 

motion can be rewritten as follows 

  ̈( )  (   𝒂𝒅) ̇( )    ( )      ̈ ( ) (10) 

where  𝒂𝒅  includes the damping coefficients of the 

manufactured viscous dampers. Since these viscous 

absorbers have different connection points in each type of 

design as shown in Fig. 4,  𝒂𝒅  will change in each model 

type.  𝒂𝒅  is an added damping matrix that should be 

calculated by minimizing an objective function.  𝒂𝒅  in 

classical-model, stair-model and X-diagonal model can be 

given as follows 
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 (11) 

It can be decomposed into corresponding to the damping 

coefficients of added dampers and is written as 

 𝒂𝒅      
  𝒂𝒅 

      
     

  𝒂𝒅 

      
         

  𝒂𝒅 

      
   (12) 

where      (         )  corresponds to the damping 

coefficient of the     added damper and the partial 

derivative of Cad ( 
  𝒂𝒅 

      
) denotes the location matrix of the 

    added damper. Considering i
th

 mode, the equation can be 

written as 

        
  
 (   𝒂𝒅 )   

  
    

 
  
     

  
    

 
  
  𝒂𝒅    

  
     

      (13) 

After dampers are added to the structure, the damping 

ratio of the system is defined as    . The normalized vector of 

i
th

 mode is represented as    , and    indicates the 

undamped natural circular frequency of i
th 

mode of the 

structural system. The proportional damping matrix is 

included in the Eq. (13). There exists no coupling between 

any other modes and i
th

 mode. This case is represented as  

  
     

  
     

 {
              
                   

          (14) 

The structural damping ratio is symbolized as      for i
th

 

mode. It can be conveniently presumed to simplify the 

formulation of the problem as follows 

  
  𝒂𝒅    

  
     

 {
             
                     

         (15) 

The added damping ratio of i
th

 mode is prescribed as 

    . Eq. (13) are rewritten using Eqs. (14)-(15) as follows  

                           (16) 

      is generally known according to the types of 

structures such as in reinforced structures (0.05) and steel 

structures (0.02).     is the target damping ratio and      
denotes the added damping ratio. If       and     are given, 

the added damping ratio can be calculated as  

          
  
  𝒂𝒅    

  
     

      

  
   𝒂𝒅 
      

   

  
     

 

      
  
   𝒂𝒅 
      

   

  
     

        
  
   𝒂𝒅 
      

   

  
     

     (17) 

where a new parameter     can be defined as 

    
  
   𝒂𝒅 
      

   

  
     

  (s=1, 2, .., n)       (18) 

To derive the added damping ratio, Eq. (17) can be 

rewritten by arranging as follows 

      
 

    
(                            ) 

 
 

    
∑         
 
               (19) 

 
 
4. Damper optimization problem in adjacent 
structures 
 

Many different objective functions, such as the structural 
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top displacement, the absolute acceleration, the base shear 

force and moment, the sum of interstorey drifts, the 

maximum interstorey drift, some of energy parameters and 

cost minimization, are used alone or in combination in 

damper optimization problems. While defining the 

optimization problem, some constraints are suggested 

considering both structural behavior and practical 

applications. In the case of structural optimization problems, 

cost is an important phenomenon. These technological 

elements, which have been used for the control of the 

structures in recent years, increase the cost of the building 

significantly. Since the increase in the capacity of the 

dampers will lead to an increase in the damping coefficients, 

the need to minimize the sum of the damping coefficients 

comes from an economic perspective. The sum of the 

damping coefficients of dampers is chosen as proposed 

objective function to be minimized; it can be given as  

Min.   ∑      
 
                (20) 

An equality constraint can be considered in terms of 

added damping ratio as below 

      
 

    
(                            )  (21) 

            can be calculated using Eigen analysis. All 

optimization functions linearly depend on the design 

parameters. The upper and lower limits of the design 

variables, the inequality constraints are given as 

          ̅   (i = 1,2,…,n)        (22) 

The parameter   ̅  is defined as the upper limit of the      
design variables. The variation of   ̅  can affect the optimal 

design of damper. 

