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1. Introduction  
 

The fundamental natural period of vibration (T) is an 

important dynamic property of structures since it governs 

the behavior and responses of the structure during seismic 

actions. For instance, T has significant influence on the 

seismic base shear and lateral seismic forces acting on 

structures, especially in bearing RCSW systems where 

lateral forces are resisted only by SWs. Fundamental natural 

period of a structure is controlled by the mass, stiffness and 

strength of the structure. Thus, it is affected by many 

parameters, which include the height of the building, 

characteristics of shear walls, number of stories, number of 

bays, dimensions of member sections, regularity of 

structure, and others (Asteris et al. 2015).  

However, most offered empirical formulas found in 

research to estimate T are derived from testing data for 

existing structures, which have experienced strong 

earthquakes but not deformed into the inelastic range (Ricci 

et al., 2011). Therefore, determining realistic and precise T 

for RCSW systems is an essential step towards reliable 

seismic analysis, design and evaluation (Asteris et al. 

2016). Hence, it is desirable to properly associate the 
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available experimental fundamental periods of vibration 

evaluated for existing structures during strong motions with 

those numerically computed values. Still, this is hard to 

accomplish since very limited number of existing buildings 

are in fact equipped with measurement instruments, in 

addition to the infrequent incidences of strong motion of 

buildings due to earthquakes (Goel and Chopra 1998). 

Moreover, the collection of accumulated measured data of T 

for existing structures essentially requires years exceeding 

the age of the structure. Herein, it is worth mentioning the 

wide variation in measured vibration amplitudes, frequency, 

and periods due to scattered database for different structures 

with various construction materials and wide-ranging types 

of tested structural systems (Michel et al. 2010).  

In that regard, most of seismic design codes and 

provisions (e.g., IBC 2012 and ASCE/SEI 7-10) specify 

approximate empirical formulas to estimate T for several 

types of structural systems with different materials, which 

explicitly include bearing RCSW systems. Accordingly, the 

estimated T using these approximate empirical expressions, 

as they are available in seismic codes, may lead to more 

conservative periods than the real values during earthquake 

excitation. This may result in imprecise values for the 

necessary seismic design parameters and subsequently 

affect the anticipated responses of structure including the 

design base shear, story displacement, lateral drift, 

deflections of members, and others. Hence, an accurate 

estimation of T using trustworthy formulas for use in 

seismic design would permit an enhanced judgment of the 

global elastic seismic demands for bearing RCSW systems 
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and, ultimately, the required inelastic performance in static 

procedures.  

Many researchers provided various empirical formulas 

by using different methods and taking into account 

geometrical characteristics of the structure, but with 

restriction of narrow configuration data of buildings. For 

example, Goel and Chopra (l997a) evaluated the empirical 

formulas specified in U.S. codes using measured data of 

fundamental periods for building motions recorded during 

specified eight California earthquakes. Their study showed 

that code formulas for estimating T of RCSW buildings 

were grossly inadequate. Subsequently, they proposed 

improved expression for T by calibrating a theoretical 

formula, derived using Dunkerley's method in conjunction 

with measured period data by using regression analysis. In 

addition, they recommended a factor to limit the period 

calculated by a “rational” analysis method, such as 

Rayleigh's method.  

Generally, research stated three significant procedures 

of estimating the dynamic properties of structural systems 

including data measurement of actual systems, analytical 

methods, and empirical formulas. Based on the first 

procedure, the current available formulas in seismic codes 

for the fundamental period, presented as simple empirical 

expressions, relate the periods of buildings with their type, 

material, and geometry.  

Chun et al. (2000a, 2000b) assessed the approximate 

estimation of T for apartment buildings with SW dominant 

systems according to the Korean Building Code of 1988. 

Their study aimed to evaluate the reliability of code formula 

based on full-scale ambient vibration measurements of 50 

RC apartment buildings with wall-slab configurations. They 

observed that the stiffness of the tested buildings is very 

different from code estimation and quite large errors 

occurred when using code formula for estimation of T. 

Consequently, they proposed an improved empirical 

formula to estimate T for such structural systems. However, 

their proposal pointed only to the improvement of the 

serviceability condition without considering the influence of 

T on the other seismic design key parameters, such as the 

base shear and floors seismic lateral forces.  

Moreover, Balkaya and Kalkan (2003) investigated the 

consistency of equations for fundamental periods of RCSW 

structures and their related dynamic properties as found in 

UBC 97, and the Turkish Seismic Code 1998. Using three-

dimensional finite-element modelling, they analyzed 80 

different building configurations for SW dominant multi-

storey RC structures, constructed by using a special tunnel 

form technique. They concluded that codes empirical 

equations for the prediction of T for that type of structures 

yielded inaccurate results, and accordingly, codes presented 

limited information for their design criteria. Their results 

demonstrated that different proposed formulas accurately 

improved predictions for a broad range of different 

configurations, and led them to recommend such formulas 

as efficient tool for the implicit design of such structures. 

Other studies by Lee et al. (2000) and Gilles et al. 

(2012) showed that code formulas are grossly inadequate 

when comparing with conducted full-scale on-site vibration 

tests. Such studies showed inappropriate behavior of 

structures under dynamic loads where mathematical models 

of dynamic structural systems based on measured data have 

a significant potential for ambient vibration.  

Draganić et al. (2010) performed an analytical research 

on 600 different models of RC Moment Resisting Framed 

(MRF) structures with different column dimensions in order 

to confirm empirical expressions for determining T, as 

given by several authors and the EN1998-1 of Eurocode 8 

(2004). Consequently, using a similar databank of modelled 

RC MRF structures, Hadzima-Nyarko et al. (2012) 

delivered new expressions for T of regular RC frames by 

implementing nonlinear regression analysis using genetic 

algorithm and taking into consideration the direction of the 

structure. Moreover, Kwon and Kim (2010) evaluated 

building period formulas from a selected seismic design 

code for 800 apparent periods from 191 buildings and 67 

earthquake records. Their calculations were carried out 

using the formulas taken from ASCE 7-05 for steel and RC 

MRF, SW buildings, braced frames, and other structural 

types. They addressed that the differences between the 

estimated periods from code formulas and these of 

measured periods of low-to-medium rise buildings were 

found to be relatively high. They concentrated on the fact 

that code formulas for SW buildings noticeably 

overestimated periods for all tested building heights. 

Based on the Colombian seismic design code, 

Castellanos et al. (2013) studied T of SW buildings in Calif. 

Colombia by using ambient vibration tests and modal 

identification methods and taking into account factors such 

as the foundation system, constructive system and seismic 

zone. As a result, they suggested simple equations for 

estimating T based on the building height and type of 

structural system. However, they showed that these 

estimations often differ greatly from the experimental 

values. Similarly, Chalah et al. (2014) proposed a 

simplified expression for T of RCSW systems considering 

the geometrical and mechanical characteristics of the 

structure and based on an elastic behavior and the 

Dunkerley’s formula. Their suggested period values as 

function of the number of floors and their stiffness. 

Similarly, an earlier study by Dym et al. (2007) examined 

the empirical estimates of the fundamental frequency (the 

inverse of period) for tall buildings by analyzing the 

consequences of using two beam models to estimate such 

natural frequencies. Their study showed that the 

Timoshenko beam model is appropriate for describing the 

behavior of shear-wall buildings, while a coupled two-beam 

model is appropriate for shear-wall-frame (e.g., tube-and-

core) buildings where it comes much closer to replicate the 

parametric dependence of building frequency (or period) on 

height. Thus, one may conclude that the analysis procedure 

and its assumptions would greatly affect the estimation of 

natural periods for tall buildings. 

