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1. Introduction 
 

One of the important design elements are rectangular 

plates in different branches of modern engineering fields 

including mechanical, aerospace, optical and structural 

engineering. It is popular for the design of many 

engineering problems, such as the vibration behavior of 

reinforced concrete plates on elastic foundations, 

foundations of buildings, asphalting of roads and soles of 

machines. The mechanical behavior of foundation was 

widely discussed by Winkler (1868), Pasternak (1954), 

Hetenyi (1950), Vlasov and Leont’ev (1989). 

Winkler type elastic foundation is the simplest model to 

describe the mechanical behavior of elastic supports. In this 

model a set of uncorrelated elastic springs attached to each 

node of the plate (Winkler 1868).and interaction between 

lateral springs are ignored. Pasternak (1954) developed two-

parameter elastic foundation models to consider this 

interaction. Vlasov and Leont’ev (1989) derived a solution 

which is calculated with soil material and thickness of the 

soil with a γ parameter. 

Different investigations have been done by many 

researchers (Senjanovic et al. 2017, Zamani et al. 2017, 

Karasin 2016, Zhang et al. 2016, Tahouneh 2014, Grice and 

Pinnington 2002, Lok and Cheng 2001, Si et al. 2005, Wu 

2012, Kutlu et al. 2012, Sheikholeslami and Saidi 2013) 

about the dynamic behavior of thick elastic plates. The free 

vibration of thin plates resting on Pasternak foundation wit 
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finite element method was studied by Omurtag et al. 

(1997). Wu and Lee (2011) investigated the dynamic 

response of a homogeneous, isotropic and elastic circular 

plate on an elastic foundation subjected to axisymmetric 

time dependent loads both analytically and numerically. 

Wirowski et al. (2015) derived an averaged mathematical 

model to study the dynamic behavior of the composite 

annular plates resting on elastic heterogeneous foundation 

with two foundation modules. Zenkour and Radwan (2016) 

used four-variable refined plate theory for free vibration of 

laminated composite and soft core sandwich plates resting 

on Winkler–Pasternak foundations. 

Shear locking problem occurs at thick plates 

(Zienkiewich et al. 1971) while the thickness becomes 

smaller. This problem can be avoided by increasing the 

mesh size, i.e., using finer mesh, but convergence may not 

be achieved if the thickness/span ratio is “too small”, for the 

first and second order displacement shape functions. It can 

increase the accuracy of finite element solutions after 

refining the finite element mesh or using high order shape 

functions. These problems can be prevented with using true 

shape function while built up the mathematical model. The 

author formed a new 17 noded, 4 order shape function finite 

element at the past studies and this element is free from 

shear locking (Ö zdemir et al. 2007) and also author used 

this element at another study for thick plates resting on 

Winkler foundation (Ö zdemir 2012) This element is a new 

element for literature and there isn’t any research about the 

free vibration nor forced vibration analysis of thick plates 

resting on Winkler foundation with higher order finite 

elements.  

The aim of this study is to investigate dynamic behavior 

of Mindlin plates based on Winkler foundation and, to  
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Fig. 1 The sample plate used in this study 

 

 

determine the effects of the thickness/span ratio, the aspect 

ratio and the boundary conditions on the linear responses of 

the reinforced concrete thick plates subjected to earthquake 

excitations. At the analysis a computer program is derived 

with C++ and in the program, the finite element method is 

used for spatial integration and the Newmark-β method is 

used for the time integration. Higher order displacement 

shape functions are used for finite element modeling of 

plate. In the analysis, 17-noded finite element is used to 

construct the stiffness and mass matrices since shear 

locking problem does not occur if this element is used in the 

finite element modelling of the thick plates (Ö zdemir et al. 

2007). No matter what the mesh size is unless it is less than 

4×4. This is a new element, details of its formulation are 

presented in (Ö zdemir et al. 2007) and this is the first time 

this element is used in the forced vibration of reinforced 

concrete thick plates resting Winkler foundation in the 

literature. If this element is used in an analysis, it is not 

necessary to use finer mesh. 