 

4.1 Solution algorithm 
 

Some optimization methods have been improved such as 

gradient based algorithms (Takewaki 1997, Takewaki 2000, 

Aydin et al. 2007), swarm algorithms such as artificial bee 

and ant colony algorithms (Amini and Ghaderi 2013, 

Sonmez et al. 2013), genetic algorithms and fuzzy logic 

algorithms (Uz and Hadi 2014) in damper optimization. A 

novel algorithm has been developed for the optimum design 

of viscous dampers placed between adjacent structures under 

the earthquake effect, including the objective function and 

constraints mentioned in the previous section. Since the aim 

and the constraints functions are linear functions of design 

variables, the problem is easy to solve. To find the optimal 

values of damping coefficients under constraints by 

minimizing the objective function, some of optimization 

algorithms such as Differential Evolution, Nelder Mead and 

Simulated Annealing are used (Wolfram Research 2003). 

These three numerical minimization methods have been 

applied to create an algorithm of optimal damper design 

(Aydin 2013). 

The process steps of the algorithm given in Fig. 5 can be 

summarized as follows: 

Step 1. Compose the relative displacement spectra using 

a design earthquake record (El Centro- NS) as mentioned 

in section 2.1.  

Step 2. Read the the structural stiffness matrix (K), and 

 

Fig. 5 Flowchart of proposed algorithm 

 

 

mass matrix (M), Select the upper limit of the design 

variable   ̅  and the allowable level of relative 

displacement   ̅̅ ̅̅ . Determine the critical period ratio 

(TB/TA) versus the maximum relative displacement over a 

certain period band using the drawn spectra for the 

earthquake. 

Step 3. Calculate ωi,    , C for i
th

 mode.  

Step 4. Take iteration number=1 at the beginning of the 

algorithm.  

Step 5. Calculate      
        

         while assume 

    
      in the first iteration.     

    is raised by 1% at 

each iteration. 

Step 6. Minimize the objective function given in Eq. (20) 

according to constraints of Eqs. (21)-(22). Adopt the 

numerical minimization module of Mathematica 5.0 

(Wolfram Research 2003) to solve the linear 

optimization problem by conducting three different 

methods, i.e., Differential Evolution, Nelder Mead, and 

Simulated Annealing.  

Step 7. Find an optimal damper design as a candidate.  

Step 8. Test the candidate design calculated in Step 7 

using linear time history analysis. In this test, compute 

    *   ( )     ( )+
     for i=1,…n. If all     

computed are below the desired level (     ̅̅ ̅̅ ), then 

finished the algorithm. Otherwise, return test 2 as shown 

in flowchart. 

Step 9. Control the added damping ratio as     
        . 

The maximum damping ratio which can be reached by 

adding dampers in building type structures is chosen as 

0.40. If this step is satisfied, go to step 5 and repeat the  
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(a) Classical Model (b) Stair Model (c) X-diagonal Model 

Fig. 6 12-Storey adjacent structures and damper placement 

models 

 

 

iteration by increasing the target damping rate. If this 

condition is not satisfied, go to step 2 and reselect   ̅   
and/or   ̅̅ ̅̅  again. 

To solve optimization problems, Differential Evolution, 

Nelder Mead and Simulated Annealing are commonly used. 

Differential Evolution is a direct optimization method that is 

a fast and quite robust stochastic parallel search evolution 

strategy. Differential Evolution method is a preferred 

method of solving no differentiable, non-linear and 

multimodal objective functions. The Nelder-Mead method, a 

direct search procedure, for a function of variables, the 

algorithm maintains a set of points that form the corners of a 

polytope n-dimensional space. Simulated Annealing is also a 

simple stochastic function minimization which results from 

the physical annealing process in which a metal object is 

heated to a high temperature and allowed to cool slowly. The 

process allows the atomic structure of the metal to settle in a 

lower energy state and thus become a harder metal (Wolfram 

Research 2003). These methods display the good 

consistency between them. 

El Centro (NS) earthquake record is only used in this 

study. Different earthquake records or generated earthquake 

records can be used as a design earthquake. The 

determination of   ̅   may vary according to production 

standards and application practices.   ̅̅ ̅̅  can also be 

considered as the sum of the peak displacements between the 

two neighbor structures given by the designer or given in the 

regulations. The different selections of these parameters are 

examined. 