In a similar manner, Hadzima-Nyarko et al. (2015) 

carried out a parametric study on 480 different RC building 

models with SWs, taking into account different influencing 

parameters such as the number of bays. They compared T of 

RCSW dominant building models with several empirical 

expressions of T given by different selected seismic design 

codes, and their results emphasized the essential need to 
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improve the available expressions for T estimation of 

RCSW structures allowing for the effect of number of bays. 

Later, Abo El-saad and Salama (2017) carried out a study 

on estimation of T for RCSW buildings and developed new 

formulas by regression analysis of measured period data. 

Comparisons showed good agreement between the periods 

determined using their proposed formula and measured 

values. Moreover, their results indicated that the value of 

coefficient Ct in formulas of the ASCE, and similarly 

Egyptian building code (2012) need to be decreased and a 

factor to limit the period calculated by Rayleigh’s method 

should be considered. 

Recently, based on measured period data, Badkoubeh 

and Massumi (2017) proposed a simple closed-form 

expression to estimate T for RCSW buildings in low, 

moderate, and high seismicity regions. Their proposed 

expression provided reasonable estimates of the lower 

bounds of fundamental periods, and thus, led them to 

ascertain that US code formulas were inadequate for 

estimation of T for concrete SW buildings since they 

depend significantly on the displacement and mechanical 

properties of the SW.  

Generally, current seismic codes offer empirical 

approximate formulas to estimate T for RCSW systems 

mainly depending on building height; number, heights and 

lengths of SWs; and ratio of SW area to base area of the 

structure. As mentioned earlier, these code formulas have 

been derived from regression analysis of empirical data of 

measured T for buildings during seismic actions. However, 

it is clearly evident from previous literature that the 

approximate equations available in many current codes 

have notable and concealed variances between “code-

estimated” and “measured” period values for actual 

structures. Thus, this study aims to establish new improved 

and simplified formulas to estimate the fundamental periods 

T for bearing RCSW systems subjected to earthquake 

excitations, contributing in attempts for better identification 

of T and thus, accurately evaluates the consequent 

responses of structure.  In that regard, this paper considers 

the effect of additional influencing parameters such as 

configuration of horizontal plans, building width, number 

and width of bays, and presence of SWs with middle 

corridors and/or core SWs.  

In this study, A hundred and ten selected models of 

bearing RCSW systems were established and analyzed 

using a 3D non-linear response time history (TH) procedure 

utilizing the software ETABS v16.2.1. Finite element 

models of the structures were developed with the nonlinear 

“Takeda” hysteretic behavior for elements. The dynamics 

3D non-linear TH analysis keeps drift limitations for a 

serviceable structure to be built through taking P-delta 

effect into consideration. 

Regression analysis was employed to achieve accurate 

and comprehensive simplified formulas for estimation of T 

for bearing RCSW systems towards improving their seismic 

analysis and design results. Results were presented and 

compared with those obtained from using formulas of 

seismic code IBC 2012 associated with the provisions of 

ASCE-SEI 7-10. The seismic performance for two 

arbitrarily selected test models of 60 m (20-story) and 240 

m (80-story) in height with middle corridors were 

investigated. The responses are presented by design base 

shear, story shears, maximum lateral displacement, story 

drift and drift ratio, and are compared with these obtained 

from implementation of T computed from code formulas. It 

was observed that the seismic performance of the tested 

buildings was different with the presence of obvious errors 

when using T estimated by code formulas. The current 

proposed formulas led to a reasonable and safe design with 

success in having reasonable enhancement over the existing 

code approximate T formulas. Thus, an enhanced accuracy 

and reliable design may be accomplished when using the 

proposed expressions by this study to estimate the 

fundamental natural periods of vibration for bearing RCSW 

systems. 

 

 

2. Fundamental period by building design codes 
 

As per the IBC 2012 and the ASCE-SEI 7-10 

provisions, the fundamental period of the structure, T, shall 

be established by properly substantiated analysis procedures 

using the structural properties and deformational 

characteristics of the resisting elements. As an alternative to 

performing analysis, these codes permitted a direct use of 

given simple formulas for an approximate period, Ta. 

However, in case of determining T using analysis 

procedures, these codes assigned an upper limit for that 

calculated period depending on the design spectral response 

acceleration at 1-second period, SD1, and an upper limit 

coefficient, Cu. 

In principle, the approximate formulas aimed to 

introduce simplified periods leading to conservative 

evaluation of responses required for analysis and design 

purposes. However, these formulas offered by seismic 

design codes frequently provide overestimated periods 

while in other cases giving underestimated values. This 

questionable estimation refers to lack in the limited 

parameters included in the formulas imposed by design 

codes. Generally, the IBC 2012/ASCE-SEI 7-10 proposed 

two methods for Ta of RCSW structures. The most common 

approximate formula given by Method-1 in these codes to 

obtain 𝑇a (in seconds) is as following 

𝑇𝑎1 = 𝐶𝑡𝑕𝑛
𝑥 (1) 

Where 𝑇𝑎1 represent the approximate fundamental period 

using the main simplified code equation of Method-1, and 

𝑕𝑛 is the structural height (in meters or feet) representing 

the vertical distance from the base to the highest level of the 

seismic force-resisting system of the structure. The 𝐶𝑡 and 

𝑥 are building period coefficients determined from Table 1 

below. 

Generally, Eq. (1), as found in these codes, is a semi-

empirical equation which was established based on 

Rayleigh’s method in a form of an exponential equation as 

𝑇 = 𝛼𝐻𝛽, where H is the structural height, and 𝛼 and 𝛽 

are numerical variables. Early study by Goel and Chopra 

(1997b) concluded that the variables 𝛼 and 𝛽 depend on 

the properties and type of the structure. Later, the code 

replaced these variables 𝛼 and 𝛽 by the coefficients 𝐶𝑡  

297

http://en.wikipedia.org/wiki/Exponential_equation


 

Anis S. Shatnawi, Esra’a H. Al-Beddawe and Mazen A. Musmar 

 

Table 1 Values of Approximate Period Coefficients Ct 

and 𝑥, as per IBC 2012/ASCE-SEI 7-10 

Structure Type 𝐶𝑡 𝑥 

Moment-resisting frame systems in which the 

frames resist 100% of the required seismic force 

and are not adjoined by components that are 

more rigid and will prevent the frames from 

deflecting where subjected to seismic forces: 

  

- Steel moment-resisting frames 
0.028 

(0.0724)a 0.8 

- Concrete moment-resisting frames 
0.016 

(0.0466)a 
0.9 

Steel eccentrically braced frames in 

accordance with ASCE 7-10 requirements. 

0.030 

(0.0731)a 
0.75 

Steel buckling-restrained braced frames 
0.030 

(0.0731)a 
0.75 

All other structural systems 
0.020 

(0.0488)a 
0.75 

a Metric equivalents are shown in parentheses, for 𝑕𝑛 in meters. 

 

 

and 𝑥 as illustrated in Table 1 below. Herein, it is worth 

mentioning that despite listing of some structure types in 

Table 1 with exclusive values for 𝐶𝑡 and x, curiously the 

RCSW system and many other systems are not explicitly 

included except within the extensive structural types of “all 

other structural systems”. Thus, it seems that there is a 

serious need for in-depth research about this concern. 

However, the IBC 2012/ASCE-SEI 7-10 permitted 

using alternative approach for calculating Ta (in seconds) 

for masonry or concrete shear wall structures using the 

following equation 

𝑇𝑎2 = 
0.00623

√𝐶𝑤
𝑕𝑛    (if 𝑕𝑛in meter) (2) 

Where 𝑇𝑎2 represent the approximate fundamental period 

using the alternative code equation, 𝑕𝑛  is the structural 

height, and 𝐶𝑤 is a constant calculated from Eq. (3) as 

follows 

𝐶𝑤 = 
100

𝐴𝐵
∑(

𝑕𝑛

𝑕𝑖
)
2 𝐴𝑖

*1 + 0.83 (
𝑕𝑖

𝐷𝑖
)
2

+

𝑥

𝑖=1

 
(3) 

Where 

𝐴𝐵 = area of the base of structure (m2) 

𝐴𝑖 = web area of shear wall “i” (m2). 