 

 

2. Mathematical model  
 

The governing equation for a flexural plate (Fig. 1) 

subjected to an earthquake excitation without damping can 

be given as (Ayvaz et al. 1995, Tedesco et al. 1999) 

          guMFwKwM           (1) 

where [K] and [M] are the stiffness matrix and the mass 

matrix of the plate, respectively, w and ẅ are the lateral 

displacement and the second derivative of the lateral 

displacement of the plate with respect to time, respectively, 

gu  is the earthquake acceleration. 

Forced vibration analysis of a plate can be made by 

constructed with the stiffness, [K], mass matrices, [M], and 

equivalent nodal loads vector, [F], of the plate. The 

evaluation of these matrices is given in the following 

sections.  

The total strain energy of plate-soil-structure system 

(see Fig. 1) can be written as 

П= Пp+ Пs+ V               (2) 

where Пp is the strain energy in the plate 

A

A

yxyx

T

yxyx
p d

xyyx
E

xyyx 





























































2

1
=  

A

A

yxyx

T

yxyx
p d

xyyx
E

xyyx 





























































2

1
= + 

A

A

yx

T

yx d
y

w

x

w
E

y

w

x

wk
 



































  

2
 

A

A

yx

T

yx d
y

w

x

w
E

y

w

x

wk
 



































  

2
-          (3) 

where Пs is the strain energy stored in the soil 
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and V is the potential energy of the earthquake loading 

V=- A Awdq                   (5) 

In this equation Eκ and Eγ are the elasticity matrix and 

these matrices are given below at Eq. (14), q  shows 

earthquake loading.  

 

2.1 Regulation of the stiffness matrix 
 

The total strain energy of the plate-soil system 

according to Eq. (2) is 
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At this equation the first and second part gives the 

conventional element stiffness matrix of the plate, [kp
e
], 

differentiation of the third integral with respect to the nodal 

parameters yields a matrix, [kw
e
], which accounts for the 

axial strain effect in the soil. Thus the total energy of the 

plate-soil system can be written as 

Ue         Ae

e

w

e

p

T

e dwkkw 
2

1
=            (7) 

where 

   Txnynnxye www  ...111     (8) 

Assuming that in the plate of Fig. 1 u and v are 

proportional to z and that w is the independent of z (Mindlin 

1951), one can write the plate displacement at an arbitrary 

x, y, z in terms of the two slopes and a displacement as 

follows 

ui={ w, v, u}={w0(x,y,t), zφy(x,y,t), -zφx(x,y,t)}     (9) 

where w0 is average displacement of the plate, and φx and φy 

are the bending slopes in the x and y directions, 

respectively. 

360



 

Dynamic behaviour of thick plates resting on Winkler foundation with fourth order element 

 

 

 

Fig. 2 17-noded quadrilateral finite element used in this 

study (Ö zdemir et al. 2007) 

 

 

The nodal displacements for 17-noded quadrilateral 

serendipity element (MT17) (Fig. 2) can be written as 

follows 

w= 
17

1
iiwh , v=zφy=  
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if displacement function derived for 17-noded element 
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(11)

 

With this assumption, the displacement shape function 

can be formed 

]h ,...,[hh 171 .               (12) 

Then, the strain-displacement matrix [B] for this 

element can be written as follows (Cook et al. 1989) 
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The details of the matrix B for 17-noded quadrilateral 

finite element is presented in Ö zdemir et al. The stiffness 

matrix for MT17 element can be obtained by the following 

equation (Weaver and Johnston 1984). 
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Integration of Eq. (14) through the thickness yields 
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A

T
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where the first term concerns with the bending and the 

second term concerns with the shear effects of the thick 

plate. Thus 
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which must be evaluated numerically (Bathe 1996). 

 

2.2 Elastic foundation formulation 
 

Winkler type elastic foundation is the simplest model to 

describe the mechanical behavior of elastic supports. In this 

model a set of uncorrelated elastic springs attached to each 

node of the plate and interaction between lateral springs are 

ignored. Winkler foundation stiffness matrices can be 

derived by 

    
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

1

1

1

1

drdsJhhkk
T

w             (17) 

where k is the elastic foundation modulus. 