 
 
5. Numerical example 
 

Fig. 6 shows 12-storey adjacent structures and the 

dampers placed between them for three different damper 

designs. The design in which the dampers are placed in 

parallel between the adjacent structures at the floor levels is 

called the classical model (Fig. 6(a)). Fig. 6(b) shows the 

stair model, which dampers are connected to sequential 

storeys of buildings A and B. Adjacent structures are linked 

with dampers placed diagonally and the X-diagonal model is 

formed in Fig. 6(c). In this section of the study, the effects of 

total damping capacity   ̅   at each storey, allowable levels of 

relative displacement, critical period ratio TB/TA, and 

different response modes on the optimum placement of 

Table 2 Structural properties of buildings A and B 

mA (kg)×104 10.0 20.0 31.99 

mB (kg)×104 6.4 6.156 23.007 

kA (N/m)×107 100 50.0 20.0 

kB (N/m)×107 16.83 19.0 19.0 

TA (sec) 0.5 1.0 2.0 

TB (sec) 0.915 0.87 1.72 

TB/TA 1.83 0.87 0.86 

 

Table 3 Parameter limits and damper design types for model 

cases 

Damper design type* 
Classical (CL), Stair (ST), 

X-diagonal (X) 

Corresponding mode 1-2 

Period ratio TB/TA 1.83-0.87-0.86 

Upper limit of damping 

coefficient   ̅ (Nsec/m)×106 
1-2 

Allowable level of relative 

displacement   ̅̅ ̅̅  (cm) 
5-8-10 

*Case: Damper design type-Mode number-Period ratio-Damping 

coefficient-Relative displacement 
 

 

dampers for each model are investigated.  

The storey stiffness and mass, the critical period ratios of 

the structures A and B, the corresponding period values, are 

given in Table 2. These critical period ratios are set to equal 

the peak values for El Centro earthquake record shown in 

Fig. 3, and the most risky conditions for pounding are taken 

into account. The damper design type, the corresponding 

mode, the period ratio, the upper limit of damping coefficient 

and the allowable level of relative displacement are given in 

Table 3. The design models are coded according to the 

symbol and numerical values shown in Table 3. For 

example; CL-2-1.83-2-8: in the case of the classical damper 

design, taking into account the 2
nd

 mode behavior, the period 

ratio of 1.83, limit damping coefficient of 2×10
6
 Nsec/m and 

the allowable relative displacement of 8 cm are coded.  

The maximum relative displacement between the 

adjacent structures indicates the minimum space to be 

designed between buildings. During the design and 

construction of adjacent buildings, this gap must be 

determined according to the conditions of the earthquake 

regulations. The explanations in the Turkish Building 

Earthquake Code (2019) are given as follows: “The 

minimum amount of gap to be released shall be at least 30 

mm up to 6 m height and at least 10 mm for every 3 m height 

after 6 m”. In this study, the allowable level of relative 

displacement can be taken as a minimum gap as 5 cm, 8 cm 

and 10 cm, respectively. According to the Turkish Building 

Earthquake Code (2019), a minimum gap of 13 cm is 

required for 12 storey buildings which have each storey 

height of 3m. The probability of collision of the structures is 

simulated by selecting the allowable level smaller than 13 

cm. In fact, the gap levels given in the earthquake regulations 

apply to situations where the structures do not contain any 

dampers, in the case of the additional dampers between the 

adjacent structures; this gap must be reconsidered in the 

earthquake design codes. 

As a result of the analysis of the models, it is observed  
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(a) 

 
(b) 

Fig. 7 The variation of the objective function according to 

the iteration number in numerical optimization for three 

numerical optimization methods in case of (a) Mode 1 and 

(b) Mode 2 in classical model 

 

 

that some models do not require a damper because there is no 

risk of collision. This means that the calculated relative 

displacement RD does not reach the allowable level   ̅̅ ̅̅ . In 

some models, the relative displacements (RD) on some 

storeys cannot be lowered below the target relative 

displacements (  ̅̅ ̅̅ ), since the upper limit for each added 

damper is not sufficient. The limit value of added damping 

ratio in this study is 40%, which is acceptable for building 

type structures. In these models some relative displacements 

cannot be reduced to the desired level even though this limit 

value is reached. In other models, the optimum damper 

distributions are found to be successful. 

 
5.1 Classical model  

 
The dampers are connected in parallel with the storey 

levels of the two adjacent buildings in the classical model as 

shown in Fig. 6(a). The changes of the objective functions 

for three numerical optimization methods at last step are 

plotted as the structural response corresponds to the first and 

second mode in Fig 7. Differential Evolution, Nelder Mead 

and Simulated Annealing, are employed by comparing the 

results. Considering both the first and the second mode, it 

can be seen from the variation of objective function during 

the numerical optimization in the last step that three different 

methods converge to the same minimum value. 