𝐷𝑖 = length of shear wall “i” (m). 

𝑕𝑛= structural height (m) 

𝑕𝑖 = height of shear wall “i” (m). 

𝑥 = the number of shear walls in the building effective 

in resisting lateral forces in the direction under 

consideration. 

The second code alternative Eq. (2) has been based on 

the Dunkerley’s method along with many previous related 

studies. Among them is that of Goel and Chopra (1998), 

who employed regression analysis on measured periods for 

SW buildings recorded in California during earthquake 

actions. Essentially, the coefficient 𝐶𝑤 reflects three 

important factors that influence the values of 𝑇. One of these 

factors is the ratios between the summation of web cross 

sectional area of SWs in the direction under consideration and  

Table 2 Members Geometry and Modeling Design 

Parameters* 

Building design parameter Value 

Concrete compressive strength, 𝑓𝑐
́
 (MPa) 28 

Concrete unit weight, 𝑤𝑐 (kg/m3) 2400 

Modulus of Elasticity, 𝐸𝑐 (MPa) 24870 

Dead load Seismic weight 

Live load (kN/m2) 2.0 

Size of drop beams (mm × mm) 
200 × 500 to 

800 × 500 

Wall thickness (mm) 200 to 400 

Solid Slab thickness (mm) 210 to 350 

* Data is adopted from Kim and Lee (2014). 

 

 

the base area of the building (∑ 𝐴𝑖
𝑥
𝑖=1 𝐴𝐵⁄ ), the building 

height and height of SW (𝑕𝑛 𝑕𝑖⁄ ) and the height and length of 

SW (𝑕𝑖 𝐷𝑖⁄ ). Accordingly, one may notice that as either 

(∑ 𝐴𝑖
𝑥
𝑖=1 𝐴𝐵⁄ ) or (𝑕𝑛 𝑕𝑖⁄ ) for a building in certain direction 

decreases, then 𝑇 for that building in that direction increases, 

whereas when (𝑕𝑖 𝐷𝑖⁄ ) for a building in certain direction 

decreases then 𝑇 for the building in that direction decreases. 

 

 

3. Description of structural models and analysis 
 

In this section, the examined cases of the structural 

models for which the fundamental periods are evaluated are 

thoroughly described. All building models are designed 

according to the requirement of ACI 318-14 and IBC 2012 

codes. All modeled structures are assumed to have a fixed 

base without presence of columns, considering that all 

diaphragms are rigid with neglecting the effect of any infill 

walls within analysis. Summary of members’ geometry and 

modeling design parameters are presented in Table 2. 

Dynamic analysis was performed on 110 selected 

models of bearing RCSW systems using the 3D non-linear 

response time history (TH) procedure. Analysis is carried 

out through utilizing the CSI software ETABS v16.2.1 with 

employing El-Centro (1940) N-S record and (5%) modal 

damping ratio. Initially, a static design preceded the 

dynamic analysis for selected models to ensure that their 

elements have satisfactory dimensions and reinforcements 

and thus have adequate design that satisfies the code 

requirements. The 3D nonlinear response TH analysis 

consists of establishing finite element models which 

directly account for the nonlinear “Takeda” hysteretic 

behavior of the structure’s elements. Types of finite 

elements selected were shell elements for slabs and walls 

and 3D solid type for beams. This is to determine responses 

through methods of numerical techniques to suite ground 

motion acceleration histories compatible with the design 

response spectrum for the site. Moreover, performing a 

nonlinear TH analysis assures solving for P-delta effect, 

and thus keeps drift limitations for a serviceable structure to 

be built.  

A parametric investigation on T of the selected systems 

with varying building height (i.e., number of stories), layout 

configuration of horizontal plans including building width, 

number and width of bays, and presence of SWs with  
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Fig. 1 Horizontal plans for RCSW models with different 

No. of bays, bay width or building width 

 

 

middle corridor and/or core SWs have been studied. The 

models examined are shown schematically in Figs. 1-2.  

A total of eleven horizontal plans of the structural 

models were constructed and analyzed with different 

number of stories (i.e.; 4, 8, 12, 16, 20, 30, 40, 50, 60, 70, 

and 80). The height of each story is taken to be constant and 

equal to 3.0 m. Thus the seismic structural height 

considered was varying from 12 m up to 240 m. Different 

layout configurations are investigated using nine horizontal 

plans. Moreover, to study the effect of number of bays, two 

horizontal plans with a different number of bays are 

examined; one has two bays and the other has six bays as 

shown last in Fig. 1(a). Both plans have building width 

equal to 6 m with a regular width of each bay equal to 6 m.  

The effect of the width of bay is investigated by using 

three different horizontal plans, each of them with 6 bays. 

The bay width has been varied for each case of study as 4, 

6, and 8 m with layouts have a regular building width equal 

to 6 m as showed in Fig. 1(a).   

Similarly, to study the effect of the geometry of the 

transverse y-direction on T, the transverse width of 

buildings has been varied and its effect is examined. To 

achieve this purpose, three different horizontal plans were 

investigated with different building’s width for each case of 

study taken as 6, 8, and 10 m as showed in Fig. 1(a). For 

each of these cases of study, a regular bay width is assumed 

equal to 6 m.  

To study the effect of the presence of SWs with middle 

open corridors, two cases of study are considered, with a 2 

m wide middle corridor. Both plans have six bays with 

regular bay width equal to 6 m. One of them has 6 m 

building width, while the other has 14 m building width as 

showed in Fig. 1(b). The effect of core SWs has been 

studied considering two horizontal plans; one of them has 4 

m×4 m central core, with building length and width equal 

to 36 m and 10 m, respectively, as showed in Fig. 2(a). The 
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(b) Building with Two Core SWs 

Fig. 2 Horizontal plans for RCSW models with one or Two 

Core SWs 

 

 

other model has two 4 m×4 m cores, with building length 

and width equal to 48 m and 10 m, respectively, as shown in 

Fig. 2(b). Both plans have seven bays with irregular bay 

width ranging from 4 to 10 m. The geometry data of all 

selected models is presented in Table 3 below.  

 
 
4. Regression analysis 

 

The results of the T values were used as input data for a 

rational unconstrained linear regression analysis to identify 

the most accurate formulas for predicting T for the bearing 

RCSW systems. 

 
4.1 Forms of proposed equations 
 

In this study, two forms of proposed equations for 

predicting T were considered. The first equation has the 

following form 

𝑇 = 𝛼𝑕𝑛
𝛽

 (4) 

where 𝑕𝑛 is the height of the building in meter, and α and β 

are numerical coefficients determined from unconstrained 

linear regression analysis. For purposes of regression analysis, 

Eq. (4) is rewritten as 

𝑦 = 𝑎 + 𝛽𝑥 (5) 

where 𝑦 = log (𝑇), 𝑎 = log (𝛼) and 𝑥 = log  (𝑕𝑛) 
Alternatively, second form of equation has been used as 

𝑇 = 𝛼 (
𝑕𝑛

√𝐶𝑤

)

𝛽

 (6) 

where 𝐶𝑤 is same as defined previously in Eq. (3).  