After calculating all element stiffness matrices, global 

stiffness matrix can be assembled as; 

    
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i 1

wp kk[K]               (18) 

where pe is the node number. 

 

2.3 Regulation of the mass matrix 
 

The consistent mass matrix formulation of the plate may 

be written as 

 


dHHM i

T

i                (19) 

In this equation,  is the mass density matrix of the form 

(Tedesco et al. 1999) 
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where m1=pt, m2=m3=  3

12

1
tp , and p is the mass 

densities of the plate. and Hi can be written as follows 
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  .17...1//  ihdydhdxdhH iiii .    (21) 

It should be noted that the rotation inertia terms are not 

taken into account. By assembling the element mass 

matrices obtained, the system mass matrix is obtained. 

 

2.4 Regulation of equivalent nodal loads vector 
 

Equivalent nodal loads, [F], can be obtained by the 

following equation. 

  dqHF T

i][                (22) 

In this equation, Hi can be obtained by Eq. (21), and q  

denotes 

}]{[ guMq                  (23) 

In this study for the eigenvalue solution of Eq. (1) the 

program MATLAB is used and also the Newmark-β method 

is used by using the average acceleration method for the 

time integration of Eq. (2).  

 
2.5 Evaluation of frequency of plate 

 

The formulation of lateral displacement, w, can be given 

as motion is sinusoidal 

w= W sin ωt                (24) 

Here ω is the circular frequency. Substitution of Eq. (24) 

and its second derivation into Eq. (1) gives expression as 

[K- ω
2
 M] {W}=0             (25) 

Eq. (25) is obtained to calculate the circular frequency, 

ω, of the plate. Then natural frequency can be calculated 

with the formulation below 

f= ω /2π                (26) 

The flowchart of the developed program is given below; 

 

 

Fig. 3 YPT330 component of the August 17, 1999 Kocaeli 

earthquake in Turkey 

 
 
3. Numerical examples 

 

3.1 Data for numerical examples 
 

In the light of the results given in references (Ö zdemir et 

al. 2007, Ö zdemir 2007), the aspect ratios, b/a, of the plate 

are taken to be 1.0, 2.0, and 3.0. The thickness/span ratios, 

t/a, are taken as 0.05, 0.1, 0.2, and 0.3 for each aspect ratio. 

The shorter span length of the plate is kept constant to be 3 

m. The plates are clamped and simply supported along four 

edges. The mass density, Poisson’s ratio, and the modulus 

of elasticity of the reinforced concrete plate are taken to be 

2.5 kN s
2
/m

2
, 0.2, and 2.7×10

7
 kN/m

2
. Shear factor k is 

taken to be 5/6. The subgrade reaction modulus of the 

Winkler-type foundation is taken to be 500, 5000, 50000 

kN/m
3
. 

In the time history analysis to obtain the response of 

each plate the first 20 s of YPT330 component of the 

August 17,1999 Kocaeli earthquake in Turkey is used. The 

earthquake –induced ground motion is applied at the 

vertical direction of the plate. Duration of this earthquake is 

35 s, but the peak value of the record occurred in the first 20 

s of the earthquake (Fig. 3).  

For the sake of accuracy in the results, rather than 

starting with a set of a finite element mesh size and time 

increment, the mesh size and time increment required to 

obtain the desired accuracy were determined before 

presenting any results This analysis was performed 

separately for the mesh size and time increment. It was 

concluded that the results have acceptable error when 

equally spaced 4×4 mesh sizes are used for a 3 m×3 m 

plate, if the 0.005 s time increment is used. In the analysis 

length of each finite elements in the x and y directions are 

kept constant for different aspect ratios as in the form of 

square reinforced concrete plate.  