The effects of the limit value of damping coefficient in 

each storey   ̅, the allowable limit of  relative displacement 

  ̅̅ ̅̅ , period ratio TB/TA and the effect of mode behavior on the 

damper distribution are investigated. For this purpose, the 

effect of the changes of the mentioned parameters is 

examined by choosing between the models which are 

positive. In the case of the first mode in Fig. 8(a) and the 

second mode in Fig. 8(b), selecting   ̅   ×   
  Nsec/m, 

the period ratio is taken as 1.83 and the optimal damper  

  
(a) (b) 

Fig. 8 Optimum distribution of damping coefficients for the 

change of   ̅̅ ̅̅  in case of (a) Mode 1and (b) Mode 2 in 

classical mode 

 

 
(a) 

 
(b) 

Fig. 9 The variation of relative displacements according to 

added damping ratio in case of (a) Mode 1 and (b) Mode 2 in 

classical model 

 

 

distribution is found for 5 cm, 8 cm and 10 cm of   ̅̅ ̅̅ . In Fig. 

8(a), when the first mode is considered, it is shown that the 

critical region of the collision is the upper storeys. When   ̅̅ ̅̅  

has large values, it is seen that the damper distribution is 

concentrated on the upper storeys, and in case of   ̅̅ ̅̅  

decrease, it is determined that dampers are also needed from 

the top storey down to the lower storey. The increase in the 

limit relative displacement leads to a decrease in the amount 

of damper used. Therefore, the cost of the damper is also 

reduced. When the second mode behavior is taken into 

account, it is seen that the top and middle storeys are the 

critical regions for pounding (Fig. 8(b)). In these critical 

zones, more dampers are needed as   ̅̅ ̅̅  decreases. If the 

effect of the mode behavior is compared, in the second mode, 

the dampers are distributed over more storeys and more 

dampers are needed in Figs. 8(a)-(b). 

When the models CL-1-1.83-2-10 and CL-2-1.83-2-10 

are selected in Fig. 8, it is seen in Fig. 9 that the relative  
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(a) (b) 

Fig. 10 Peak relative displacement values for optimal 

damper design in case of (a) Mode 1 and (b) Mode 2 in 

classical model 

 

 

displacements on all floors are reduced below the allowable 

relative displacement for first and second modes. The added 

damping ratio takes as the value of 8% in the end of the 

algorithm for the first mode control as presented in Fig. 9(a), 

while the result of the damper distribution is reached in the 

case of a damping ratio of 6% for the second mode (Fig. 

9(b)). Fig. 10 shows that the peak relative displacements at 

storey levels for these models are reduced below the target 

levels to reduce the risk of collisions. Furthermore, the 

values of RD exceeding the allowable limit in the without 

damper case are reduced below this limit by optimal addition 

of dampers. 

When the first and second mode behaviors are taken into 

account, the effect of the change of the limit of the damping 

coefficient (   ̅ ) on the optimum damper distribution is 

investigated in Fig. 11. In both modes, the reduction in the 

amount of damper limits causes the damper distribution to be 

placed on more storey. In the damper design according to the 

first mode, the dampers are placed on the upper floors where 

the risk of collision is high (Fig. 11(a)). In the second mode, 

the risk of collision is on both the upper and the middle 

floors, so that the damper settlements focus on these floors 

(Fig. 11(b)). When    ̅  increases in case of the first mode, 

the total amount of damper increase. However, taking into 

account the second mode, the increase in   ̅ decreases the 

total amount of optimal damper. This demonstrates that the 

variation of the mode considered changes the optimum 

damper distribution and the total damper quantity. 

The period of structure A is chosen as three different 

values as TA=0.5 sec; 1.0 sec; 2.0 sec and the critical period 

ratios corresponding to them are calculated as TB/TA=1.83; 

0.87; 0.86 as shown in Fig. 3. In the case of TA=1.0 sec; 2.0 

sec, the critical period ratios are close to each other as 0.87 

and 0.86. Damper designs corresponding to these period 

ratios are very close to each other, as seen in the first mode 

(Fig. 12(a)). In case TA=0.5 sec, this is the risky pounding 

situation where the period ratio is highest, according to Fig. 

12(a) where the total amount of damper is the lowest 

compared to the others. When the second mode is taken into 

consideration, it is seen in Fig. 12(b) that the maximum 

damper quantity is obtained for the model with TA=1.0 sec. 