It may be noticed that Eq. (5) is linear equation with 

intercept constant 𝑎 and slope β. However, for purposes of 

regression analysis, Eq. (6) may also be rewritten in the form  
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Table 4 Values of  𝛼 ,  𝛽 , and 𝑆𝑒  for Each Empirical 

Equation based on Eqs. (4)-(6) 

Proposed Equation Studied Parameter 𝛼 𝛽 𝑆𝑒% 

First Proposed 

Equation 

𝑇𝑅 = 𝛼𝑕𝑛
𝛽

 

Number of bays 0.00073 1.90 2.9 

Building width 0.00066 1.88 10.5 

Bay width 0.0007 1.90 9.4 

Presence of 

middle corridor 
0.0022 1.63 14.9 

Presence of core 

SWs 
0.0013 1.76 3.2 

All Parameters 

Together 
0.001 1.82 7.9 

Second Proposed 

Equation 

𝑇 = 𝛼 (
𝑕𝑛

√𝐶𝑤

)

𝛽

 

Presence of 

middle corridor 
0.0045 0.79 10.3 

Presence of 

core SWs 
0.0032 0.90 4.3 

All Parameters 

Together 
0.0038 0.87 15.3 

 

 

of Eq. (5) above but with 𝑥 = log  (
ℎ𝑛

√𝐶𝑤
). 

 

4.2 Procedure of regression analysis 
 

In regression analysis, the constants 𝑎  and 𝛽  are 

determined by minimizing the squared root error between 

the direct computed periods and the these obtained from 

analytical models for each studied parameter separately to 

obtain individual equations based on each parameter. In 

Table 4, the second column displays all parameters that 

have individual equations based on the first and the second 

proposed equations. 

For both proposed equations, 𝛼 is calculated back from 

the relationship 𝑎 = log (𝛼) for each individual equation 

separately.  

Then, the standard error (𝑆𝑒), is calculated from the 

following equation 

𝑆𝑒 = √
∑ [𝑦𝑖 − (𝑎 + 𝛽𝑥𝑖)]

2𝑛
𝑖=1

(𝑛 − 2)
 (7) 

where n is the number of periods considered in regression 

analysis, and 𝑦𝑖 = log(𝑇𝑖) with 𝑇𝑖  represents the period 

obtained from dynamic analysis. The term (𝑎 + 𝛽𝑥𝑖) is as 

defined in Eq. (5) for both proposed equations, respectively. 
Finally, to obtain two general forms of equations based 

on the first and second proposed equations of Eqs (4)-(6), 

the values 𝑎, 𝛽, 𝛼 and 𝑆𝑒 are determined by minimizing 

the error between the computed periods and the periods 

obtained from dynamic analysis for all cases of study. 

Based on the two forms of Eqs. (4)-(6), these values of 𝛼, 𝛽, 

and 𝑆𝑒 which are obtained to count for the effect of each 

considered parameter individually and consequently for the 

proposed generalized equation, are established and 

summarized below in Table 4. 

 

4.3 Lower and upper limits of periods 
 
The coefficient α which is calculated from rational 

analysis would have lower value 𝛼𝐿 and upper value 𝛼𝑈. 

These values are calculated from the following equations 

 

Fig. 3 Natural periods of models with different number of 

bays and building heights, obtained by code Eq. (1) and the 

analytical-regression procedure 

 

 

𝑙𝑜𝑔(𝛼𝐿) = 𝑙𝑜𝑔(𝛼) − 𝑆𝑒 (8) 

𝑙𝑜𝑔(𝛼𝑈) = 𝑙𝑜𝑔(𝛼) + 𝑆𝑒 (9) 

The lower and upper periods 𝑇𝐿 and 𝑇𝑈 for the first 

proposed Eq. (4) will have the following forms, respectively 

𝑇𝐿 = 𝛼𝐿𝑕𝑛
𝛽

 (10) 

𝑇𝑈 = 𝛼𝑈𝑕𝑛
𝛽

 (11) 

On the other side, the 𝑇𝐿  and 𝑇𝑈  for the second 

proposed Eq. (6), will have the following forms, 

respectively 

𝑇𝐿 = 𝛼𝐿 (
𝑕𝑛

√𝐶𝑤

)

𝛽

 (12) 

𝑇𝑈 = 𝛼𝑈 (
𝑕𝑛

√𝐶𝑤

)

𝛽

 (13) 

Herein, the lower and upper limits on 𝑇  make the 

results more conservative and reasonable, where the over or 

under estimated periods are removed. 

 

 

5. Results and discussions 
 

For purposes of comparison, all the period equations 

obtained analytically from using the ETABS 3D non-linear 

time history analysis along with the performed regression 

analysis (i.e., 𝑇𝑅) and their upper (𝑇𝑈) and lower bounds 

(𝑇𝐿 ) are plotted, together with the comparable periods 

computed by code’s Eqs. (1) or (2), (i.e., 𝑇𝑎1 𝑜𝑟 𝑇𝑎2 , 

respectively). 

 

5.1 Effect of number of bays 
 

As shown in Fig. 3, the variation of number of bays has 

slightly effect values of 𝑇 for buildings having the same 

height, where 𝑇 for the two bays buildings are found 

slightly smaller than that obtained for six bays buildings. 

Fig. 3 shows clearly that the code Eq. (1) does not show 

compatibility with the determined analytical periods.  
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Fig. 4 Natural periods of building models with different 

number of bays and heights, obtained by code Eq. (2) and 

the analytical-regression procedure 

 

 

Fig. 5 Natural periods of models with different building 

width and heights, obtained by code Eq. (1) and the 

analytical-regression procedure 

 

 

Therefore, a modified equation is proposed by the rational 

regression analysis, and represented as 𝑇𝑅 in Fig. 3 with 

their upper and lower bounds 𝑇𝐿 and 𝑇𝑈, respectively. 

The standard error 𝑆𝑒 between the analytical periods 

and the periods obtained from code Eq. (1) is equal to 

60.0%, whereas is limited to 2.9% between the analytical 

periods and the periods obtained from the modified 

equation 𝑇𝑅.  

Fig. 4 shows that the buildings with two and six bays 

with the same height have closed values for (𝑕𝑛 √𝐶𝑤⁄ ). 
This indicates that the number of bays does not have a 

remarkable effect on values of 𝑇. In fact this due to the 

interactive influence of the coefficient 𝐶𝑤 on the values of 

𝑇  reflected by the two important factors (∑ 𝐴𝑖
𝑥
𝑖=1 𝐴𝐵⁄ ) 

and (𝑕𝑖 𝐷𝑖⁄ ). Also, Fig. 4 shows clearly that period from 

code Eq. (2) agrees well with the analytical computed 

periods. Therefore, no further modification is appeared to 

be necessary on period from code Eq. (2) due to effect of 

number of bays. 

 
5.2 Effect of building width 
 

Fig. 5 shows noticeably that the code Eq. (1) is not 

compatible with the computed analytical periods, where a 

 

Fig. 6 Natural periods of models with different building 

width and heights, obtained by code Eq. (2) and the 

analytical-regression procedure 

 

 

large percentage of standard error of 54.0% between their 

values is observed. Therefore, a modified equation is 

seemed to be essential and proposed by employing the 

rational regression analysis. The modified equation with its 

upper and lower bounds are appearing scattered on Fig. 5, 

where the percentage of standard error 𝑆𝑒  between the 

analytical periods and the periods obtained from the 

modified equation is limited to 10.5%. As shown from Fig. 

5, the buildings with the largest width have the lowest 

fundamental periods of vibration. 

Fig. 6 represents the code alternative Eq. (2) and the 

computed analytical periods for buildings with different 

building width, where the percentage of standard error 

between their values is found to be 4.1%, which is appeared 

to be a reasonable deviation. Therefore, there is no need for 

further modification on code Eq. (2) due to effect of 

building width. However, Fig. 6 shows a slight difference 

between periods for buildings with different width due to 

the fact that the buildings with 6 m width have the largest 

values of (𝑕𝑖 𝐷𝑖⁄ ), whereas the buildings with 10 m width 

have the smallest values of (𝑕𝑖 𝐷𝑖⁄ ). The buildings with 8 m 

width have intermediate values of (𝑕𝑖 𝐷𝑖⁄ ) compared to the 

former two buildings. These values explain why 𝑇  for 

buildings having the same seismic heights, but with 6 m 

width are a little larger than the periods of the buildings 

with 8 m width, and followed by the smallest periods for 

buildings with 10 m width. 