 

3.2 Results 
 

One of the purposes of this paper was to determine the 

time histories of the displacements and the bending 

moments at different points of the thick plates subjected to 

earthquake excitations, but presentation of all of the time 

histories would take up excessive space. Hence, only the  

362



 

Dynamic behaviour of thick plates resting on Winkler foundation with fourth order element 

 

 

 

 

 

absolute maximum displacements and bending moments for 

different thickness/span ratio and aspect ratio are presented 

after two time One of the purposes of this study was to 

study earthquake behavior of the thick plates with elastic 

foundation and to determine the time histories of the 

displacements and the bending moments at different points 

of these thick plates, but presentation of all of the time 

histories would take up excessive space. Because of the fact 

that the maximum values of displacements and bending 

moments are the most important ones for design these 

values are presented for different thickness/span ratio and 

aspect ratio after two time histories are given. These results 

are presented in graphical rather than in tabular form. 

The time histories of the center displacements of the 

thick clamped plates resting on elastic foundation with the 

subgrade reaction modulus of the Winkler-type foundation 

5000 kN/m
3
 for b/a=1.0, and 2.0 when t/a=0.2 are given in 

Figs. 4(a), and 4(b), respectively.  

As seen from Figs. 4(a), and 4(b), the center 

displacements of the reinforced concrete thick clamped 

plates for b/a=1, and t/a=0.2, and for b/a=2, and t/a=0.2, 

reached their absolute maximum values of 0.00244 mm at 

3.48 s, and of 0.00444 mm at 3.48 s, respectively. These 

absolute maximum values are different even with the same 

occurring time as the dynamic characteristics of the 
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Fig. 5 Absolute maximum displacement of the reinforced 

concrete thick simply supported plates resting on Winkler 

foundation for different aspect ratios and thickness/span 

ratios 

 

 

reinforced concrete thick plates affect the response. It is 

also understandable that the system becomes more flexible 

as the aspect ratio increases. 

The absolute maximum displacements of the thick plates 

for different aspect ratios, and thickness/span ratios are 

given in Table 1, Fig. 5 for the reinforced concrete thick 

plates simply supported along all four edges, in Table 2,  

  
(a) (b) 

Fig. 4 The time history of the center displacement of the reinforced concrete thick clamped plate resting on Winkler 

foundation for (a) b/a=1.0 and t/a=0.2, and (b) b/a=2.0 and t/a=0.2 

Table 1 Effects of aspect ratio and thickness/span ratio on the absolute maximum displacement and absolute 

maximum bending moment of the reinforced concrete thick simply supported plates resting on elastic foundation 

k t/a 
b/a=1 b/a=2 b/a=3 

w (mm) Mx (kNmm) My (kNmm) w (mm) Mx (kNmm) My (kNmm) w (mm) Mx (kNmm) My (kNmm) 

5000 

0.05 0.0632 597 597 0.1139 964 327 0.1392 1170 309 

0.10 0.0169 1226 1226 0.0407 2735 1002 0.0452 2991 722 

0.20 0.00503 2508 2508 0.011 5484 1996 0.012 5918 1395 

0.30 0.00268 3984 3984 0.0056 8696 3168 0.0061 9195 2202 

Table 2 Effects of aspect ratio and thickness/span ratio on the absolute maximum displacement and absolute 

maximum bending moment of the reinforced concrete thick clamped plates resting on elastic foundation 

k t/a 
b/a=1 b/a=2 b/a=3 

w (mm) Mx (kNmm) My (kNmm) w (mm) Mx (kNmm) My (kNmm) w (mm) Mx (kNmm) My (kNmm) 

5000 

0.05 0.0252 359 359 0.0388 534 160 0.0405 559 129 

0.10 0.0071 721 721 0.0104 1054 326 0.0107 1080 237 

0.20 0.0024 1442 1442 0.0033 1999 653 0.0035 1989 416 

0.30 0.0016 2198 2198 0.0021 3019 1091 0.0022 3199 713 
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Fig. 6 Absolute maximum displacement of the reinforced 

concrete thick clamped plates resting on Winkler foundation 

for different aspect  ratios and thickness/span ratios 

 

 

Fig. 6 for the thick plates clamped along all four edges, and 

in Table 3 for the thick plates free along all four edges. 