  
(a) (b) 

Fig. 11 Optimum distribution of damping coefficients for the 

change of   ̅  in case of (a) Mode 1and (b) Mode 2 in 

classical model 

 

  
(a) (b) 

Fig. 12 Optimum distribution of damping coefficients for the 

change of TB/TA in case of (a) Mode 1and (b) Mode 2 in 

classical model 

 

 

5.2 Stair model 
 

To avoid from pounding, the dampers are connected to 

sequential storeys of adjacent buildings in the stair model as 

shown in Fig. 6(b). Similar to the classical model analysis, 

the effects of   ̅̅ ̅̅ ,   ̅ , TB/TA and the mode effect on optimum 

damper distribution are examined here. The stair damper 

models are coded according to the symbol and numerical 

values of design parameters. For example; ST-1-0.87-1-5: in 

the case of the stair damper design, taking into account the 1
st
 

mode response, the period ratio of 0.87, limit damping 

coefficient of 1×10
6
 Nsec/m and the allowable relative 

displacement of 5 cm are coded. For only 2 stair models 

selected, the change of the objective function during 

numerical optimization is shown for both modes in Fig. 13. 

These graphs show the status during the numerical 

optimization in the last step of the proposed algorithm. When 

the added damping ratio is 9%, optimum design is achieved 

in both the first and second modes. The convergence can also 

be clearly seen here. The convergence for Nelder Mead 

method is providing in the last steps and suddenly in Fig. 

13(a). This is related to the working principle of the Nelder 

Mead algorithm. Algorithm is able to reach the optimum 

solution with vertical changes, and after the optimum is 

attained, Nelder Mead Algorithm is stopped. The sudden 

changes of the objective function in the vertical axis can also 

be seen more clearly by changing the setting parameters of 

the Nelder Mead method. 

The upper limit of the damping coefficient is fixed at 
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(a) 

 
(b) 

Fig. 13 The variation of the objective function according to 

the iteration number in numerical optimization for three 

numerical optimization methods in case of (a) Mode 1 and 

(b) Mode 2 in stair model 

 

  
(a) (b) 

Fig. 14 Optimum distribution of damping coefficients for the 

change of   ̅̅ ̅̅  in case of (a) Mode 1and (b) Mode 2 in stair 

model 

 

 

  ̅   ×   
  Nsec/m, the period ratio is taken as 1.83 and 

the allowable limit values of the relative displacement are 

selected as   ̅̅ ̅̅ =5 cm; 8 cm; 10 cm. As the   ̅̅ ̅̅  limit 

allowable value decreases both the number of storey to 

which the dampers are added and the total damper amount 

increases, as shown in Fig. 14(a) when the first mode is taken 

into account. In case of   ̅̅ ̅̅ =10 cm, only the minimum 

amount of damper placement on the top floor is sufficient. 

When the second mode behavior is considered, it is observed 

that the top and middle storeys are the critical zones to 

prevent the collision (Fig. 14(b)). As the   ̅̅ ̅̅  increases, the 

optimum damper amount and location number are reduced. 

If the effect of the mode behavior is compared, the dampers 

are placed less storeys and less dampers are needed in the 

first mode in Fig. 14(a). 

When the models ST-1-1.83-2-10 and ST-2-1.83-2-10 

are chosen in Fig. 14, it is observed in Fig. 15 that all RD 

values are reduced below the allowable level for both modes. 

The added damping ratio attain to 8% in both the first and 

second mode control. As can be seen from Fig. 16, the RD 

 
(a) 

 
(b) 

Fig. 15 The variation of relative displacements according to 

added damping ratio in case of (a) Mode 1 and (b) Mode 2 in 

stair model 

 

  
(a) (b) 

Fig. 16 Peak relative displacement values for optimal 

damper design in case of (a) Mode 1 and (b) Mode 2 in stair 

model 

 

 

values of without damper models exceed the allowable 

relative displacement in the floor levels. It is displayed that 

the peak relative displacements at all storeys are attained 

below the desired level.  

Considering the first and second mode behaviors, the 

effect of the limit of the damping coefficient (  ̅ ) on the 

optimum damping allocation is seen in Fig. 17. If the damper 

designs found by taking the first mode behavior are 

examined, the reduction of  ̅   increases both the total 

amount of damper and the number of floors in which the 

dampers are placed, as can be seen from Fig. 17(a). If the 

second mode is regarded for optimization, the dampers are 

focused to the middle storeys where is the critical region in 

terms of collision. The dampers have reached the limit values  
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(a) (b) 

Fig. 17 Optimum distribution of damping coefficients for the 

change of   ̅  in case of (a) Mode 1 and (b) Mode 2 in stair 

model 

 

  
(a) (b) 

Fig. 18 Optimum distribution of damping coefficients for the 

change of TB/TA in case of (a) Mode 1 and (b) Mode 2 in stair 

model 

 

 

in these regions and then settled on the upper floors which 

are the other critical region as shown in Fig. 17(b). The 

increase of   ̅  decrease the location of dampers, while the 

total amount of dampers increase. If the optimal damper 

designs made according to the second mode are compared 

with the optimum designs according to the first mode, a 

greater amount of damper and more damper locations are 

observed in the second mode. 