 

5.3 Effect of bay width 
 

Fig. 7 shows the analytically computed periods for 

buildings with bay width equals 4 m, 6 m and 8 m, 

respectively. As noted from Fig. 7, the variation of bay 

width has a noticable effect on 𝑇 for buildings with the 

same height, where it increases as the bay width increases. 

On the one hand, it is appeared from Fig. 7 that the code Eq. 

(1) does not show good compatibility with 𝑇 obtained by 

analytical procedure, with percentage of standard error 

between their periods reaches 59.3%. Instead, the proposed 

modified equation shows more agreement with the 

analytical periods, with a standard error percentage between 

their values limited to 9.4%.  
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Fig. 7 Natural periods of models with different bay width 

and building heights, obtained by code Eq. (1) and the 

analytical-regression procedure 

 

 

Fig. 8 Natural periods of models with different bay width 

and building heights, obtained by code Eq. (2) and the 

analytical-regression procedure 

 

 

In comparison with code Eq. (1), the percentage of 

standard error for Eq. (2) is reduced down to 3.7%. As 

shown in Fig. 8, the code Eq. (2) introduces compatible 

periods with the analytically computed periods. Due to this 

fact, no further modification is needed for code Eq. (2) due 

to the effect of bay width. The difference of bay width 

between the three horizontal plans does not have significant 

effect on the value of (𝑕𝑖 𝐷𝑖⁄ ). Furthermore, the buildings 

with 4 m , 6 m, and 8 m bay width have a descending values 

for ratio of SW area to base area of structure (i.e., 
∑ 𝐴𝑖

𝑥
𝑖=1 𝐴𝐵⁄ ), respectively. Moreover, Fig. 8 shows that 

buildings with the largest ratio of (𝑕𝑛 √𝐶𝑤⁄ )  have the 

longest period. These ratios clarify why 𝑇 for buildings 

having the same height but with different bay width are 

varying. The buildings with  8 m bay width have the 

longest period followed by these with 6 m bay width, and 

then buildings with 4 m bay width. 

 

5.4 Effect of presence of middle corridor 
 
Fig. 9 presents computed periods for models with 

different heights and SW’s length with presence of middle 

corridor. These periods are obtained by Code Eq. (1) and 

the modified analytical regression equation (𝑇𝑅) with its 

upper and lower bounds. In case of buildings with two SWs 

 

Fig. 9 Natural periods of models with different heights and 

SW’s length with presence of middle corridor, obtained by 

code Eq. (1) and the analytical-regression procedure 

 

 

Fig. 10 Natural periods of models with different heights and 

SW’s length with presence of middle corridor, obtained by 

code Eq. (2) and the analytical-regression procedure 

 

 

having length of 2 m, among them 2 m middle open 

corridor, the standard error between the analytically 

computed periods and these from code Eq. (1) is found to 

be 62.7%. In comparison, a standard error of 43.2% is 

obtained for the case of two SWs of having length of 6 m. 

In addition, Fig. 9 shows that the current modified equation 

agrees well with the analytically computed periods, where 

the standard errors for both cases are limited to 15.7% and 

15.4%, respectively. A shown in Fig. 9 the periods for 

buildings with two SWs having length of 2 m, with middle 

open corridor, is larger than these for buildings with two 

SWs having length of 2 m, with middle open corridor. 

Fig. 10 shows that the value of  𝑕𝑛 √𝐶𝑤⁄   for buildings 

have the same height, with two SWs of 2 m length and 

having 2 m middle open corridor between them, is larger 

than that for building with two SWs of 6 m length, with 2 m 

middle corridor. Also, it is clearly appeared that code Eq. 

(2) does not show good compatiblity with the analytical 

periods, where it led to large standard error of 40.7%. In 

comparison, the standard error between the current 

modified equation and the analytical periods is limited to 

10.3%. 

 

5.5 Effect of presence of core shear walls 
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Fig. 11 Natural periods of models with core SW and 

different building heights, obtained by code Eq. (1) and 

analytical-regression procedure 

 

 
Fig. 12 Natural periods of models with core SW and 

different building heights, obtained by code Eq. (2) and the 

analytical-regression procedure 

 

 

Fig. 11 shows that the periods of vibration for buildings 

with two core SWs are larger than these for obtained 

buildings with one central core SW. In addition, it appears 

obviously that code Eq. (1) does not show proper 

compatibility with the analytical periods, where the 

standard error is found 53.9%. So, a modified equation by 

rational regression analysis is essentially proposed. It is 

shown that the modified equation and its upper and lower 

limitations are scattered on Fig. 11. The standard error 

between the analytical periods and these from modified 

equation is found 3.2%.  

Fig. 12 shows that the buildings with central single core 

SW and have different values of  𝑕𝑛 √𝐶𝑤⁄   compared to 

buildings with two core SW’s, at same height. The 

buildings with central core SWs have smaller values of 

(∑ 𝐴𝑖
𝑥
𝑖=1 𝐴𝐵⁄ ) and (∑ (𝐷𝑖 𝑕𝑖⁄ )2𝑥

𝑖=1 ) compared with the 

buildings having two cores SWs. These values explain why 

𝑇 for buildings with central core SWs is larger than that for 

buildings with two core SWs. Also, Fig. 12 shows that code 

Eq. (2) does not give good compatibility with the analytical 

periods for buildings higher than 60 m, where the standard 

error between their values is found to be 64.7%. So, a 

modified equation with its upper and lower bounds are 

essentially proposed using the rational regression analysis. 

The percentage of standard error between the analytical 

 

Fig. 13 Natural periods of all models with different building 

heights, obtained by model code Eq. (1) and the analytical-

regression procedure 

 

 

periods and the periods from modified equations is limited 

to 10.7%. 

 

5.6 General forms of the modified period equations 
 

Due to the imprecise periods obtained by code Eq. (1), 

regression analysis is conducted on all of the analytically 

computed periods for all of proposed models based on the 

code empirical form of Eq. (4). Thus, a first form of the 

general modified equation including the effects of all 

studied parameters altogether is formulated. The first form 

of the general equation for periods with its upper and lower 

bounds are shown in Fig. 13. As shown in Fig. 13, the most 

proper equations obtained from regression fitting, with 

lower and upper bounds, are given below in Eqs. (14)-(16).  

The percentage of standard error between the analytical 

periods and these obtained from first general modified 

equation is narrowed to 7.9%. 

𝑇𝑅 = 0.001 𝑕𝑛
1.82 (14) 

𝑇𝐿 = 0.0008 𝑕𝑛
1.82 (15) 

𝑇𝑈 = 0.0012 𝑕𝑛
1.82 (16) 

Since few periods fall above 𝑇𝑈 or under 𝑇𝐿 , it is 

deemed to be suitable to use the equation of 𝑇𝐿 to estimate 

conservative periods. 𝑇𝑈 is used particularlly to limit the 

periods computed from rational analysis. So, the periods 

from rational analysis should not be longer than the 

following limit: (𝛼𝑈 𝛼𝐿⁄ )𝑇𝐿 = (0.0012 0.0008⁄ )𝑇𝐿 =
1.5 𝑇𝐿. 

Previously, it is shown that code Eq. (2) is not 

compatible with the analytically computed periods for 

buildings that have core SW’s or middle open corridor. 

Thus, an essential need arises for more reasonable equation 

to estimate T basing on the alternative form of code Eq. (6). 