As seen from Tables 1, 2 and Figs. 5, and 6, the absolute 

maximum displacements of the reinforced concrete thick 

plates increase with increasing aspect ratio for a constant t/a 

ratio. The same displacements decrease with increasing t/a 

ratio for a constant b/a ratio. As also seen from these 

figures, the decrease in the absolute maximum displacement 

for a constant b/a ratio increases with increasing b/a ratio. 

The curves for a constant value of the aspect ratio, b/a are 

fairly getting closer to each other as the value of t/a 

increases. This shows that the curves of the absolute 

maximum displacements will almost coincide with each 

other when the value of the thickness/span ratio, t/a, 

increases more. In other words, the increase in the 

thickness/span ratio will not affect the absolute maximum 

displacements after a determined value of t/a.  

As seen from Tables 1, 2 and Figs. 5, and 6, the absolute 

maximum displacements of the reinforced concrete thick 

plates increase with increasing aspect ratio for a constant t/a 

ratio. The same displacements decrease with increasing t/a 

ratio for a constant b/a ratio. As also seen from these 

figures, the decrease in the absolute maximum displacement 

for a constant b/a ratio increases with increasing b/a ratio. 

The curves for a constant value of the aspect ratio, b/a are 

fairly getting closer to each other as the value of t/a 

increases. This shows that the curves of the absolute 

maximum displacements will almost coincide with each 

other when the value of the thickness/span ratio, t/a, 

increases more. In other words, the increase in the 

thickness/span ratio will not affect the absolute maximum 

displacements after a determined value of t/a.  

As also seen from Tables 1, 2 and Figs. 5, and 6, the 

absolute maximum displacements of the reinforced concrete 

thick simply supported plates are larger than those of the 

thick clamped plates for the same aspect and thickness/span 

ratios. In general, the effects of the changes in the 

thickness/span ratios on the absolute maximum 

displacement are larger than the changes in the aspect 

ratios.  

The absolute maximum bending moments Mx at the 

center of the reinforced concrete thick plates for different 

aspect ratios and thickness/span ratios are given in Table 1  

 
Fig. 7 Absolute maximum bending moment Mx at the center 

of the reinforced concrete thick simply supported plates 

resting on Winkler foundation for different aspect ratios and 

thickness/span ratios 

 

 
Fig. 8 Absolute maximum bending moment Mx at the center 

of the reinforced concrete thick clamped plates resting on 

Winkler foundation for different aspect ratios and 

thickness/span ratios 

 

 

and Fig. 7 for the thick simply supported plates in Table 2 

and Fig. 8 for the thick clamped plates, and in Table 3 for 

the thick free plates, respectively. 

As seen from Table 1 and Fig. 7, the absolute maximum 

bending moment, Mx, at the center of the reinforced 

concrete thick and thin simply supported plates increases 

with increasing aspect ratio and thickness/span ratio. The 

increases in the absolute maximum bending moment, Mx, 

increase with increasing aspect and thickness/span ratios. 

This is understandable that increasing the aspect ratio 

makes the plate stiffer in the short span, the x axis, 

direction. As also seen from this figure, in general, the 

effects of the changes in the aspect ratios on the absolute 

maximum bending moment, Mx, are larger than the changes 

in the thickness/span ratios. 

As seen from Table 2 and Fig. 8, the absolute maximum 

bending moment, Mx, at the center of the reinforced 

concrete thick clamped plates, as in the case of the absolute 

maximum bending moment, Mx, at the center of the 

reinforced concrete thick simply supported plates, increases 

with increasing aspect ratio and thickness/span ratio. The 

increases in the absolute maximum bending moment, Mx, 

increase with increasing aspect and thickness/span ratios. 

This is also understandable that increasing the aspect ratio  
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Fig. 9 Absolute maximum bending moment My at the center 

of the reinforced concrete thick simply supported plates 

resting on Winkler foundation for different aspect ratios and 

thickness/span ratios 

 

 

makes the plate stiffer in the short span, the x axis, 

direction. As also seen from this figure, in general, the 

effects of the changes in the aspect ratios on the absolute 

maximum bending moment, Mx, are larger than the changes 

in the thickness/span ratios. 