In the first mode, the general trend in the damper 

distributions is expected to be placed downward from the top 

floor of the structure, while it is placed on the 12
th

 storey and 

then it is located to the 10
th

 storey in the model with TA=0.5 

sec When TA=1.0 sec, the dampers are placed on the 11
th

 and 

12
th

 storeys, when TA is equal 2.0 sec, the dampers are 

distributed to the 10
th

, 11
th

 and 12
th

 floors as shown in Fig. 

18(a). In this case, the small amount of damper is placed on 

the 11
th

 floor. As can be seen from this figure, the increase in 

the period of structure A also increases the total amount of 

damper added. Fig. 18(b) shows the optimum damper 

distribution corresponding to the second mode. There is no 

change in the storeys on which the dampers are placed with 

TA change. In terms of the amount of damper coefficients 

placed on the storeys, there is no significant difference 

between them. If the optimum designs according to the 

second mode are compared with the optimum designs 

according to the first mode, both the number of damper 

location and the total damper amount in the model structures 

are increased. 

 
(a) 

 
(b) 

Fig. 19 The variation of the objective function according to 

the iteration number in numerical optimization for three 

numerical optimization methods in case of (a) Mode 1 and 

(b) Mode 2 in X-diagonal model 

 

 

5.3 X-Diagonal model  
 

In the X-diagonal models designed as shown in Fig. 6(c), 

the dampers are placed in the X-shape between sequential 

storeys. The total damping coefficient value in a storey 

considered is the sum of the damping coefficients of the two 

dampers on that floor. In this section, the same analyzes are 

made for X-diagonal models and their results are discussed in 

a similar way to analyzes in the sections where classical and 

stair damper designs are applied. The X-diagonal damper 

models are coded with the symbol and numerical values of 

the design parameters. For example; X-2-0.86-1-10: X 

denotes X-diagonal damper design, second term (2) is the 

number of mode, the third term (0.86) presents the period 

ratio, fourth term (1×10
6
 Nsec/m) is the limit damping 

coefficient and the last term (10 cm) is defined as allowable 

relative displacement. Fig. 19 shows the change of the 

objective function during the three different numerical 

optimization processes and the convergence of the 

optimization as a result of the optimal design phase of the 

two X-diagonal models for the first two modes. Three 

different optimization methods achieve the same optimum 

values and their results confirm each other. 

In the case of the X-diagonal dampers inserted between 

adjacent structures to prevent pounding, the number of 

damper locations optimally placed decreases as the amount 

of relative displacement allowed increases in the first mode 

(Fig. 20(a)). In the same way, the total amount of damper 

added in the building decreases. Moreover, in the first mode, 

the dampers concentrate on the top region of the structure. 
According to the second mode case, Fig. 20(b) is examined; 

the optimal damper placement is seen as the middle floors 

(4
th

, 5
th
 and 6

th
 floors) and the top storeys (11

th
 and 12

th
) for 

all   ̅̅ ̅̅  cases. In the case of   ̅̅ ̅̅ =8 cm and 10 cm, the same 

optimum designs are achieved on the middle storeys, the  
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(a) (b) 

Fig. 20 Optimum distribution of damping coefficients for the 

change of   ̅̅ ̅̅  in case of (a) Mode 1and (b) Mode 2 in 

X-diagonal model 

 

  
(a) (b) 

Fig. 21 Optimum distribution of damping coefficients for the 

change of   ̅  in case of (a) Mode 1 and (b) Mode 2 in 

X-diagonal model 

 

 

optimum damper coefficient at top storey for   ̅̅ ̅̅ =5 cm 

reaches a larger damper than the other two design. As with 

the first mode control, the increase of    ̅̅ ̅̅  in the control of 

the second mode reduces the total damper amount. The 

dampers are concentrated to middle storeys with large 

quantities and top storey with little quantities in the second 

mode, while it focuses on top storeys in the first mode. 

The effect of the variation of the upper limit of the 

damping coefficient in the damper distribution is inquired in 

Fig. 21 for the X-diagonal damper models. In the first mode, 

both the number of damper locations and the total damper 

amount decrease with increase of the upper limit of the 

damper in Fig. 21(a). In this case, the dampers also focus on 

the upper floors. In the second mode control as shown in Fig. 