Thus, a regression analysis is conducted on the analytically 

computed periods obtained from ETABS non-linear time 

history analysis for all cases together considering different 

affecting parameters. Fig. 14 shows the obtained periods 

with their bounds, and these obtained by code Eq. (2). A 

second form of general proposed modified equation 

including the effects of all parameters together with its 

upper and lower bounds are given in Eqs. (17)-(19) below.  
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Fig. 14 Natural periods of all models with different building 

heights, obtained by code Eq. (2) and the analytical-

regression procedure 

 

 

The second modified general form shows that periods from 

rational analysis should not be longer than the limit of 
(0.01515 0.00645⁄ )𝑇𝐿 = 2.35 𝑇𝐿. 

𝑇𝑅 =
0.01066𝑕𝑛

0.87

𝐶𝑤
0.44

 (17) 

𝑇𝐿 =
0.00645𝑕𝑛

0.87

𝐶𝑤
0.44

 (18) 

𝑇𝑈 =
0.01515𝑕𝑛

0.87

𝐶𝑤
0.44

 (19) 

 

 
6. Seismic performance of buildings test models  
 

To validate the current proposed modified equations, 

investigation is carried out for the seismic performance of 

two selected test models to ensure a satisfactory 

performance against the design seismic loads. The test 

models are analyzed and designed depending on five 

alternative equations for periods, that are: 3D non-linear 

time history dynamic analysis using ETABS v16.2.1; code 

Eq. (1); code Eq. (2); modified Eq. (15); and modified Eq. 

(18). In order to achieve this target, an arbitrary horizontal 

plan with middle open corridor is chosen for two building 

test models with different structural heights.  

 

6.1 Description of the selected test models 
 

In purpose of verification of the results, two test 

building models of bearing wall systems with special RC 

shear walls have been selected and analyzed for different 

responses. The selected building test models have 20- and 

80-story with reqular story height of 3 m (i.e., structural 

heights of 60 m and 240 m, respectively).  

The modeling design parameters for both building test 

models, including geometrical dimensioning of all shear 

walls, solid slabs, and beams are presented in Table 5. 

Besides, exterior and interior drop beams are provided with 

using coupling beams connecting shear walls at openings 

where they exist. Types of finite elements selected were 

shell elements for slabs and walls and 3D solid type for  

Table 5 Modeling design parameters* for 20- and 80- story 

building test models 

Modeling Design Parameters 
20-Story 

Model 

80-Story 

Model 

𝑓𝑐
́
 (MPa) 28 28 

Live load, (kN/m2) 2 2 

Story height (m) 3 3 

Number of stories 20 80 

Seismic Structural Height (m) 60 240 

Building width (m) 15 15 

Building length (m) 40 40 

Walls’ Thickness (mm) 200 400 

Solid Slabs’ Thickness (mm) 210 350 

Beams (mm×mm) 200×500 400×500 

Width of Wall Openings (m) 5 5 

 

 

beams. The length of each wall in both X and Y directions is 

exposed in Fig. 15. 

Comparable arbitrarly selected horizontal plan is 

proposed for both test models as shown in Fig. 15 with 

width and length for both buildings equal to 15 m and 40 m, 

respectively. The test building models have six bays with 

irregular bay width varying from 5 to 7 m, in addition to 

presence of middle open corridors of 5 m wide. Both 

buildings are chosen not to have any irregularity type.  

 
6.2 Essential seismic parameters for design 
 

Using the response spectrum procedure, the mapped 

spectral response acceleration parameters at short period, 

(𝑆𝑆 ), one-second period, (𝑆1 ), and all other necessary 

material properties and load calculations for the test models 

are taken from (Kim and Lee, 2014). The values of 𝑆𝑆 and 

𝑆1 are 0.555𝑔 and 0.225𝑔, respectively, where 𝑔 is the 

gravity acceleration (𝑔 = 9.81 m/sec2). The site class is 

considered class (B), thus there is no need to further 

modification on the spectral accelerations 𝑆𝑆 and 𝑆1. The 

risk category of the studied model is chosen to be (II) with 

the importance factor, (𝐼𝐶), taken as (1.0). 

Referring to IBC 2012/ASCE/SEI 7-10, with computed 

𝑆𝐷𝑆 equals to 0.37 g and with the computed 𝑆𝐷1 equals to 

0.15 g  and the assigned risk category II, the Seismic 

Design Category of the test models is determined to be 

(SDC C). The test models are designed as a bearing wall 

lateral-force-resisting system with selection of special 

reinforced concrete shear walls to resist the lateral forces. 

The response modification factor, (R), for this system is 

slected to be (5.0). 

 

6.3 Alternative periods used in analysis 
 

The most important parameter that must be defined in 

this type of analysis is the fundamental period of vibration, 

T. The test models are analyzed five consequent times based 

on the aforementioned five alternative procedures for period 

estimation, which leads to periods for five cases of study as 

presented in Table 6 below. 

As shown from the above different estimated periods 

presented in Table 6, the code Eq. (1) and the modified Eqs.  
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Fig. 15 The horizontal proposed plan for the 20- and 80-

story bearing wall building test models 

 

Table 6 Values of fundamental periods and absolute errors for 

test models using different methods 

Case Study for 

Different Periods 

Period (sec) 

20-Story 

Model 
Error % 

80-Story 

Model 
Error% 

3D Non-linear time 

history analysis 

(ETABS) 

1.70 0 20.17 0 

Code Eq. (1) 1.05 -38 2.98 -85.3 

Code Eq. (2) 3.08 +81.4 35.85 +77.7 

Modified Eq. (15) 1.38 -18.8 17.18 -14.8 

Modified Eq. (18) 1.50 -11.9 12.43 -38.4 

 

 

(15) and (18) introduce periods less than the period of non-

linear time history analysis. That means they are probable to 

introduce a conservative analysis results and design, 

whereas the code Eq. (2) introduces a period larger than the 

period obtained by ETABS non-linear time history analysis, 

which means that it will introduce non-conservative 

analysis results and insufficient design to resist the seismic 

lateral forces.  

Table 6 also shows the percentages of errors in period 

for both the 20- and 80-story buildings obtained by different 

methods measured with respect to the period obtained by 

non-linear time history as benchmark value. The modified 

Eq. (18) produces the least absolute percentage of error for 

the case of 20-story building, where Eq. (15) gives the least 

absolute error for the 80-story building. In both cases, code 

Eqs. (1) and (2) give under- and over-estimated periods, 

respectively, with considerable absolute percentage of 

errors, which may lead to significant inaccuracy in targeted 

responses. Also, error calculations indicate that both 

modified Eq. (15) and (18) give values of periods lower 

than these of TH procedure with insignificant absolute 

percentage of errors. Thus, they lead to optimized 

conservative responses in analysis. Besides, it is observed 

that Eq. (15) seems more suitable to predict periods for 

high-rise buildings, while Eq. (18) is appropriate to be 

employed for the intermediate to low-rise buildings. 

 

6.4 Analysis results and seismic responses 
 
The seismic base shear, story shears, maximum lateral 

displacements, story drifts and drift ratios are investigated 

and discussed for tested buildings using the above- 

Table 7 Values of base shear for test models using different 

computed periods 

Case Study for 

Different Periods 

Base Shear (kN) 

20-Story 

Model 
Error % 

80-Story 

Model 
Error% 

Non-linear time 

history analysis 

(ETABS) 

2087.9 0 10010.0 0 

Code Eq. (1) 3368.0 +61.3 12890.0 +28.8 

Code Eq. (2) 1922.7 -7.9 6198.3 -38.1 

Modified Eq. (15) 2570.9 +23.1 10641.3 +6.3 

Modified Eq. (18) 2370.2 +13.5 11507.0 +15.0 

 

 

mentioned approaches of different estimated periods. 