The absolute maximum bending moments My at the 

center of the reinforced concrete thick plates for different 

aspect ratios and thickness/span ratios are given in Table1 

and Fig. 9 for the thick and thin simply supported plates and 

in Table 2 and Fig. 10 for the thick clamped plates, 

respectively. 

As seen from Table 1 and Fig. 9, the absolute maximum 

bending moment, My, at the center of the reinforced 

concrete thick simply supported plates decreases with 

increasing aspect ratio and increases with increasing 

thickness/span ratio. The decrease in the absolute maximum 

bending moment, My, increase with increasing aspect ratio. 

The increase in the absolute maximum bending moment, 

My, increases with increasing thickness/span ratios. This is 

understandable that increasing the aspect ratio makes the 

reinforced concrete thick plates more flexible in the long 

span, the y axis, direction. As also seen from this figure, in 

general, the effects of the changes in the thickness/span  

 

 

 
Fig. 10 Absolute maximum bending moment My at the 

center of the reinforced concrete thick clamped plates 

resting on Winkler foundation for different aspect ratios and 

thickness/span ratios 

 

 

ratios on the absolute maximum bending moment, My, are 

larger than the changes in the aspect ratios. 

As seen from Table 2 and Fig. 10, the absolute 

maximum bending moment, My, at the center of the 

reinforced concrete thick clamped plates, as in the case of 

the absolute maximum bending moment, My, at the center 

of the reinforced concrete thick simply supported plates, 

decreases with increasing aspect ratio and increases with 

increasing thickness/span ratio. The decrease in the absolute 

maximum bending moment, My, increase with increasing 

aspect ratio. The increase in the absolute maximum bending 

moment, My, increases with increasing thickness/span 

ratios. This is also understandable that increasing the aspect 

ratio makes the thick plates more flexible in the long span, 

the y axis, direction. As also seen from this figure, in 

general, the effects of the changes in the thickness/span 

ratios on the absolute maximum bending moment, My, are 

larger than the changes in the aspect ratios. 

In this study, the absolute maximum bending moments 

Mx at the center of the edge in the y direction and the 

maximum bending moment My at the center of the edge in 

the x direction are not presented for the reinforced concrete 

thick plates clamped along all four edges. It should be noted 

 
 

 

Table 3 Effects of aspect ratio and thickness/span ratio on the absolute maximum displacement and absolute 

maximum bending moment of the reinforced concrete thick free plates resting on elastic foundation 

k t/a 
b/a=1 b/a=2 b/a=3 

w (mm) Mx (kNmm) My (kNmm) w (mm) Mx (kNmm) My (kNmm) w (mm) Mx (kNmm) My (kNmm) 

500 

0.05 4.5 0.0003 0.0003 4.5 0.0005 0.0002 5.5999 0.0005 0.00009 

0.10 13.8 0.00309 0.00309 13.8 0.00584 0.00255 13.7469 0.00625 0.00443 

0.20 41.9 0.00914 0.00914 41.9404 0.03353 0.02124 41.9404 0.03148 0.02393 

0.30 66.9 0.03466 0.03466 66.9 0.04848 0.02883 66.9 0.08295 0.02873 

5000 

0.05 0.454 0.00034 0.00034 0.454 0.00051 0.00011 0.454 0.00054 0.00016 

0.10 1.023 0.00345 0.00345 1.023 0.00583 0.00239 1.023 0.00628 0.00475 

0.20 2.754 0.00712 0.00712 2.754 0.02707 0.01874 2.754 0.03147 0.02399 

0.30 4.127 0.03760 0.03760 4.127 0.08114 0.06445 4.127 0.08972 0.08316 

50000 

0.05 0.02633 0.00030 0.00030 0.02633 0.00049 0.00274 0.02633 0.00048 0.00023 

0.10 0.06189. 0.00358 0.00358 0.06189 0.00578 0.00181 0.06189 0.00627 0.00441 

0.20 0.1355 0.00923 0.00923 0.1355 0.03299 0.01439 0.1355 0.03142 0.00751 

0.30 0.2119 0.03850 0.03850 0.2119 0.08231 0.05907 0.2119 0.08479 0.07122 
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The first mode shape 

(1=19947) 

The second mode shape 

(2=21099) 

  
The third mode shape 

(3=21417) 

The fourth mode shape 

(4=264578) 

  
The fifth mode shape 

(5=353058) 

The sixth mode shape 

(6=1424548) 

Fig. 11 The first six mode shapes of the reinforced concrete 

thick free plates for b/a=2.0 and t/a=0.3 with subgrade 

reaction modulus k=50000 

 

 

that the variations of these moments are similar to the 

absolute maximum bending moments Mx at the center of the 

thick clamped plates. 