21(b), there is important decrement in the number of damper 

locations with the increase of the upper limit, while the total 

amount of optimal damping coefficient used increases 

significantly. Dampers are predominantly distributed to the 

middle floors while they are added to the top floor. The more 

locations and amounts of damper are placed in the second 

mode according to the first mode. 

The models X-1-1.83-2-10 and X-2-1.83-2-10 are 

selected in Fig. 21 to prove the reduction below the 

allowable level of RD for all relative displacement in Fig. 22. 
Fig. 22(a) shows the variation of the RDs in the first mode 

and Fig. 22(b) in the second mode with respect to the added 

damping ratio. In the first mode, when the added damping 

ratio of 8% is reached, the optimum design is achieved by 

reducing the target below the RD value, while the optimal  

 
(a) 

 
(b) 

Fig. 22 The variation of relative displacements according to 

added damping ratio in case of (a) Mode 1 and (b) Mode 2 in 

X-diagonal model 

 

  
(a) (b) 

Fig. 23 Peak relative displacement values for optimal 

damper design in case of (a) Mode 1 and (b) Mode 2 in 

X-diagonal model 

 

 

design is obtained by reaching the damping ratio 9% in the 

second mode. In the without dampers cases, the risk of 

collision will occur as the relative displacements exceed the 

permissible limit relative displacement as seen from the Fig. 

23. It is clear that the calculated relative displacements at the 

floor levels are reduced below the desired relative 

displacement limit for both modes. 

Fig. 24 shows the damper distribution according to the 

variation the period of structure A for both modes. When 

Fig. 24(a) is examined, it is seen that with the increase of TA 

value, the total amount of damping coefficient increase. In 

the case of TA=0.5 sec and TA=1.0 sec, the number of 

locations is the same, whereas in TA=2.0 sec, the number of 

locations increases. Because the increase in the value of the  
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(a) (b) 

Fig. 24 Optimum distribution of damping coefficients for the 

change of TB/TA in case of (a) Mode 1 and (b) Mode 2 in 

X-diagonal model 

 

  
(a) (b) 

Fig. 25 Optimum distribution of damping coefficients for the 

change of damper design type in case of (a) Mode 1 (b) 

Mode 2 

 

 

TA causes larger relative displacements between the 

buildings and this leads to the need for more dampers. If the 

change of the damper distribution according to the second 

mode with the TA is examined in Fig. 24(b), the same 

location number is obtained for the cases where the TA is 0.5 

sec and 2 sec. In case of TA=1.0 sec, more number of 

locations is reached. In the case of TA=0.5 sec and 2 sec, the 

total amount of damper is close, while in the case of TA=1.0 

sec this amount is increased. When the mode effect on the 

damper distribution is considered, it is seen that in the design 

obtained for the second mode control, the damper is added in 

more amount and in more locations than in the first mode. 

Although there is a high risk zone for collision at the top 

storey, the second mode control has a high risk of collision in 

the middle floors. This leads to the need for more the total 

amount and location of dampers. 

 
5.4 Comparison of damper design types 
 

In the previous parts of the numerical example, three 

different types of damper designs are examined separately. 

In this section, optimum designs are compared for three 

different model types (Classical, Stair and X-diagonal 

model) for the same mode cases, period ratio, upper limit of 

the damping coefficient and the allowable relative 

displacement. The optimal placement for three different 

damper designs made according to the first mode is given in 

Fig. 25(a). The optimal dampers are focused to the upper 

storeys in the first mode control for all design types. When 

  
(a) (b) 

Fig. 26 Peak relative displacement values for different types 

of damper designs in case of (a) Mode 1 and (b) Mode 2 

 

 

the locations of dampers are examined, it shows the same 

places in three designs. Three different damper designs types 

are observed to be close to each other according to total 

damper quantities. However, while the best design between 

these three designs is stair design, the other two are quite 

close to each other. In the second mode control as shown in 

Fig. 25(b), dampers for all designs are placed on the 4
th

, 5
th

 

and 12
th

 floors, while dampers are also added to the 3
rd 

and 

11
th

 floors for classical design, to the 7
th

 floor for stair design 

and to the 11
th

 floor for the diagonal design. In the case of the 

control of both modes, it is seen that the best is the stair 

design and the worst is the classic design in terms of the total 

amount of damping 

In the case of the control of both the first and second 

modes in Fig. 26, the results of the three different types of 

damper design are shown in the profile of the relative 

displacements of the storey level under the earthquake effect.  