 

6.4.1 Base shear forces 
The values of base shear for all periods are represented 

below in Table 7. It appears that the period of the code Eq. 

(2) does not introduce a sufficient base shear for purposes 

of adequate design. code Eq. (2) gives base shear for both 

of the 20- and 80-story buildings lower than that obtained 

by non-linear TH procedure with negative percentage of 

errors measured with respect to the TH analysis. However, 

the period obtained from code Eq. (1) introduces base shear 

higher than that obtained from using the period of non-

linear time history analysis, but with highly considerable 

percentage of errors. This means a very conservative design 

and higher cost. On the contrary, the periods obtained from 

the modified Eqs. (15) and (18) introduce reasonably higher 

values of base shear with acceptable percent of increase for 

both of the 20- and 80-story buildings.  

The base shears obtained from using the proposed Eqs. 

(15) and (18) for both of the 20- and 80-story buildings are 

found to be higher than that of TH analysis with percent of 

increase equal to (+23.13%) and (+13.5%), respectively. 

However, Eq. (15) introduces much economical increase 

limited to (+6.3%) in base shear presenting a slightly more 

conservative design for the 80-story building. Eq. (18) gives 

(+15%) increase in base shear for the 80-story building, 

which is almost similar to that obtained in the 20-story-

building. Therefore, the current modified equations seem to 

introduce realistic, conservative, and better design cost. 

However, Eq. (15) seems more suitable to predict base 

shear for high-rise buildings, while Eq. (18) is more 

applicable for the intermediate to low-rise buildings. 

 

6.4.2 The story shears 
Figs. 16-17 show vertical distribution of seismic shear 

forces into each story of the 20- and 80-story building 

models using different methods of predicting periods. Both 

figures show noticeably that the periods of the proposed 

modified Eqs. (15) and (18) introduce the most reasonable 

vertical distribution of story seismic shear forces for 

purposes of reputable design compared to these obtained 

from non-linear TH analysis. On the other hand, the period 

of the code Eq. (1) introduces very conservative and 

uneconomic design, while the period of the code Eq. (2) 

introduces non-conservative low shears, and thus less 

reliable design. 
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Fig. 16 Vertical distribution of seismic shear forces into 

each story of the 20-story model using different periods 

 

 

Fig. 17 Vertical distribution of seismic shear forces into 

each story of the 80-story model using different periods 

 

 

The shear forces exerted at the each story obtained 

based on period from code Eq. (1) is higher than these 

obtained from non-linear time history analysis. In this case 

of study, the percent of increase in shear force ranges from  

(+42.2%) in the 1st story to (+61.3%) in the 20th story, 

whereas that percent of increase for the 80-story building is 

approximately constant and equal to (+28.8%) in any story.  

Similarly, the shear forces exerted at each story obtained 

for both of the 20- and 80-story buildings based on period 

from code Eq. (2) are found alternating from these obtained 

by non-linear TH analysis. For this case of study on the 20-

story building, these shear forces are found varying from 

decrease at low-to-intermediate levels to an increase at 

much higher levels. The percent of decrease in shear force 

in the 20-story building ranges from (-7.9%) in the 1st story 

to (-0.6%) in the 14th story, whereas an increase occurred 

with percent ranges from (+0.4%) in the 15th story to 

(+5.5%) in the 20th story. On the contrary, the code Eq. (2) 

led to approximately constant increase equal to (+28.8%) in 

any of story shear forces compared to the TH procedure.  

The modified Eqs. (15) and (18) for the 20-story 

building led to an increase in the shear forces in 1st to 20th 

story ranges from (+16%) to (+23.1%) and (+9.3%) to 

(+13.5%) for each equation, respectively. However, these 

percentages become constants in the 80-story building with 

ratios of (+6.3%) and (+15%) for each of the two equations, 

Table 8 Maximum lateral displacements at roof level in X and 

Y directions using different periods 

Case Study for Different 

Periods 

Maximum Lateral Displacement (mm) 

20-Story Model 80-Story Model 

X Y X Y 

3D Non-linear time history 

analysis (ETABS) 
48.7 28.0 106.4 185.5 

Code Eq. (1) 74.6 42.9 172.2 299.4 

Code Eq. (2) 47.2 27.1 103.0 179.4 

Modified Eq. (15) 58.5 33.7 118.8 206.5 

Modified Eq. (18) 54.5 31.3 123.6 214.5 

 

 

Fig. 18 Lateral displacement in X direction for the 20-story 

model using different periods 

 

 

respectively. Thus, it is obvious that using the modified Eqs. 

(15) and (18) produces more reliable shears and accordingly 

more economical design. However, Eq. (15) seems to 

produce more consistent shears for high-rise buildings, 

while Eq. (18) appears to be proper for low-to-intermediate 

rise buildings. 

 
6.4.3 Story lateral displacement and story drift  
Table 8 represents the maximum lateral displacement at 

the roof level in both X and Y directions for all cases of 

study. Moreover, Figs. 18-21 successively show the lateral 

displacements obtained for each story in both directions for 

the two tested 20- and 80-story buildings. It clearly appears 

from Table 8 and Fig. 18-21 that the period of the code Eq. 

(1) introduces high and very conservative values for lateral 

displacement in both X- and Y-direction with approximated 

average increase of (+55%) and (+62%), respectively, 

compared with these obtained from the periods of non-

linear TH analysis. Thus, code Eq. (1) led to lateral 

displacement in both directions for both of the 20- and 80 

story buildings equal to these obtained by using the period 

of non-linear TH analysis multiplied by factors of 1.55 and 

1.62, respectively.  

On the other hand, the lateral displacements in X- and Y-

direction obtained based on the period of the code Eq. (2) 

appeared not to to be sufficient to achieve adequate and 

reliable design, since they are less than rational values. The 

percentage of decrease in the lateral displacement in both  

0

2

4

6

8

10

12

14

16

18

20

0 500 1000 1500 2000 2500 3000 3500

S
to

ry
 N

u
m

b
er

 

Shear Force (kN) 

Non-linear TH

Code Eq. (1)

Code Eq. (2)

Modified Eq. (15)

Modified Eq. (18)

0

10

20

30

40

50

60

70

80

0 4000 8000 12000 16000

S
to

ry
 N

u
m

b
er

 

Shear Force (kN) 

Non-linear TH

Code Eq. (1)

Code Eq. (2)

Modified Eq. (15)

Modified Eq. (18)

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80

S
to

ry
 N

u
m

b
er

 

Lateral Displacement in x-dir., dx, (mm)  

Non-linear TH

Code Eq. (1)

Code Eq. (2)

Modified Eq. (15)

Modified Eq. (18)

306



 

Estimation of fundamental natural period of vibration for reinforced concrete shear walls systems 

 

 

Fig. 19 Lateral displacement in Y direction for the 20-story 

model using different periods 

 

 

Fig. 20 Lateral displacement in X direction for the 80-story 

model using different periods 

 

 

directions for the 20- and 80-story building are found about 

(-4.5%) and (-3.2%), respectively. 

Conversely, the modified Eqs. (15) and (18) show 

reasonable values of lateral displacements in both X- and Y- 

direction. The modified Eq. (15) produces lateral 

displacements in both directions higher than the TH values 

with percent of increase in the 20- and 80-story building of 

(+21%) and (+11.6%), respectively. Similarly, Eq. (18) 

produces lateral displacements in both directions higher 

than the TH values with percent of increase in the 20- and 

80-story building of (+12.3%) and (16%), respectively. 