The first six frequency parameters of reinforced 

 

 

 
The first mode shape 

(1=19923) 

The second mode shape 

(2=21282) 

  
The third mode shape 

(3=21393) 

The fourth mode shape 

(4=72866) 

  

The fifth mode shape 

(5=168580) 

The sixth mode shape 

(6=375635) 

Fig. 12 The first six mode shapes of the reinforced concrete 

thick free plates for b/a=3.0 and t/a=0.3 with subgrade 

reaction modulus k=50000 

 

 

concrete thick plates resting on Winkler foundation 

considered for different aspect ratio, b/a, thickness/smaller 

span ratio, t/a, are presented in Table 4 for the different 

subgrade reaction modulus with free edges. In order to see 

Table 4 Effects of aspect ratio and thickness/span ratio on the first six frequency parameters of the reinforced 

concrete thick free plates resting on elastic foundation 

k b/a t/a 
λ=ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

5000 

1.0 

0.05 4049 4051 4051 8654 13834 16962 

0.10 1783 1829 1829 19105 39152 50909 

0.20 988 988 1101 59431 1274060 165228 

0.30 770 770 798 109738 230497 295940 

2.0 

0.05 4045 4049 4049 4747 5184 9370 

0.10 1762 1794 1810 4571 6154 21988 

0.20 1004 1071 1118 115854 16355 69348 

0.30 764 790 791 22769 30748 127204 

3.0 

0.05 4043 4047 4048 4185 4543 5100 

0.10 1754 1778 1803 2337 3706 5943 

0.20 1009 1095 1124 3231 7782 16695 

0.30 762 788 791 5467 14142 32756 

50000 

1.0 

0.05 134259 134259 134534 185235 242522 277537 

0.10 67151 67151 67455 258471 480894 611538 

0.20 31271 31271 32953 680376 1434579 1854906 

0.30 20020 20020 21489 1230411 2570619 3298191 

2.0 

0.05 134279 134465 134557 142102 146823 193349 

0.10 67095 67379 67384 97876 115120 290808 

0.20 31384 32518 33072 148898 201930 790479 

0.30 19947 21099 21417 264578 353058 1424548 

3.0 

0.05 134285 134513 134564 135974 139743 146097 

0.10 67076 67360 67390 73390 88071 113293 

0.20 31422 32810 33111 56345 106679 205627 

0.30 19923 21282 21393 72866 168580 375635 
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the effects of the changes in these parameters better on the 

first six frequency parameters, they are also presented in 

Fig. 11 for the reinforced concrete thick free plates with 

different subgrade reaction modulus. 

As seen from Table 4, the values of the first three 

frequency parameters for a constant value of t/a increase as 

the aspect ratio, b/a, increases up to the 3rd frequency 

parameters, but after the 3rd frequency parameter, the 

values of the frequency parameters for a constant value of 

t/a decrease as the aspect ratio, b/a, increases.  

As also seen from Table 4, the values of the first three 

frequency parameters for a constant value of b/a decrease as 

the thickness/span ratio, b/a, increases up to the 3rd 

frequency parameters, but after the 3rd frequency 

parameters, the values of the frequency parameters for a 

constant value of b/a increase as the thickness/span ratio, 

t/a, increases. 

The increase in the frequency parameters with 

increasing value of b/a for a constant t/a ratio gets less for 

larger values of b/a up to the 3rd frequency parameters. 

After the 3rd frequency parameters, the decrease in the 

frequency parameters with increasing value of b/a for a 

constant t/a ratio gets also less for larger values of b/a. 