 

 

6. Conclusions 
 

The major contributions of this study encompass (1) to 

propose the algorithm for optimum placement of viscous 

dampers in order to prevent collision between two adjacent 

buildings; (2) to investigate and determine the critical period 

ratios via the relative displacement spectra; (3) to 

demonstrate the algorithm through the applications of the 

two adjacent 12-story buildings with three viscous damper 

configurations such as classical, stair and X-diagonal 

configurations. 

An algorithm is proposed that minimizes the sum of the 

damping coefficients of the dampers to reach a target modal 

damping ratio and to attain below an allowable relative 

displacement limit under a design earthquake loads. 
Differences in periods of adjacent structures are known to 

cause out of phase behavior of buildings. In this case, the risk 

of structural pounding at which critical period ratios can 

occur is examined and a new relative displacement spectrum 

is developed for a design earthquake to determine these 

critical period ratios. By using critical period ratios at points 

where the relative displacement spectrum reaches peak 
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values, numerical models are constructed for the worst 

scenario in terms of collision risk. 

In order to prevent the structural collision, the parameters 

on the optimum damper distribution problem are also 

examined. Twelve-storey adjacent building models are 

selected as a numerical example, and the proposed method is 

tested. The effects of damper design type, the allowable 

relative displacement, the period ratios of adjacent buildings, 

the upper limit of each damper placed on the storeys and the 

mod behavior of the structure on optimum damper allocation 

and the structural response are investigated in detail. The 

results of the numerical analysis are summarized below: 

 Using the El Centro (NS) earthquake acceleration 

record, the relative displacement spectrum for the two 

adjacent building structure models, each with a single 

degree of freedom, is plotted for primary building periods 

as TA=0.5 sec, 1.0 sec and 2.0 sec. In case TA is 0.5 sec, 

1.0 sec and 2.0 sec, the critical period ratios are obtained 

from the new spectrum as 1.83, 0.87 and 0.86. These 

critical period ratios are used to arrange the numerical 

models. 

 Considering the first mode of the primary structure, 

while the dampers concentrate on the top floors, while 

the second mode is regarded, they are distributed to both 

the middle floors and the top floors. 

 In all types of damper design, the total amount of 

damping coefficient corresponding to the designs in the 

second mode is higher than in the first mode. 

Furthermore, there is a need to place more locations of 

damper and more total damping amount to control the 

second mode. 

 The increase in the allowable relative displacement 

value results in a lower total amount of damping and less 

location of damper in all models. 

 At the end of all the optimal designs found, relative 

displacements at all storey levels under the design 

earthquake are verified by decreasing below the   ̅̅ ̅̅ .  

 When all models are examined for both mode controls, 

the increase in the upper limit of the damper at each 

storey decreases the number of dampers added. 

 When the first mode is taken into account, the increase 

in the upper limit of the damper increases the total 

amount of damping in the classical design, whereas in the 

stair and X-diagonal design it decreases. When the same 

issue is examined for the second mode, the increase in the 

upper limit value in the classical design leads to a 

decrease in total damping, whereas in stairs and 

X-diagonal design the increase is observed in total 

damping amount. 

 In designs according to the first mode, the increase in 

the primary structural period (TA) increases the total 

damper amount, while in the case of TA=0.5 sec and 

TA=1.0 sec there is an equal damper locations, but in case 

of TA=2.0 sec the number of locations increases. In the 

designs according to the second mode, an equal number 

of dampers are added in the case of TA=0.5 sec and TA=2 

sec, whereas in TA=1.0 sec the number of locations are 

increased. According to the second mode, an 

approximate total damping amount are found to be 

similar for the case of TA=0.5 sec and TA=2 sec, while it is 

increased in TA=1.0 sec. 

 When a comparison is made between the distributions 

of the three different damper design types in the first 

mode, the location numbers and the storeys placed of 

dampers are the same. However, the total damping 

amounts are very close to each other optimal designs. 
When the second mode is considered for designing of the 

dampers, the location numbers of the added dampers and 

total damping amounts obtained are close to each other 

optimal design, while there are some differences in the 

settlements between three different types of dampers 

designs. 

 All optimum designs are compatible with each other 

and below the allowable level to prevent the structural 

pounding. 

Analyses find out that the proposed method offers the 

designers optimum distribution of viscous dampers to 

minimize the risk of pounding of adjacent structures during 

the earthquake according to the application of various types 

of dampers. 
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