Table 9 shows that all estimated periods introduce 

conservative maximum drift, except the case of using the 

period of code Eq. (2), which introduces design values less 

than the demand, with a maximum percent of decreases 

equal to (-2.5%) and (-38%) for the 20- and 80-story 

buildings, respectively. This may affect the human comfort, 

and the stability of the structure. It clearly appears that the 

period of the code Eq. (1) introduces very conservative drift 

 

Fig. 21 Lateral displacement in Y direction for the 80-story 

model using different periods 

 

Table 9 Maximum story drift in X and Y directions using 

different periods 

Case Study for 

Different Periods 

Maximum Story Drift (mm) 

20-Story Model 80-Story Model 

X Y 
Max. 

Error% 
X Y 

Max. 

Error % 

3D Non-linear time 

history analysis 

(ETABS) 

3.1 2.0 0 2.0 5.29 0 

Code Eq. (1) 4.7 3.0 +53 2.6 6.8 +29 

Code Eq. (2) 3.0 1.9 -2.5 1.2 3.3 -38 

Modified Eq. (15) 3.7 2.4 +20 2.1 5.4 +4.5 

Modified Eq. (18) 3.4 2.2 +12 2.1 5.5 +6 

 

 

values, with a maximum percent of increases equal to 

(+53.0%) and (+29%) for the 20- and 80-story buildings, 

respectively.  

The percent of increase in the maximum drift values 

obtained by Eqs. (15) and (18) are respectively equal to 

(+20.0%) and (+12..0%) for the 20-story building and 

(+4.5%) and (+6%) for the 80-story building. It is clearly 

noticed that these modified equations will lead to more 

economical design for drifts with better accuracy. However, 

it is suggested to employ the modified Eq. (18) for drift 

calculations of RCSW buildings, where they give much 

closer values to the these obtained from non-linear TH 

analysis. 

According to IBC 2012/ASCE 7-10, the bearing RCSW 

systems which are located in risk category II, are assigned 

an allowable story drift ratio of 0.02𝑕𝑠𝑥, where, 𝑕𝑠𝑥, is the 

story height below level 𝑥. Figs. 22 -25 successively show 

the story drift ratios, in X and Y directions, for both 20- and 

80-story test model buildings. It appears that the maximum 

drift ratios in both directions for both buildings using all 

predicted periods do not exceed the code limit of 2.0% 𝑕𝑠𝑥. 

As shown in these figures, code Eq. (1) yields drift ratios 

that are less than what is predicted by the rational 3D TH 

analysis and in contrast the code Eq. (2) produces a very 

conservative (i.e., over-estimated) ratios which will be 

burdened with during design. However, each of the 

modified Eqs. (15) and (18) approves similarly that they  
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Fig. 22 Story drift ratio in X direction, 𝑕𝑠𝑥% for the 20-

story model using different periods 

 

 
Fig. 23 Story drift ratio in Y direction, 𝑕𝑠𝑦% for the 20-

story model using different periods 

 

 

yield to the most appropriate story drift ratios, where 

economical, safe, and comfortable design will be achieved. 

 
 
7. Conclusions 
 

Theoretically modified approximate equations to 

estimate the fundamental period of vibration, T, have been 

established for bearing wall systems with reinforced 

concrete especial shear walls. The proposed equations were 

derived based on unconstraint regression analyses of 110 

selected models using results of 3D non-linear response TH 

analysis for building models with and without middle 

corridors and presence of core SWs. The proposed formulas 

considered many effecting parameters including structural 

height, number, height and length of SWs, and ratio of SWs 

areas to the base area of the structure, configuration of 

horizontal plan including building width, number and width 

of bays and presence of middle corridors. The seismic 

performance of selected model structures designed using 

 

Fig. 24 Story drift ratio in X direction, 𝑕𝑠𝑥% for the 80-

story model using different periods 

 

 

Fig. 25 Story drift ratio in Y direction, 𝑕𝑠𝑥% for the 80-

story model using different periods 

 

 

the proposed formulas was investigated to verify the 

validity of these formulas, and results were compared with 

these obtained from formulas of IBC 2012 and ASCE/SEI 

7-10. The results showed that the performance of the tested 

structural system, when using the present proposed 

equations for estimating T, yields to reasonable, economic, 

and safe design compared to the approximate equations 

suggested by codes. Thus, the results of this study 

demonstrate the following detailed findings: 

• Considering building height alone may not ensure a 

valid period for the bearing RCSW systems. 

• Variation of the number of bays does not have 

significant effect on the fundamental natural period of 

vibration for bearing RCSW buildings at same height. 

• Variation of the building width for bearing RCSW 

buildings has a significant effect on the fundamental 

natural period of vibration where if the building width 

increases, the fundamental natural period of vibration 

decreases. 

• Variation of the bay width for bearing RCSW 
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buildings has a pointed effect on the fundamental 

natural period of vibration, that is when the bay width 

increases, the fundamental natural period of vibration 

increases. 

• The ratio of the SW area to the building area and the 

ratio of the SW height to the SW length, have a 

significant effect on the fundamental natural period of 

vibration for bearing RCSW buildings. 

• The equations of lower bound, 𝑇𝐿, which are obtained 

from regression analysis, introduces conservative design 

and thus are the best fit to estimate the fundamental 

natural period of vibration for the considered systems.  

• The available approximate formulas in codes may be 

incompatible and seemed unsound through appearance 

of considerable inaccuracies through underestimations 

or unjustified overestimations of anticipated structural 

design responses. Thus, realistic enhancement is found 

essential to improve estimation of T towards enriched, 

accurate and reliable analysis, design, and evaluation of 

bearing RCSW structural systems. 

• Code Eq. (1) does not consider the effects of number 

of bays, width of bays, width of building, and presence 

of middle corridor or core SW. Thus, it probably yields 

to a highly conservative estimation of T for multi-story 

bearing RCSW structures with various architectural 

configurations. However, compared with code Eq. (1), 

the proposed theoretically established Eq. (15), with 

similar form as of code Eq. (1), introduces more 

justifiable values of T in terms of Ct and power of 

𝑕𝑛 since it is allowing for the effects of extensive 

additional range of feasibly effective parameters 

altogether.   

• In estimation T of multi-story bearing RCSW 

structures, code Eq. (2) does not reflect the effects of 

number of bays, width of bays, width of building, and 

presence of middle corridors or core SWs. Therefore, it 

apparently introduces non-conservative values of T, 

especially when the architectural configurations include 

middle corridor or core SWs.  Though, code Eq. (2) is 

so perfect to estimate T for multi-story bearing RCSW 

structures, particularly when architectural configurations 

do not contain middle corridors or core SWs. 

Alternatively, in addition to the effects of all parameters 

that are considered by code Eq. (2), the proposed 

theoretically resulting Eq. (18) in this study contains the 

effect of presence of middle corridors or core SWs, and 

thus may be utilized as apposite alternate for estimation 

of T for multi-story bearing RCSW structures with 

relevant accuracy, particularly when such systems 

include middle corridors or core SWs.   

• The recommended Eqs. (15) and (18) presented in this 

study are developed to be applicable for the estimation 

of T for multi-story bearing RCSW structures with 

various architectural configurations along with many 

other possible effective parameters on T. However, the 

alternative form of Eq. (18) introduces more reasonable 

responses than Eq. (15) for most cases of study of 

bearing RCSW systems. This is due to the fact that of 

containing more and detailed explicit and implicit active 

parameters which may influence values of T and 

consequently other responses. 

• The results of the proposed equations in this study 

agree well with the results of 3D non-linear response TH 

analysis, and are consistent with the expectation levels 

with many affecting parameters; therefore, they can be 

preferred in order to calculate well-grounded seismic 

responses from design spectra. 

• More enhancements are required to improve T 

formulas of bearing RCSW systems with more 

consistent and cost-effective responses.  

• Regression analysis should be frequently carried out 

based on more analytical and larger experimental data to 

include more types of structural systems and taking into 

account other affecting factors on T such as foundation 

system, soil type, and seismic hazard parameters and 

zones. 
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