The changes in the frequency parameters with 

increasing value of b/a for a constant t/a ratio is larger for 

the smaller values of the b/a ratios. Also, the changes in the 

frequency parameters with increasing value of b/a for a 

constant t/a ratio is less than that in the frequency 

parameters with increasing increasing t/a ratios for a 

constant value of b/a. 

These observations indicate that the effects of the 

change in the t/a ratio on the frequency parameter of the 

reinforced concrete plate are generally larger than those of 

the change in the b/a ratios considered in this study. 

In this study, the mode shapes of the reinforced concrete 

thick plates are also obtained for all parameters considered. 

Since presentation of all of these mode shapes would take 

up excessive space, only the mode shapes corresponding to 

the six lowest frequency parameters of the reinforced 

concrete thick plate free along all four edges for b/a 2, and 

3 and t/a=0.3, are presented. These mode shapes are given 

in Figs. 11, and 12, respectively. In order to make the 

visibility better, the mode shapes are plotted with 

exaggerated amplitudes.  

As seen from these figures, the number of half wave 

increases as the mode number increases.  

 

 

4. Conclusions 
 

The aim of this study is to analyze parametric 

earthquake analysis of reinforced concrete thick plates 

resting on Winkler foundation with using shear locking-free 

finite elements and to detect the effects of the 

thickness/span ratio, the aspect ratio and the boundary 

conditions on the linear responses of the reinforced concrete 

thick plates resting on Winkler foundation subjected to 

earthquake excitations. After the analysis it is detected that 

17-noded finite element can be easy and effective used in 

the earthquake analysis of thick plates resting on elastic 

foundation without shear locking-problem and that if this 

element is used in an analysis, it is not necessary to use 

finer mesh. No matter what the mesh size is unless it is less 

than 4×4. The coded program can be effectively used in the 

earthquake analyses of any thick plates with Winkler 

foundation. In addition, it has generally been found that 

changing the thickness/span ratio in the plates is more 

effective than changing the aspect ratio in the maximum 

responses considered in this study. 

For Winkler base coarse plates exposed to debris 

loading, both the frequency values of the earthquake load 

and the effects on the thickness/span ratio, aspect ratio and 

boundary conditions are somewhat difficult to interpret.  

In order to generalize the values found in this study, the 

responses of the different thick plates with Winkler 

foundation subjected to different earthquake loading should 

be evaluated all together. Therefore, the curves presented 

herein can help the designer to estimate the effects of the 

thickness/span ratio, the aspect ratio, and the boundary 

conditions on the dynamic response of a thick plate with 

Winkler foundation.  

The following conclusions can also be drawn from the 

results obtained in this study. 

The changes in the aspect ratios are generally less 

effective on the absolute maximum displacement than the 

changes in the thickness/span ratios. 

The changes in the aspect ratios are generally more 

effective on the absolute maximum bending moment, Mx, of 

the reinforced concrete thick simply supported plates than 

the changes in the thickness/span ratios. 

The changes in the aspect ratios are generally more 

effective on the absolute maximum bending moment, Mx, of 

the reinforced concrete thick clamped plates resting on 

Winkler foundation than the changes in the thickness/span 

ratios. 

The changes in the thickness/span ratios are generally 

more effective on the absolute maximum bending moment, 

My, of the reinforced concrete thick simply supported plates 

resting on Winkler foundation larger than the changes in the 

aspect ratios. 

The changes in the thickness/span ratios are generally 

more effective on the absolute maximum bending moment, 

My, of the reinforced concrete thick clamped plates resting 

on Winkler foundation than the changes in the aspect ratios. 

In general, degrees of decreases and increases depend on 

the changes in the aspect and thickness/span ratios, and 

thickness/span ratio was found to be more effective than the 

aspect ratio on the maximum responses considered in this 

study. 

The frequency parameters increases with increasing b/a 

ratio for a constant value of t/a up to the 3rd frequency 

parameters, but after that the frequency parameters 

decreases with increasing b/a ratio for a constant value of 

t/a. 
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